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Abstract
AIM: To analyze the expression profiles of a human gastric-
cancer-related gene, GCRG123 , in human gastric signet-
ring cell carcinoma tissues, and to perform bioinformatics 
analysis on GCRG123.

METHODS: In situ  hybridization was used to explore 
the GCRG123  expression pattern in paraffin-embedded 
gastric tissues, including 15 cases of signet-ring cell 
carcinoma, 15 of intestinal-type adenocarcinoma, and 15 
of normal gastric mucosa. Northern blotting was used to 
analyze the differences in GCRG123 expression between 
stomach signet-ring cell carcinoma and intestinal-type 
adenocarcinoma tissues. Online software, including 
BLAST, Multalin and BLAT, were applied for bioinformatics 
analysis. National Center for Biotechnology Information 
(NCBI) and the University of California Santa Cruz (UCSC) 
databases were used for the analyses.

RESULTS: The in situ  hybridization signal appeared as 
blue precipitates restricted to the cytoplasm. Ten out of 
15 cases of gastric signet ring cell carcinoma, normal 
gastric mucosal epithelium and pyloric glands showed 
high GCRG123  expression. Low GCRG123  expression 
was observed in gastric intestinal-type adenocarcinoma 
and normal gastric glands. Northern blotting revealed 
that GCRG123  was up-regulated in signet-ring cell 
carcinoma tissue but down-regulated in intestinal-type 
adenocarcinoma tissue. BLAST and Multalin analyses 
revealed that the GCRG123  sequence had 92% similarity 
with the ORF2 sequence of human long interspersed 
nuclear element retrotransposons (LINE-1, L1). 
BLAT analysis indicated that GCRG123  mapped to all 
chromosomes. GCRG123  was found to integrate in the 
intron-17 and -23 of Rb, 5’ flanking region of IL-2 and 
clotting factor Ⅸ genes.

CONCLUSION: GCRG123 , an active member of the L1 
family, was up-regulated in human gastric signet-ring cell 
carcinoma. 

© 2008 WJG. All rights reserved.
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INTRODUCTION
Gastric cancer remains one of  the most common forms 
of  cancer worldwide with approximately 870 000 new 
cases and 650 000 deaths per year[1-4], which accounts for 
about 9.9% of  new cancers[5]. Worldwide, there has been a 
decline in the incidence of  the intestinal type gastric cancer 
in the last few decades, following the overall decline in the 
incidence of  gastric cancer. By contrast, the decline in the 
diffuse type gastric cancer has been more gradual. Some 
studies have reported an increase in the diffuse type of  
gastric carcinoma, especially the signet-ring cell type[6]. As 
a result, the diffuse type now accounts for about 30% of  
gastric carcinomas in some reported series[7]. Intestinal-type 
and diffuse-type gastric cancer differ in their epidemiology, 
pathogenesis, genetic profile, and clinical outcome[8].

In 1999, we cloned a gene segment GCRG123, which 
was down-regulated in gastric adenocarcinoma. BLASTX 
analysis revealed that the predicted GCRG123 product 
was a lamin-like protein[9]. Recently, we have used the 
updated GeneBank database for further analysis on the 
GCRG123 sequence. We found that GCRG123 appeared 
to be a long interspersed nucleotide element-1 (LINE-1, 
L1) family member. Additionally, we revealed that 
GCRG123 was ultimately up-regulated in stomach signet-
ring cell carcinoma, as well as in normal pyloric glands 
and epithelia, which shows an opposite expression pattern 
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compared with its down-regulation in stomach intestinal-
type adenocarcinoma. 

MATERIALS AND METHODS
Patients and tissue acquisition 
All samples were obtained from the Department of  
Pathology, General Hospital of  Chinese PLA. Specimens 
of  paraffin-embedded gastric tissues, including 15 cases of  
gastric signet-ring cell carcinoma, 15 of  advanced gastric 
intestinal-type adenocarcinoma and 15 of  normal gastric 
mucosal tissues, were collected for in situ hybridization 
analysis. One set of  fresh gastric signet-ring cell carcinomas 
and paired non-cancerous gastric tissues, and one set of  
fresh gastric intestinal-type adenocarcinomas and paired 
non-cancerous gastric tissues were used for Northern blot 
analysis. The diagnosis of  cancer was confirmed through 
histology. 

In situ hybridization 
cRNA probe labeling: Digoxigenin-labeled anti-
sense and sense cRNA probes were prepared by in vitro 
transcription (DIG RNA Labeling Kit (SP6/T7); Roche 
Diagnostics, Mannheim, Germany). Briefly, the following 
labeling procedure was employed: purified GCRG123 
cDNA 100 ng/10 μL, 5 × NTP labeling mixture 4 μL, 5 ×  
transcription buffer 4 μL, and RNA polymerase SP6/T7  
2 μL were mixed gently, centrifuged, and then incubated for 
1 h at 42℃. Two microliters of  RNase-free DNase I was 
added to remove template DNA, by incubating for 15 min  
at 37℃, and the reaction was finally stopped by adding 2 
μL 0.2 mol/L EDTA (pH 8.0). Labeling efficiency was 
directly detected by a spot test as described in the protocol 
of  the kit.

Hybridization: All specimens were fixed in 10% neutral-
buffered formalin and embedded in paraffin. A series 
of  5-μm thick sections were cut for analysis. In situ 
hybridization was performed as previously described[10,11] 
with some amendments, using digoxigenin-labeled anti-
sense cRNA probes. Briefly, the slides were dried at 
40℃ overnight, dewaxed, rehydrated and pretreated with 
DEPC-treated PBS containing 100 mmol/L glycine and 
0.3% Triton X-100, respectively. The sections were then 
permeabilized with 20 μg/mL RNase-free proteinase K 
(Merck, Darmstadt, Germany) for 20 min, incubated at 
37℃ for at least 20 min with prehybridization buffer. 
Each section was overlaid with 30 μL hybridization 
buffer containing 10 ng digoxigenin-labeled cRNA probe 
and incubated at 42℃ overnight. After hybridization, 
the section was incubated with digoxigenin antibody 
(75 mU/mL) for 2 h. The positive signal for GCRG123 
mRNA was detected by using NBT/BCIP (Promega, 
WI, USA) as a substrate. Sense cRNA probes were used 
as a negative control. The presentation of  blue staining 
in the cytoplasm was considered positive. The positive 
staining of  cytoplasm was scored manually as described 
below: -, barely detectable light blue; 1+, diffuse light 
blue; 2+, blue; 3+, dark blue. More than 100 non-tumor 
or tumor cells were quantified in each measurement, and 

more than one measurement was required to confirm 
the diagnosis. Consequent slides with H&E staining were 
then reviewed to compare the histological patterns to the 
staining patterns in the in situ hybridization preparations.

Northern blot analysis
Dig Northern Starter Kit (Roche Diagnostic, Indianapolis, 
IN, USA) was used. The procedure of  hybridization was 
performed according to the manufacturer’s protocol. 
Digoxigenin-labeled cRNA probe was generated as 
described above. Digoxigenin-labeled sense cRNA probe 
was used as a negative control. The hybridization signals 
were visualized with chemiluminescence, which was 
recorded on X-ray films. The exposure time was 10 min. 

Bioinformatic analysis
BLAST (http://www.ncbi.nlm.nih.gov/BLAST/)[12] was 
used for sequence similarity search. MultAlin (http://
bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html)[13] 
was used for multiple sequence alignment analysis. BLAT 
(http://genome.ucsc.edu/cgi-bin/hgBlat) was applied to 
find the genomic coordinates of  mRNA, and to search for 
gene family members[14]. Alignment parameters were set 
as default. NCBI and UCSC databases were used for the 
analyses.

Informed consent 
The study protocol was approved by the Institutional 
Review Board of  the hospital under the guidelines of  the 
1975 Declaration of  Helsinki. Written informed consent 
was obtained from all patients. 

RESULTS
In situ hybridization 
GCRG123 expression was analyzed at the mRNA level using 
in situ hybridization. The hybridization signal appeared as blue 
staining in the cytoplasm. Fourteen gastric intestinal-type 
adenocarcinoma cases showed - to ± staining (Figure 1A).  
Interestingly, 10 out of  15 gastric signet-ring cell carcinoma 
tissues were stained 2+ to 3+ (Figure 1B), while the other 
signet-ring cell tissues were stained ± to +. In the normal 
gastric mucosa, all gastric epithelia and pyloric glands 
were heavily stained (grade 2+ to 3+) (Figure 1C and D), 
however, the normal gastric glands were stained lightly 
(Figure 1C).

Northern blotting 
Both normal gastric tissue and signet-ring cell carcinoma 
tissue showed strong hybridization signals, while the gastric 
intestinal-type carcinoma tissue showed a weak signal. 
These results seem to indicate that GCRG123 expression 
was higher in gastric signet-ring cell carcinoma than in 
intestinal-type adenocarcinoma (Figure 2).

Bioinformatic analysis
The sequence of  GCRG123 was enrolled for a sequence-
similarity search in the GenBank database. GCRG123 shared 
92% similarity with the human transposon L1 (M80343) 
sequence, as well as the highly active L1 sequence reported 



in the literature[15]. Multalin analysis revealed that GCRG123 
was located at nucleotides 2767-3215 of  L1, at which the L1 
ORF2 dwells (Figure 3). GCRG123 was found to integrate 
in intron-17 and -23 of  Rb (L11910), the 5’ flanking region 
of  IL-2 (Ⅹ67285), and the 5’ flanking region of  clotting 
factor Ⅸ (Ⅹ75349) genes (GenBank accession numbers 
in parentheses). BLAT analysis showed that GCRG123 
mapped to all the human chromosomes.

DISCUSSION
Our previous bioinformatic analysis of  GCRG123 showed 
that the predicted peptide sequence of  GCRG123 has 80% 
homology with a human lamin-like protein (GenBank 
accession number, AAA36178)[9], therefore, we predicted 
that GCRG123 might be a gene that encoded a lamin-like 
protein. However, the results of  the present study indicate 

that GCRG123 tends to be an active LINE-1 family 
member.

Retrotransposable elements, such as L1, Alu and 
endogenous retroviruses, make up some 45% of  human 
DNA[16]. L1 is one of  the most successful retrotransposons 
and occupies 17% of  DNA[17]. In the early stages, because 
of  the lack of  any obvious correlation with cellular 
functions, retrotransposable elements were considered to 
be mere remnants of  our genetic evolution and given the 
name ‘‘junk DNA’’[18]. However, recent data have revealed 
that some L1s do remain retrotransposition-competent. 
It has been shown that L1 is a functionally capable gene. 
For example, human embryonic stem cells can express 
endogenous L1 elements[19]. L1 can retrotranspose in 
neuronal precursors, and can consequently alter the 
expression of  neuronal genes, which in turn, can influence 
neuronal cell fate in vitro[20]. L1 retrotransposition can also 
occur in non-dividing somatic cells[21].

A retrotransposition-competent, functional L1 element 
covers about 6.1 kb and contains a 5’ untranslated region, a 
1-kb ORF1 that encodes a protein (p40) with RNA-binding 
ability, followed by a 3.8-kb ORF2 that codes for a protein 
(p150) with endonuclease and reverse transcriptase (RT) 
activities, and a cysteine-histidine-rich domain. The 3’ end 
of  L1 is terminated by a short 3’ untranslated region and a 
poly(A) tail[22-26]. L1 likely integrates into the genomic DNA 
by a process called target primed reverse transcription and 
shapes mammalian genomes through many different ways, 
such as retrotransposition, transduction and gene expression 
alteration[27]. Although the overwhelming majority of  L1s 
(about 99.8%) are inactive because of  5’ truncations, internal 

DC

BA

Figure 1  In situ hybridization analysis of GCRG123 in gastric mucosa. GCRG123 showed low expression (blue precipitates restricted to the cytoplasm) in intestinal-type 
adenocarcinoma (A) and normal gastric glands (C, left region); high expression in signet-ring cell carcinoma (B); normal epithelia (C); and normal pyloric glands (D). NBT/
BCIP was used as an alkaline phosphatase substrate (magnification was 10 × 10).
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Figure 2  Northern blotting of GCRG123 in gastric tissues. The expression of β-actin 
served as an internal control. Total RNA, 1 μg per lane, was separated on a 1% 
agarose/formaldehyde gel. After blotting onto a nylon membrane, the membrane 
was probed with digoxigenin-labeled anti-sense GCRG123 cRNA. N, normal gastric 
tissue; T, tumor; 1, signet-ring cell carcinoma; 2, intestinal-type adenocarcinoma.
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rearrangements and mutations, 80-100 retrotransposition-
competent L1s have been predicted in humans. Remarkably, 
84% of  the retrotransposition capability of  these elements 
has been shown to be present in six highly active L1s[15].

It has been proposed that retrotransposons modulate 
the expression of  specific genes through a transcriptional 
interference-based mechanism. To exert such effect on 
neighboring genes, retrotransposons need not necessarily 
be full-length, nor retrotransposition-competent, but simply 
endowed with functional promoter elements[28]. Previous 
studies have shown that some non-full length L1 elements 
(even shorter than 500 bp) may yield L1 products such as 
L1 RNA or active RT[29-31]. L1 RNAs are also involved in 
extensive RNA splicing that can radically alter the diversity 
of  expressed RNA forms from these elements, as well as 
influence their impact on gene expression upon genomic 
insertion[32].

The state-of-the-art understanding of  L1 described 
above prompted us to propose that GCRG123 may be an 
active L1 family member, as supported by our findings. 
First, the GCRG123 sequence shared 92% homology with 
the conserved sequence of  the highly active L1s (hot L1s). 
Second, GCRG123 can map to all chromosomes, which 
is similar to L1s. Third, GCRG123 can integrate in the 
intron or 5’ flanking region of  some known genes, which 
suggests that it has the potential to adjust the function of  
these genes. Finally, in situ hybridization and Northern blot 
analysis at the mRNA level showed a distinct GCRG123 
expression pattern in different kinds of  gastric mucosa 
cells.

A lot of  evidence has indicated that L1 is involved in 
a wide spectrum of  diseases, including cancer[28,33,34]. In 
colon cancer, the APC gene can be disrupted by somatic 
insertion of  an L1 sequence into the last exon of  the 
gene[35]. Takai et al have found that hypomethylation of  L1 
is detected in human hepatocellular carcinoma, but never in 
the surrounding liver tissues, whether or not liver cirrhosis 
is present[36]. Hypomethylation of  L1 has also been revealed 
in urothelial carcinoma and prostate adenocarcinoma[37-39]. 
In malignant cells, there is a direct correlation between the 
hypomethylation of  5’ L1 sequences and the presence of  L1 
proteins, which suggests that elements with hypomethylated 

5’ ends are transcriptionally active[40]. The hypomethylation 
of  repetitive elements in cancer is directly linked to the 
neoplastic process and not a simple consequence of  loss 
of  growth control[41]. Previous studies have shown that 
L1 is essential for the proliferation of  tumor cells. The 
functional knock-out of  LINE-1 expression by RNAi 
reduces the proliferation and promotes the differentiation 
of  tumorigenic human cells[29,42]. Up till now, no data about 
the relationship between L1 and stomach cancer have been 
reported. The present study on the distinct expression 
pattern of  GCRG123 in gastric signet-ring cell carcinoma 
may be the first to link an L1 family member to stomach 
oncogenesis.

During previous decades, severa l h istologica l 
classification systems, such as those of  Lauren, Nakamura 
and Ming, have been widely used for gastric adenocarcinoma. 
These systems agree that the intestinal/differentiated/
expending type and diffuse/undifferentiated/infiltrative 
type differ greatly in terms of  epidemiology, pathogenesis, 
genetic profile, and clinical outcome[8,43-46]. Signet-ring cell 
carcinoma belongs to the diffuse/undifferentiated/infiltrative 
type group. Nakamura has indicated that the morphological 
findings of  undifferentiated type carcinoma under light and 
electron microscopy are similar to both the mucous cells of  
pyloric crypts and pyloric gland cells[44]. Interestingly, our 
study found that GCRG123 was over-expressed in pyloric 
gland cells, epithelia (surface mucous cells) and signet-
ring cells, which correlated with Nakagawa’s description 
of  undifferentiated carcinoma. The distinct GCRG123 
expression patterns in intestinal-type adenocarcinoma and 
signet-ring cell carcinoma also support the concept that 
these two types of  carcinoma have different genetic profiles. 
GCRG123 is over-expressed simultaneously in gastric 
epithelia, pyloric glands and signet-ring cell carcinoma, 
therefore, we believe that GCRG123 might be closely 
associated with gastric mucous secretion. Further studies are 
required to confirm this speculation.

COMMENTS
Background
Evidence indicates that a retrotransposition-competent, functional L1 element 
is involved in a wide spectrum of diseases, including cancer. A previous study 
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Figure 3  Multalin analysis of GCRG123 (AF454554) and L1 (HUMTNL22). Red font represents high consensus, blue or black font represents low consensus.
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has shown that a gene segment GCRG123 is down-regulated in human gastric 
intestinal-type adenocarcinoma. Intestinal- and diffuse-type gastric cancers differ 
in their epidemiology, pathogenesis, genetic profile and clinical outcome. 

Research frontiers
To modulate the expression of specific genes, retrotransposons, such as L1, 
need not necessarily be full-length, nor retrotransposition-competent, but simply 
endowed with functional promoter elements. Some non-full length L1 elements 
could yield L1 products such as L1 RNA or active RT. L1 is essential for the 
proliferation of tumor cells. The functional knock-out of L1 expression reduces cell 
proliferation and promotes cell differentiation.

Innovations and breakthroughs
GCRG123 may be an active L1 family member, because of its sequence homology 
with the conserved sequence of the highly active L1s and its integration in the intron 
or 5’ flanking region of some known genes. In situ hybridization and Northern blot 
analysis showed that GCRG123 was up-regulated in signet-ring cell carcinoma. 
Besides, GCRG123 was also over-expressed in normal gastric epithelia and pyloric 
glands. The present study possibly represents the first to link an L1 family member to 
stomach oncogenesis.

Applications 
Updated knowledge about L1 shifts the focus from protein-coding genes to repeated 
retroelements as mediators of abnormal biological processes. Functional L1 family 
members may be regarded as promising targets in the development of novel, 
differentiation-inducing approaches to cancer therapy. The distinct expression pattern 
of GCRG123 in gastric signet-ring cell carcinoma may provide a new area to further 
understand the genetic characteristics of gastric signet-ring cell carcinoma. 

Terminology
LINE-1: highly repeated sequences, 6-8 K base pairs in length, which contain 
RNA polymerase II promoters. They also have an ORF that is related to the RT of 
retroviruses, but they do not contain long terminal repeats. Copies of the LINE 1 
(L1) family form about 17% of the human genome.

Peer review
This is an interesting article. The title reflects the major contents of the article. The 
abstract gives a clear delineation of the research background, objectives, materials 
and methods, results and conclusions. The methods are innovative and systematic. 
A detailed description has been provided. The results provide sufficient experimental 
evidence or data from which scientific conclusions can be drawn. The discussion is 
well organized and an overall theoretical analysis is given. The most current literature 
is cited. Overall, a it is  well-written and well-researched article. 
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