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Abstract
Reactive oxygen species (ROS) are molecules or ions 
formed by the incomplete one-electron reduction 
of oxygen. Of interest, it seems that ROS manifest 
dual roles, cancer promoting or cancer suppressing, 
in tumorigenesis. ROS participate simultaneously in 
two signaling pathways that have inverse functions 
in tumorigenesis, Ras-Raf-MEK1/2-ERK1/2 signaling 
and the p38 mitogen-activated protein kinases (MAPK) 
pathway. It is well known that Ras-Raf-MEK1/2-ERK1/2 
signaling is related to oncogenesis, while the p38 MAPK 
pathway contributes to cancer suppression, which 
involves oncogene-induced senescence, inflammation-
induced cellular senescence, replicative senescence, 
contact inhibition and DNA-damage responses. Thus, 
ROS may not be an absolute carcinogenic factor or 
cancer suppressor. The purpose of the present review 
is to discuss the dual roles of ROS in the pathogenesis 
of cancer, and the signaling pathway mediating their 
role in tumorigenesis.
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INTRODUCTION
Reactive oxygen species (ROS) are molecules or ions 
formed by the incomplete one-electron reduction of  
oxygen. These reactive oxygen intermediates include 
singlet oxygen, superoxides, peroxides, hydroxyl 
radical, and hypochlorous acid. They contribute to 
the microbicidal activity of  phagocytes, regulation of  
signal transduction and gene expression, and induce 
oxidative damage to nucleic acids, proteins, and lipids. 
Peroxidation by ROS alters the amounts of  unsaturated 
fatty acids and proteins in the cell membrane and thus 
affects membrane fluidity. In addition, with aging, 
humans tend to show an increased affectability of  
lipid peroxides caused by ROS[1]. Recent research 
has indicated that ROS also play a critical role in the 
energy dysfunction of  mitochondria caused by ethanol-
induced gastric mucosa injury[2]. In addition, oxidative 
damage caused by ROS and other free radicals is 
involved in a number of  pathological conditions 
including cancer. Data presented herein is consistent 
with this opinion. Yagoda et al[3] found erastin interacted 
with voltage-dependent anion channel proteins to 
induce mitochondrial dysfunction, release of  oxidative 
species and, ultimately, non-apoptotic, oxidative cell 
death. This process has a degree of  selectivity for 
cells with activated Ras-Raf-MEK signaling. ROS 
production also involves the induction of  autophagy, 
which contributes to caspase-independent macrophage 
cell death[4].  ROS, produced in the redox cycle, 
contribute to p53 mutations, which are dominated by 
G-to-T transversions. These mutations are suppressed 
by ROS attenuators[5,6]. The mutations of  p53, a well 
characterized tumor suppressor, are believed to relate to 
carcinogenesis. Since oxidative stress comprehensively 
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damages cells and tissues, it is reasonable that factors 
which induce ROS would contribute to the occurrence 
and development of  tumors, while antioxidant agents 
that scavenge ROS may inhibit this process. To 
the best of  our knowledge, the former inference is 
consistent with previous reports[7,8], however, there is 
little supportive evidence for the latter[9,10]. Vitamins C 
and E, two reducing agents and antioxidants, show no 
additional benefit in the chemoprevention of  gastric 
cancer[11,12]. Inadequate dose, heterogeneous research, 
poor compliance and multiple effects of  antioxidants 
may lead to this paradox. Is there anything more to be 
elucidated on this subject?

REGULATION OF ROS PRODUCTION BY 
RAS
Oxidative stress and Ras activation lead to the 
production of  ROS[13]. Introduction of  ROS by Ras 
may occur at the transcription level. GATA-6 is a 
component of  the specific protein-DNA complexes 
at the nicotinamide adenine dinucleotide phosphate 
oxidase (Nox) 1 promoter, and is able to trans-activate 
the Nox1 promoter. GATA-6 is phosphorylated at 
serine residues by MEK-activated extracellular signal-
regulated kinase (ERK), which enhances GATA-6 DNA 
binding. The site-directed mutation of  the consensus 
ERK phosphorylation site (PYS(120)P to PYA(120)P) 
of  GATA-6 abolishes its trans-activation activity, 
suppressing the growth of  CaCo-2 cells. By MEK-ERK-
dependent phosphorylation of  GATA-6, oncogenic 
Ras signaling enhances the transcription of  Nox1[14]. 
A regulatory subunit, Rac, of  the NADPH oxidase 
complex also involves the regulation of  ROS[15]. Other 
factors that regulate the production of  ROS will not be 
discussed here.

ROS INVOLVE TUMORIGENESIS THAT 
RELATES TO THE RAS-RAF-MEK-ERK 
PATHWAY
Growth factors, cel lular stress, and γ  radiation 
stimulate oncogenic Ras-Raf-MEK signaling, which 
plays a crucial role in tumorigenesis. As an important 
mediator of  physiological and pathological signal-
transduction pathways, ROS is also involved in Ras-
Raf-MEK signaling (Figure 1). The functions of  ROS 
in tumorigenesis relating to this pathway include the 
following. (1) In cells with activated Ras-Raf-MEK 
signaling, released ROS cause non-apoptotic, oxidative 
cell death, as previously mentioned[3], and the Ras-
ERK pathway is critical in mediating protection against 
apoptotic cell death induced by increased oxidative 
stress[16]. (2) The activity of  the ROS-generating enzyme 
Nox1 is required for vascular endothelial growth factor 
(VEGF), a potent stimulator of  tumor angiogenesis. 
However, if  extracellular signal-regulated kinase (ERK)-
dependent phosphorylation of  the transcription factor 

Sp1 and Sp1 binding to a VEGF promoter is inhibited, 
this activity does not occur. Nox1 mediates oncogenic 
Ras-induced upregulation of  VEGF and angiogenesis 
by activating Sp1 through Ras-ERK-dependent 
phosphorylation of  Sp1[8]. (3) Ras (p19) interaction 
with p73β, a structural and functional homolog of  p53, 
amplifies p73β-induced apoptotic signaling responses 
including Bax mitochondrial translocation, cytochrome 
c release, increased production of  ROS and loss of  
mitochondrial transmembrane potential. After taxol 
treatment, endogenous expression of  Ras and p73β 
significantly increase, and taxol-enhanced endogenous 
p73β transcriptional activities are further amplified by 
p19, which markedly increases cellular apoptosis in the 
p53-null SAOS2 cancer cell line[17]. (4) In human U937 
monocytes, hydrogen peroxide (H2O2) evokes Ca2+ influx 
through TRPM2 to activate Ca2+-dependent tyrosine 
kinase Pyk2 and amplify ERK signaling via Ras GTPase. 
TRPM2 Ca2+ influx controls the ROS-induced signaling 
cascade responsible for chemokine production, which 
aggravates inflammation[18].

In contrast, the released ROS have complicated 
effects on Ras-Raf-MEK signaling, which may occur 
on several levels (Figure 1). ROS directly enhance 
the activation of  Ras[19], and augment ERK1/2[20]. 
Melatonin, a natural antioxidant, inhibits the activation 
of  Ras in H4IIE hepatoma cells[21]. Generation of  
ROS is required for Ras transformation phenotypes 
including anchorage-independent growth, morphological 
transformation, and tumorigenesis[22]. In diabetes-related 
angiogenesis of  the retina, activation of  H-Ras and its 
downstream signaling pathway may be under the control 
of  superoxide, and H-Ras activation in diabetes can 
be prevented by inhibiting superoxide accumulation[23]. 
H2O2 activates H-Ras and its downstream signaling 
pathway, including Raf-1 and phosphorylation of  p38 
MAP kinase. Inhibition of  superoxide significantly 
attenuates glucose-induced activation of  H-Ras, Raf-1 
and p38 MAP kinase[23]. PI3K is a mediator in the 
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Figure 1  Roles of ROS in the Ras-Raf-MEK-ERK signaling and p38 path-
way (Modified from Ref. 31, with permission).
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E-Ras-PI3K-Akt signaling pathway, which leads to 
tumor-like properties in embryonic stem cells. AKR1C2 
and AKR1C3 mediated prostaglandin D(2) metabolism 
augments the PI3K/Akt proliferative signaling pathway 
in human prostate cancer cells[24]. Activated Ras is usually 
associated with cancer, but it also produces paradoxical 
premature senescence in primary cells by inducing ROS 
followed by the accumulation of  tumor suppressors p53 
and p16INK4A[25].

ROS INVOLVE TUMOR SUPPRESSION 
VIA THE P38 PATHWAY
Oncogenic Ras sequentially activates MEK, p38 and 
two p38 downstream kinases, MAPK-activated protein 
kinase2 (MK2) and p38 regulated/activated protein 
kinase (PRAK), which in turn suppress Ras-induced cell 
proliferation by blocking activation of  Jun N-terminal 
kinase (JNK). Increased intracellular levels of  ROS, 
induced by the Ras-Raf-MEK-ERK signaling cascade, 
may mediate the activation of  the p38 pathway and 
act as an intermediate signal between the MEK-ERK 
and MKK3/6-p38 pathways (Figure 1). On the one 
hand, the activation of  p38 mitogen-activated protein 
kinase (MAPK) is a prerequisite for ROS-mediated 
functions such as apoptotic cell death in cancer 
cells[26], and adrenal steroidogenesis[27]. On the other 
hand, inhibiting or scavenging ROS may attenuate the 
activation of  p38-dependent pathways[28,29]. Since Ras 
induces the production of  ROS and the latter activates 
p38, a conclusion can be derived theoretically that the 
inhibition of  Ras may weaken the tension of  p38. This 
inference is supported by research which involved H4IIE 
hepatoma cells[21]. However, in some cases, it is not 
certain that increased intracellular ROS should enhance 
the activation of  p38[30]. The p38 MAPK pathway 
negatively regulates cell proliferation and tumorigenesis. 
The involvement of  the p38 pathway in the regulation 
of  cellular processes that directly contribute to tumor 
suppression includes oncogene-induced senescence 
(OIS), replicative senescence, contact inhibition and 
DNA-damage responses, which have been discussed 
in detail[31]. Recently, we found that p38 also plays 
an important role in inflammation-induced cellular 
senescence[32], which is believed to be a process related 
to tumor suppression. Several reports have shown that 
ROS mediate OIS via p38-dependent pathways[33-35]. 
The accumulation of  intracellular ROS induced by 
oncogenic Ras is ERK-dependent during the activation 
of  p38 and the induction of  senescence. After sensing 
the oxidative stress induced by activated Ras, p38 directs 
cells to undergo apoptosis[36]. Human cancer cell lines 
with high ROS levels display enhanced tumorigenicity 
and impaired p38α activation by ROS. p38α has also 
been reported to antagonize oncogenic transformation 
induced by activated N-Ras in murine fibroblasts[37] and 
by activated K-Ras in colon cancer cell lines[38]. Activated 
components of  the p38 pathway phosphorylate multiple 
residues on p53, including Ser33 and Ser46 (by p38), 

Ser37 (by PRAK), and possibly others, leading to 
increased transcriptional activity of  p53 and induction 
of  a transcriptional target of  p53 and p21WAF1[31]. 
Through an unknown mechanism, activated p38 also 
induces the expression of  p16INK4A and p14/p19ARF, 
which, together with the p53-p21WAF1 cascade, cause 
premature senescence that serves as a tumor-suppressing 
defense mechanism both in cell culture and in vivo[31]. Ras 
also involves senescence, in which Seladin-1 acts as a key 
mediator of  oxidative stress[39]. Seladin-1 has previously 
been implicated in Alzheimer’s disease and cholesterol 
metabolism. Following oncogenic and oxidative stress, 
Seladin-1 binds to the p53 amino terminus and displaces 
E3 ubiquitin ligase Mdm2 from p53, thus resulting in 
p53 accumulation. Ablation of  Seladin-1 causes the 
bypass of  Ras-induced senescence in rodent and human 
fibroblasts, and allows Ras to transform these cells. 
Wild-type Seladin-1, but not mutants that disrupt its 
association with either p53 or Mdm2, suppresses the 
transformed phenotype. The same mutants are also 
inactive in directing the p53-dependent oxidative stress 
response[39]. p38 related replicative senescence, contact 
inhibition and DNA-damage responses will not be 
discussed here, refer to Ref. 31.

ROS INVOLVE APOPTOSIS THAT 
RELATES TO THE P38 PATHWAY
Numerous researchers have shown that ROS relate to 
apoptosis that is processed through the mitochondrial 
pathway, which depends on the activation of  p38  
(Figure 2)[40-44]. Apoptosis signal-regulating kinase 
1 (ASK1) is an evolutionarily conserved mitogen-
activated protein 3-kinase that activates both JNK and 
p38 MAPK, which may also be triggered by ROS[45-49]. 
However, activation of  MAPKs (JNK, p38, ERK) is 
differentially regulated by cleavage size (40 kDa and 
36 kDa) of  mammalian sterile 20-like kinase 1, which 
is controlled by caspase-7 and -3[50]. ASK1-induced 
and ROS-dependent activation of  MAPKs is crucial 
for apoptosis[43,51], and for TLR4-mediated mammalian 
innate immunity[52]. In the case of  oxidative stress, a 
positive feedback may form in the ASK1-p38-TNF-α 
pathway, which enhances ROS-mediated apoptosis 
(Figure 2). Ask1 activates both JNK and p38 MAPK, 
then the activated p38 translocates into the nucleus and 
stimulates the expression of  MK2. After moving out of  
the nucleus, MK2 increases TNF-α production. On the 
other hand, enhanced TNF-α and ROS activate ASK1 
activity[46], which leads to the activation of  JNK. JNK 
abrogates Bcl-2, which is believed to be a protector away 
from mitochondria-related apoptosis, although Bcl-2 
may manifest opposing phenotypes in text of  interacting 
with other proteins[53]. In addition, this positive feedback 
is required for ROS-mediated apoptosis (Figure 2). 
Functional analyses have revealed that the initial ROS-
independent activations of  JNK, Bax, and caspase-3 
are not sufficient for cell death, and thus, should be re-
activated by ROS in order to kill the cells[54]. ROS do 
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not simply mediate the lethal action of  γ radiation, but 
actually amplify it by forming a feedback loop between 
a downstream effector (caspase) and the upstream 
initiation signals leading to the activation of  JNK. 
This role of  ROS appears to allow Bcl-2 to block the 
signaling events, which are initially induced upstream[54]. 
p38α MAPK contributes to the further activation of  
p53, which also leads to a positive feedback loop, p38α 
MAPK/p53. The p53/ROS/p38α MAPK cascade is 
essential for cisplatin-induced cell death in HCT116 
cells, and the subsequent p38α/p53 positive feedback 
loop strongly enhances the initial p53 activation[55]. Of  
interest, p38 may stimulate indirectly the production 
of  ROS via p53. Glioma pathogenesis-related protein 1 
(GLIPR1), a novel p53 target gene, is down-regulated by 
methylation in prostate cancer and has p53-dependent 
and -independent pro-apoptotic activities in tumor 
cells. Overexpression of  GLIPR1 in cancer cells leads 
to suppression of  colony growth and induction of  
apoptosis. Mechanistic analysis indicates that GLIPR1 
up-regulation increases the production of  ROS, leading 
to apoptosis through activation of  the JNK signaling 
cascade[56]. However, in p38-related apoptosis that is 
independent of  ROS generation, JNK seems to execute 
a reverse function. Inhibition of  JNK by SP600125 
significantly enhanced apoptosis[57].

Via regulation of  MAPKs, the protein kinase C 
(PKC)δ-mediated pathway also involves ROS related 
apoptosis. As a tentative stimulator of  p38, JNK1/2 
and MEK/ERK signaling[58], PKC-δ regulates cell 
apoptosis and survival in diverse cellular systems. 
Knock down of  PKC-δ  suppresses p38 MAPK 
phosphorylation. Via p38 MAPK, activated PKC-δ 

regulates the phosphorylation of  heat shock protein 
(HSP) 27. Attenuated phosphorylation of  HSP27 
correlates with tumor progression in patients with 
hepatic cell cancer[59]. PKC-δ translocates to different 
subcellular sites in response to apoptotic stimuli. The 
localization of  PKC-δ differentially affects the activation 
of  downstream signaling pathways. PKC-δ-cytosol 
increases the phosphorylation of  p38, whereas PKC-
δ-nucleus increases c-JNK phosphorylation. Moreover, 
p38 phosphorylation plays a role in the apoptotic effect 
of  PKC-δ-cyto, whereas c-JNK activation mediates the 
apoptotic effect of  PKC-δ-Nuc[60]. Recent evidence has 
shown that calcium/calmodulin (Ca2+/CaM)-dependent 
protein kinase Ⅱ (CaMKⅡ) activity is also enhanced 
by pro-oxidant conditions. CaMKⅡ is activated by 
angiotensin Ⅱ-induced oxidation, leading to apoptosis in 
cardiomyocytes both in vitro and in vivo (Figure 2)[61].

Besides apoptosis, ROS also relate to proliferation. In 
mice lacking Nrf2 transcription factor, oxidative stress-
mediated activation of  p38, Akt kinase and downstream 
targets is impaired, resulting in enhanced death and 
delayed proliferation of  hepatocytes[62]. p38 MAPK, p53, 
and p21 also act as molecular mediators on the way from 
increased ROS levels to the observed growth arrest[63].

CONCLUSION
Besides their well-known roles, recent studies have 
demonstrated addit ional  funct ions of  ROS in 
tumorigenesis. However, the evidence comes from 
studies performed in cell culture, in addition to data 
from human tumors. In addition, these cell lines are 
generally kept in room air, whereas hyperoxic oxygen 
levels may favor enhanced ROS formation, which is well 
known. The relevance of  ROS in all these events in vivo, 
especially in humans, is not clear. ROS seem to have dual 
roles in tumorigenesis, cancer promoting and cancer 
suppressing. ROS participate in both Ras-Raf-MEK1/2-
ERK1/2 signaling and the p38 MAPK pathway. 
However, these two pathways may have inverse functions 
in tumorigenesis. The former is related to cancer 
promotion, whereas the latter is associated with a variety 
of  cellular responses such as OIS, replicative senescence, 
contact inhibition and DNA-damage responses. Thus, 
regarding ROS as an absolute “carcinogenic factor” 
or “cancer suppressor” seems to be inappropriate. It 
seems that more extensive investigations are needed 
to determine the integrity of  ROS in human cancer 
development. Two aspects of  research remain to be 
carried out in the future. Firstly, we should determine 
whether ROS directly mediate the Ras-Raf-MEK1/2-
ERK1/2 and p38 MAPK signaling pathways, or whether 
other mediators are needed. Secondly, the definite 
shunting mechanism, which controls the steering from 
triggering Ras-Raf-MEK1/2-ERK1/2 signaling to 
triggering p38 MAPK signaling and vice versa, should be 
determined. The relationship between ROS and p38-
pathway-mediated OIS is of  particular interest because 
several reports indicate that part of  the OIS pathway is 
intact at least in certain cancer cells, and that senescence 
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responses improve the outcome of  chemotherapy. 
Drugs which artificially trigger senescence in tumor 
cells will thus improve cancer treatment[31]. Studies on 
the shunting mechanism would facilitate research on the 
roles of  ROS in tumorigenesis, and could shed light on 
drug discovery.
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