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Abstract
AIM: To study the sensitivity of gastric smooth muscle 
to C-type natriuretic peptide (CNP) in streptozotocin 
(STZ)-induced diabetic rats. 

METHODS: The spontaneous contract ion of a 
gastric smooth muscle strip was recorded by using 
physiological methods in rats. The expressions of CNP 
and natriuretic peptide receptor-B (NPR-B) in gastric 
tissue were examined by using immunohistochemistry 
techniques in the diabetic rat. 

RESULTS: At 4 wk after injection of STZ and vehicle, 
the frequency of spontaneous contraction of gastric 
smooth muscle was significantly reduced in diabetic 
rats, and the frequency was decreased from 3.10 ± 
0.14 cycle/min in controls to 2.23 ± 0.13 cycle/min  
(n  = 8, P  < 0.01). However, the ampl i tude of 
spontaneous contraction was not significant different 
from the normal rat. CNP significantly inhibited 
spontaneous contraction of gastric smooth muscle 
in normal and diabetic rats, but the inhibitory effect 
was significantly potentiated in the diabetic rats. 
The amplitudes of spontaneous contraction were 
suppressed by 75.15% ± 0.71% and 58.92% ± 1.32% 
while the frequencies were decreased by 53.33% ± 
2.03% and 26.95% ± 2.82% in diabetic and normal 

rats, respectively (n  = 8, P  < 0.01). The expression of 
CNP in gastric tissue was not changed in diabetic rats, 
however the expression of NPR-B was significantly 
increased in diabetic rats, and the staining indexes of 
NPR-B were 30.67 ± 1.59 and 17.63 ± 1.49 in diabetic 
and normal rat, respectively (n  = 8, P  < 0.01).

CONCLUSION: The results suggest that CNP induced 
an inhibitory effect on spontaneous contraction of 
gastric smooth muscle, potentiated in diabetic rat 
via  up-regulation of the natriuretic peptides-NPR-B-
particulate guanylyl cyclase-cyclic GMP signal pathway. 
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INTRODUCTION
Gastroparesis (delayed gastric emptying) is frequent in 
diabetic patients. It is a well-recognized complication of  
long-standing diabetes. The symptom complex typically 
associated with gastroparesis occurs in 25%-55% of  
patients with long-standing type 1 or type 2 diabetes[1,2]. 
Symptoms of  diabetic gastropathy can range from mild 
dyspepsia to recurrent vomiting and abdominal pain, 
and may progress to irreversible end-stage gastric failure 
known as gastroparesis. Gastroparesis seriously affects the 
quality of  life. There is deterioration in glycemic control 
and incapacitating symptoms such as malnutrition, water 
and electrolyte imbalance, and aspiration may occur. 
However, the pathophysiology of  diabetic gastropathy 
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and gastroparesis, including impaired fundic and pyloric 
relaxation and impaired electrical pacemaking, is still 
not delineated[3,4]. It is generally considered that diabetic 
gastropathy and gastroparesis may be due to visceral 
autonomic neuropathy, hyperglycemia and degeneration 
of  smooth muscle. Several physiological studies have 
reported that dysfunction of  gastric smooth muscle in 
diabetes is associated not only with neural factors, but 
also with intracellular signaling pathways[5,6]. 

Since atrial natriuretic peptide (ANP) was isolated 
from atrium by de Bold et al[7] in 1981, brain natriuretic 
peptide (BNP), C-type natriuretic peptide (CNP), 
dendroaspis natriuretic peptide (DNP), micrurus 
natriuretic peptide (MNP), and ventricular natriuretic 
peptide (VNP) were found in succession. Natriuretic 
peptides (NPs) are distributed all over the body besides 
the heart and exert natriuretic-diuretic, vasorelaxation, 
and other functions designed to decrease blood pressure 
and to control electrolyte homeostasis. Three types of  
single-transmembrane natriuretic peptide receptors 
(NPRs) for ANP, BNP and CNP have been identified[8,9]; 
i.e. NPR type A (NPR-A), type B (NPR-B) and type 
C (NPR-C). NPR-A and NPR-B receptors have 
membrane-bound particulate guanylate cyclase (pGC), 
which catalyzes the formation of  cGMP from GTP[10-12]. 
NPR-A preferentially binds ANP and BNP, but has a low 
affinity for CNP; NPR-B has a much higher affinity for 
CNP than either ANP or BNP[13]. NPs are also secreted 
from gastric mucosa[14-16]. Our previous study indicated 
that CNP relaxes gastric circular and longitudinal 
smooth muscles in human, rat and guinea-pig stomach, 
and that NPRs are distributed in rat gastric smooth 
muscle layer[17-19]. In smooth muscle, CNP activates its 
cognate NPR-B, which includes an intracellular pGC 
domain and catalyzes the synthesis of  cGMP within the 
cytosol[20]. CNP and NPR-B have been detected in the 
stomach[17,21,22]. CNP mRNA expression was increased in 
the kidney of  streptozotocin (STZ)-induced diabetic rats 
and NPR-B expression was enhanced in vascular smooth 
muscle in the diabetic mouse[23,24].

However, it is not clear what the relationship is 
between diabetic gastroparesis and the natriuretic peptide 
signal pathway. In the present study, the possibility as 
to whether the natriuretic peptide-dependent cGMP 
signal pathway is involved in diabetic gastropathy or 
gastroparesis was investigated in STZ-induced rats.

MATERIALS AND METHODS
STZ-induced diabetic animal model
Male Sprague-Dawley rats (200-220 g) were purchased 
from the Experimental Animal Center of  Yanbian 
University College of  Medicine. Animals were allowed 
to have free access to food and water. A total of  30 rats 
were divided into two groups (15 per group): one was 
the normal control group and another was the diabetic 
group. All rats were used for the experiment at 4 wk after 
the injection of  STZ and vehicle. Diabetes was induced 
by a single intraperitoneal injection of  STZ (Sigma-

Aldrich, St. Louis, MO, USA) in 0.1 mol/L citrate buffer 
(pH 4.0) at a dose of  65 mg/kg body weight[6]. Control 
animals received an equal volume of  citrate buffer. The 
glucose concentration in tail-blood was determined at 
the end of  the experiment with a SureStepPlus apparatus 
(LifeScan, Milpitas, CA, USA). Diabetes was confirmed 
by measurement of  blood glucose concentrations and 
defined as blood glucose above 350 mg/dL. Animals 
were treated in accordance with the Guide for Care and 
Use of  Laboratory Animals published by the National 
Institutes of  Health (China).

Organ bath study 
Four weeks after treatment with STZ and vehicle, 
animals were anesthetized with sodium pentobarbital 
(50 mg/kg, ip) and then the abdomen was opened. The 
stomach was removed and placed in pre-oxygenated 
Kreb’s Ringer solution at room temperature. The 
mucosal layer was removed and the strips (about  
2.0 mm × 15.0 mm) of  gastric antral circular muscle 
f rom contro l and d iabet ic ra ts were prepared , 
respectively. The longer axis of  the stomach was cut 
parallel to the circular muscle fibers. Muscle strips were 
placed in a 2-mL organ bath containing modified Kreb’s  
Ringer solution at 37℃, aerated with 95% O2 and 5% 
CO2. One end of  the muscle strip was anchored to a 
stationary support, and the other end was connected 
to an isometric force transducer (Grass FT03C, 
Quincy, MA, USA). The tension loaded onto each 
strip was 1.0 g. Isometric contractions were recorded 
using a computerized data acquisition system (Power 
Lab/8SP, AD Instruments, Castle Hill, NSW, Australia). 
The muscle strip was allowed to incubate for at least  
40 min before experiments were started. The composition 
of  the modified Kreb’s Ringer solution (mmol/L) was 
as follows: NaCl 120; KCl 4.7; CaCl2 2.0; MgCl2 1.2; 
NaHCO3 25; KH2PO4 1.2; and glucose 14.

Immunohistochemistry study
Tissues of  normal control and STZ-diabetic rats stomach 
antrum were fixed in 4% buffered formalin for 24 h, 
dehydrated in ethanol, and embedded in paraffin. Sections 
were cut at 5 μm, and mounted on poly-L-lysine-coated 
slides. Sections were deparaffinized in three changes of  
xylene, hydrated in a graded ethanol series, and washed 
in tap water. Endogenous peroxidase activity was 
blocked by immersing slides in 0.3% H2O2 for 30 min. 
After being washed in phosphate buffered saline (PBS), 
slides were incubated for 45 min at 37℃ in a humidified 
container with normal goat serum to block non-specific 
binding of  the primary antibody. The blocking serum 
was removed by gentle tapping, and slides were incubated 
for 24 h at 4℃ in a humidified container with either 
rabbit anti-CNP (1:600, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) or rabbit anti-NPR-B (1:500, Santa 
Cruz Biotechnology). After being washed thoroughly 
in PBS, slides were incubated for 30 min at 37℃ in a 
humidified container with biotin-labeled goat anti-rabbit 
serum. After being washed in PBS, the peroxidase-
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labeled streptavidin complex reagent was added, and the 
slides were incubated for 30 min at 37℃ in a humidified 
container. After being washed in PBS, antibody binding 
was visualized using 3,3'-diaminobenzidine. Slides were 
washed in running tap water, counterstained lightly with 
hematoxylin, and mounted in permount. For negative 
controls, sections were incubated with PBS in place of  
the primary antibody.

Drugs
CNP (rat CNP-22), STZ, cGMP antibody and chemicals 
were purchased from Sigma-Aldrich (St. Louis, MO, 
US). CNP was dissolved in distilled water (1 mmol/L) 
and further diluted in the superfusion buffer to the 
concentrations indicated in the text. 

Statistics analysis
The staining index was calculated from the staining 
intensity and area by means of  image analysis software, 
in three areas per section, three sections per group, and 
weak, medium and strong CNP and NPR-B staining 
intensities graded as 1, 2 and 3 points according to 
Feng J Lai’s method[25]. The contractility = amplitude of  
spontaneous contraction (g)/gastric smooth muscle strip 

weight (g). Inhibitory percentages = amplitude in control 
- amplitude decreased by CNP/amplitude in control 
× 100%. Staining index = staining intensity × staining 
area. Data were expressed as mean ± SE. Statistical 
significance was evaluated by t test. Differences were 
considered significant when P < 0.05.

RESULTS
Change in body weight and plasma glucose
Rats were used for experiments at 4 wk after injection 
with STZ. At the time of  the experiment, all STZ-
treated rats exhibited hyperglycemia; their blood glucose 
concentrations (478.0 ± 27.9 mg/dL) were significantly 
higher than those of  the non-diabetic control rats (108.9 
± 11.4 mg/dL, n = 8, P < 0.001) and the body weights 
of  the diabetic rats (209.7 ± 8.0 g) were significantly 
lower than those of  the control rats (247.4 ± 13.1 g, n = 8, 
P < 0.05).

The spontaneous contraction of gastric smooth muscle
To determine the extent of  gastric motility impediment 
in diabetic rats the spontaneous contractions of  gastric 
smooth muscle strips were observed in control and 
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Figure 1  Comparison of gastric smooth muscle contractilities between normal and diabetic rats. A, B: The row traces gastric smooth muscle spontaneous 
contractions in normal and diabetic rats; C, D: Summary of the contractility in normal and diabetic rats. The contractility per weight of gastric smooth muscle strip was 
not significantly different between normal and diabetic rats (A-C, n = 8, P > 0.05). However, the frequency of spontaneous contraction was significantly depressed in 
diabetic rats (A, B and D, n = 8, aP < 0.01).
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diabetic rats. At 4 wk after injection of  STZ and vehicle, 
the spontaneous contraction was recorded in gastric 
smooth muscle strips of  normal and diabetic rats. In 
order to compare the contractilities of  gastric smooth 
muscle between normal and diabetic rats, the amplitudes 
of  spontaneous contraction of  gastric smooth muscle 
were normalized by every muscle strip weight. The 
frequency of  spontaneous contraction was significantly 
decreased in diabetic rats, while the amplitude of  
spontaneous contraction was not significantly affected 
in diabetic rats (Figure 1A and B). The frequency of  
spontaneous contraction was decreased from 3.10 ± 
0.14 cycle/min of  the control to 2.23 ± 0.13 cycle/min 
(Figure 1D, n = 8, P < 0.01), however, the contractilities 
were 115.18 ± 8.69 and 109.34 ± 6.54 in normal and 
diabetic rats, respectively (Figure 1C, n = 8, P > 0.05).

The sensitivity of gastric smooth muscle to CNP
To determine the role of  the natriuretic peptide signal 
pathway in diabetic gastroparesis, the effect of  CNP on 
spontaneous contraction was observed in normal and 
diabetic rats. CNP significantly inhibited the spontaneous 
contractions in both groups (Figure 2A and B), however, 

the inhibitory effect was potentiated in diabetic rats. The 
amplitude of  spontaneous contraction was suppressed 
by 58.92% ± 1.32% and 75.15% ± 0.71% in normal and 
diabetic rats, respectively (Figure 2C, n = 8, P < 0.01). The 
frequency of  spontaneous contraction was decreased by 
26.95% ± 2.82% and 53.33% ± 2.03% in normal and 
diabetic rats, respectively (Figure 2D, n = 8, P < 0.01). 
The time of  CNP-induced inhibition (inhibition time) 
was measured as the time from starting to reduce the 
amplitude of  spontaneous contraction to starting to 
recover from peak inhibition. The inhibition time was 
prolonged from 1.43 ± 0.80 min of  control to 8.95 ± 
2.07 min in diabetic rats (Figure 2E, n = 8, P < 0.01). 

CNP and NPR-B expression in gastric tissues
Since the CNP-induced inhibition of  spontaneous 
contraction was potentiated in diabetic rats, the 
expressions of  CNP and NPR-B in gastric tissues were 
further confirmed. There was no CNP immunopositive 
expression in negative controls of  normal and diabetic 
rats (Figure 3A and B). The CNP immunopositive 
brown granules were mainly expressed in gastric muscle 
layers of  normal and diabetic rats (Figure 3C and D), 
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Figure 2  The sensitivity of gastric smooth muscle to CNP. A, B: The row traces  gastric smooth muscle spontaneous contractions in response to CNP in normal 
and diabetic rats; C-E: Summary of the contractility in response to CNP in normal and diabetic rats. CNP induced relaxation of gastric antral smooth muscle in control 
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and the staining indexes were not significantly different 
between normal and diabetic rats (Figure 3E, n = 8,  
P > 0.05). There was no NPR-B immunopositive 
expression in negative controls of  normal and diabetic 
rats (Figure 4A and B). The NPR-B immunopositive 
brown granules were expressed in gastric antral smooth 
muscle in normal and diabetic rats, however the staining 
was deeper in diabetic rats (Figure 4C and D). The 
staining indexes were increased from 17.63 ± 1.49 in 
controls to 30.67 ± 1.59 in diabetic rats, and there were 
significant differences between normal and diabetic rats 
(Figure 4E, n = 8, P < 0.01).

DISCUSSION
The effects of  CNP on gastrointestinal motility have 
been described by some reports: relaxant effect on chick 
rectum muscle strip[26] and guinea pig cecum circular 
smooth muscle[27], and inhibitory effect on rabbit 
colon[28]. We previously reported that CNP significantly 
inhibited spontaneous contraction of  gastric smooth 
muscles in rats, guinea pigs and humans[17]. Although 
previous studies demonstrated that spontaneous activity 

of  the smooth muscle in the gastrointestinal tract was 
attenuated in diabetic-model animals[29-31], no studies 
were made of  the relationship with the NPR-pGC-
cGMP signal pathway. In our present study, at 4 wk 
after injection of  STZ and vehicle, the frequency of  
spontaneous contraction was significantly depressed in 
diabetic rats (Figure 1A and B), while the amplitude of  
spontaneous contraction was not significantly affected 
in diabetic rats (Figure 1C). CNP induced relaxation 
of  gastric antral circular smooth muscle in normal and 
diabetic rats, however the relaxation response induced 
by CNP was significantly potentiated in diabetic rats 
(Figure 2). The results indicate that the gastric smooth 
muscles were more sensitive to CNP in the diabetic rats 
than in the normal rats, and they suggest that the NPs-
NPR-B-pGC-cGMP signal pathway may be upregulated 
in STZ-induced diabetic rat.

Three types of  single-transmembrane NPRs for 
ANP, BNP and CNP have been identified[8,9], i .e. 
NPR-A, NPR-B and NPR-C. NPR-A and NPR-B have 
membrane-bound pGC which catalyzes the formation 
of  cGMP from GTP[10-12]. NPR-A preferentially binds 
ANP and BNP, but has a low affinity for CNP, NPR-B 
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has a much higher affinity for CNP than either ANP 
or BNP[13]. CNP mRNA expression was increased in 
the kidney of  STZ-induced diabetic rats and NPR-B 
expression was enhanced in vascular smooth muscle in 
the diabetic mouse[23,24].

In smooth muscle, CNP generally causes relaxation 
by eliciting membrane-bound pGC-mediated cGMP 
production[32]. Moreover, many experiments also 
demonstrated that CNP cognate receptors were distributed 
in gastrointestinal smooth muscle[23,24,28]. In our present 
study the NPR-B immunopositive brown granules were 
increased in the gastric antral smooth muscle of  diabetic 
rats (Figure 4). However, the CNP expression in gastric 
muscle was not significantly different from normal rats 
(Figure 3). These results suggest that the NPs-NPR-B-
pGC-cGMP signal pathway may be involved in diabetic 
gastropathy via increasing of  the NPR-B expression. 
Furthermore, the data are compatible with the idea that 
up-regulation of  the NPs-NPR-B-pGC-cGMP signal 
pathway may be an important factor which hastens or 
induces the disorder of  gastric motility, and occurs 
concomitantly with development of  gastrointestinal 
dysfunction, for example, gastroparesis. Thus, every 
stage of  the NPs-NPR-B-pGC-cGMP signal pathway 
may be a potential target for investigating the mechanism 
of  diabetic gastropathy or gastroparesis and preventing 
diabetic gastrointestinal dysfunction.

In summary, this study has demonstrated that diabetes 
firstly induces frequency depression of  gastric motility 
but not contractility. The CNP-induced relaxation 
response is potentiated in STZ-induced diabetic rats, 
and this is related to increased NPR-B expression in 
the gastric smooth muscle. These results suggest that 
the NPs-NPR-B-pGC-cGMP signal pathway plays an 
important role in diabetic gastropathy or gastroparesis.
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A common gastrointestinal complication of diabetes is gastroparesis. However, 
the pathogenesis is not clear yet. A recent study has indicated that atrial 
natriuretic peptide (ANP) is secreted from gastric mucosa and plays an 
inhibitory role in the regulation of gastrointestinal motility, but the effect of the 
natriuretic peptides (NPs) signal pathway on diabetic gastroparesis has not 
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NPs are distributed all over the body besides the heart, for example, the 
gastrointestinal tract and enterochromaffin cells in gastrointestinal mucosa 
secrete NPs. However, the many functions of NPs in the gastrointestinal tract 
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present study, the possibility as to whether the NPs/cGMP signal pathway is 
involved in diabetic gastroparesis was investigated in streptozotocin-induced 
diabetic rats.
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the NPs/cGMP signal pathway may be involved in diabetic gastroparesis.
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By understanding that the NPs/cGMP signal pathway may be involved in 
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Gastroparesis (delayed gastric emptying) is frequent in diabetic patients. 
Symptoms of diabetic gastropathy can range from mild dyspepsia to recurrent 
vomiting, abdominal pain and may progress to gastric failure known as 
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