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Abstract
Bile acids are implicated as etiologic agents in cancer 
of the gastrointestinal (GI) tract, including cancer of 
the esophagus, stomach, small intestine, liver, biliary 
tract, pancreas and colon/rectum. Deleterious effects 
of bile acid exposure, likely related to carcinogenesis, 
include: induction of reactive oxygen and reactive 
nitrogen species; induction of DNA damage; stimulation 
of mutation; induction of apoptosis in the short term, 
and selection for apoptosis resistance in the long term. 
These deleterious effects have, so far, been reported 
most consistently in relation to esophageal and 
colorectal cancer, but also to some extent in relation to 
cancer of other organs. In addition, evidence is reviewed 
for an association of increased bile acid exposure with 
cancer risk in human populations, in specific human 
genetic conditions, and in animal experiments. A 
model for the role of bile acids in GI carcinogenesis is 
presented from a Darwinian perspective that offers an 

explanation for how the observed effects of bile acids 
on cells contribute to cancer development. 
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INTRODUCTION
Although it was proposed that bile acids are carcinogens 
as early as 1939 and 1940, there was little evidence at 
that early time that bile acids act as carcinogens in the 
gastrointestinal (GI) tract (reviewed in[1]). Since then, 
however, evidence has accumulated that exposure of  cells 
of  the GI tract to repeated high physiologic levels of  bile 
acids is an important risk factor for GI cancer. Here we 
review the substantial evidence, much of  it obtained in 
the last few years, for a role of  bile acids in cancers of  
the esophagus, stomach, small intestine, liver, biliary tract, 
pancreas and colon/rectum. High exposure to bile acids 
may occur in a number of  settings, but, most importantly, 
is prevalent among individuals who have a high dietary fat 
intake[2]. A rapid effect on cells of  high bile acid exposure 
is the generation of  reactive oxygen species (ROS) and 
reactive nitrogen species (RNS). Increased production 
of  ROS/RNS, can lead to increased DNA damage and 
then increased mutation. The production of  ROS/RNS 
following bile acid exposure likely occurs through multiple 
pathways involving disruptions of  the cell membrane 
and mitochondria[1]. For each organ of  the GI tract, we 
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review evidence, where available, on deleterious effects 
of  bile acids, including the induction of  ROS/RNS, 
induction of  DNA damage, mutation and apoptosis, and 
the development of  reduced apoptosis capability upon 
chronic exposure. Reduced ability to undergo apoptosis 
is important because apoptosis is a beneficial process that 
rids the body of  cells with unrepaired DNA damage that 
can cause mutation. Reduced apoptosis capability has 
been linked to increased mutagenesis[3-5]. We also review 
epidemiologic evidence and results of  animal experiments 
indicating that long-term exposure to elevated levels of  
bile acids increases GI cancer risk. 

The annual world-wide number of  deaths due to cancer 
is about 7.6 million, and among these about 2.8 million (36%) 
are due to cancers of  the GI tract[6]. A recent prospective 
study was carried out on red and processed meat in relation 
to cancer incidence in a cohort of  approximately half  
a million men and women[7]. Individuals in the highest 
quintile of  red meat intake, compared with those in 
the lowest, had a statistically significant elevated risk of  
esophageal, colorectal and liver cancer. Also, for processed 
meat, the risk of  colorectal cancer was elevated. Both 
types of  meat are sources of  saturated fat and iron, which 
have independently been associated with carcinogenesis. 
In addition, processed meats contain nitrates and nitrites, 
precursors of  N-nitroso mutagenic compounds. 

ESOPHAGUS
The estimated yearly number of  deaths world-wide from 
esophageal cancer is 300 034 for men and 142 228 for 
women[6], making it the sixth leading cause of  cancer 
deaths among men and women combined. There are 
two principal histologic types of  esophageal cancer, 
adenocarcinoma and squamous cell carcinoma. In the 
United States, the incidence of  adenocarcinoma has 
increased four-fold between 1973 and 2002, whereas 
squamous cell carcinoma has declined 30% over the 
same period, making adenocarcinoma the predominant 
form of  esophageal cancer[8]. Barrett’s metaplasia of  
the esophagus is an important predisposing condition 
for the development of  esophageal adenocarcinoma[9]. 
Barrett’s esophagus (BE) is a metaplastic lesion of  the 
distal esophagus, characterized by the replacement of  
the normal squamous epithelium by columnar intestinal 
epithelium containing goblet cells. BE is associated with 
increased duodeno-gastro-esophageal reflux[10,11], which 
causes increased exposure of  the esophagus to bile acids 
from the duodenum and acidity (gastric acidity) from the 
stomach. Individuals with esophageal adenocarcinoma 
experience even greater exposure to bile than persons with 
uncomplicated BE[12]. Expression of  bile acid transporter 
proteins is increased in BE tissues, suggesting that the 
development of  BE metaplasia may be an adaptation to 
protect cells from bile acids[13]. Thus progression to BE 
and to adenocarcinoma may be strongly influenced by 
bile acid exposure. As discussed next, evidence indicates 
that short-term exposure of  esophageal cells to bile acids 
induces oxidative stress, DNA damage, mutation and 
apoptosis; and among surviving cells selects over the long-
run for resistance to apoptosis and ultimately cancer.

Five studies have shown that bile acids cause increased 
production of  ROS in esophageal cells, including those 
from BE metaplasia. A cocktail of  five bile acids designed 
to mimic the bile acids present in gastroesophageal 
reflux was used to test whether reflux induces ROS[14]. 
The five bile acids were glycocholic acid (GCA), 
taurocholic acid (TCA), glycodeoxycholic acid (GDCA), 
glycochenodeoxycholic acid (GCDCA) and deoxycholic 
acid (DCA). This cocktail induced ROS in biopsies from 
human BE metaplastic tissue. The bile acid cocktail also 
induced ROS in cultured SV40-transformed squamous 
esophageal epithelial cells (HET1-A). DCA induced ROS 
in cultured human esophageal adenocarcinoma cells 
(OE33) and squamous cell carcinoma cells (KYSE-30)[15]. 
GCDCA in acidic media induced ROS in cultured 
esophageal squamous cell lines derived from patients 
with gastroesophageal reflux disease (GERD) with BE, 
or without BE[16]. When mice were fed a zinc deficient 
diet containing a DCA supplement, ROS production was 
increased and BE-like lesions developed[17].

Six studies showed that bile acids induce DNA 
damage in esophageal cells (Table 1), and five of  these 
reported evidence for oxidative DNA damage. 

The findings that bile acids induce DNA damage 
suggest that bile acids may also increase the frequency of  
mutation, since replication of  a damaged DNA template 
strand often results in a replication error and thus a 
mutation.

Esophagoduodenostomies were performed on Big 
Blue F1 lacI transgenic rats to surgically increase duodeno-
gastro-esophageal reflux[21]. The frequency of  lacI mutant 
cells proved to be significantly higher in the esophageal 
mucosa of  the surgically altered rats than in the unaltered 
control rats, indicating that components of  refluxate, such 
as bile acids, increase mutation. Forty-six percent of  the 
mutant cells were altered at CpG dinucleotide sites, and 
the majority of  these mutations (61%) were C to T or G 
to A transitions. This pattern of  mutation is similar to 
that in human esophageal adenocarcinoma, suggesting 
that reflux is not only mutagenic, but also carcinogenic. 
Consistent with these findings, it was found that DCA 
treatment of  cultured esophageal cells cause an increase in 
the frequency of  GC to AT mutations in the p53 gene[15]. 
In addition, increased duodeno-gastro-esophageal reflux 
was observed to increase mutagenesis using a surgical 
model in Big Blue mice (rather than rats)[22]. 

Bile acids induce apoptosis in esophageal cells, 
perhaps through the mediation of  damaging ROS. DCA 
induced apoptosis in esophageal biopsies from normal 
human squamous epithelium[23]. Also, five different bile 
acids [GCDCA, GDCA, TCA, taurochenodeoxycholic 
acid (TCDCA) and taurodeoxycholic acid (TDCA)] 
individually, and also in a mixture, induced apoptosis of  
cultured human normal esophageal mucosal epithelial 
cells[24].

Although a short-term effect of  high bile acid 
exposure is induction of  apoptosis, a longer-term effect 
of  repeated high exposure to apoptosis-inducing agents, 
such as bile acids, appears to be selection for apoptosis 
resistant cells. When tissue samples from patients 
with normal esophagus, esophagitis, BE lesions and 

3330     ISSN 1007-9327      CN 14-1219/R     World J Gastroenterol      July 21, 2009     Volume 15     Number 27



www.wjgnet.com

adenocarcinomas were studied for apoptosis capability, it 
was found that apoptosis is inhibited early in the dysplasia-
carcinoma sequence of  BE by over-expression of  the 
anti-apoptotic protein, Bcl-2[25], presumably as a result 
of  chronic gastroesophageal reflux containing bile acids. 
BE cells have high levels of  the anti-apoptotic proteins 
IL-6, Bcl-xL and Mcl-1[26]. Studies of  tissues obtained 
from patient biopsies, indicated that BE cells are resistant 
to apoptosis induction by DCA compared to esophageal 
squamous epithelium and normal colon epithelium[23]. 
Reduced apoptosis competence may arise by mutation in 
genes encoding proteins necessary for apoptosis. Since 
cells resistant to apoptosis have a growth advantage in the 
presence of  agents that ordinarily induce apoptosis, such 
as bile acids, these cells will tend to proliferate to form a 
field of  apoptosis resistant cells[27]. Within such a defective 
field, repeated encounters with bile acids in reflux would 
cause further DNA damage. Such DNA damage, leading 
to further mutation, may give rise to malignancy.

Considerable evidence indicates an association 
of  bile acid exposure with esophageal cancer. In rats, 
reflux of  duodenal or gastro-duodenal contents, that 
include bile acids, induced esophageal carcinoma in the 
absence of  exogenous carcinogen[28]. Rat surgical models 
with increased duodenal reflux into the esophagus, but 
without added carcinogen, caused esophagitis, BE-like 
lesions and adenocarcinomas[29-32]. Persons with BE 
were found to have increased duodenoesophageal reflux 
and increased exposure to bile acids in their refluxate, 
suggesting that the BE premalignant lesion is linked to 
bile acid exposure[10,11]. In a rat duodenal-contents reflux 
model, a high animal-fat intake changed the bile acid 
composition of  bile juice and increased the development 
of  BE and esophageal adenocarcinoma[33].

In summary, evidence indicates that, in esophageal 
cells and tissues, bile acids have the short-term effect 
of  inducing oxidative stress, oxidative DNA damage, 
mutation and apoptosis. Over a longer period, bile acids 
are implicated in the development of  apoptosis resistance 
and eventually the development of  adenocarcinoma. 

STOMACH
The estimated yearly number of  deaths world-wide from 
gastric cancer is 511 549 for men and 288 681 for women[7], 

making it the second leading cause of  cancer deaths among 
men and women combined. Infection by the bacterium 
Helicobacter pylori is the major etiologic risk factor in gastric 
carcinogenesis. However, gastroesophageal reflux appears 
to have an important role in the development of  gastric 
cardia adenocarcinoma[34,35] which may have an etiology 
similar to that of  esophageal adenocarcinoma[34]. 

Exposure of  cultured gastric carcinoma cells (St23123) 
to TCDCA increased production of  ROS[36]. DCA induced 
apoptosis in cultured human gastric epithelial cells[37]. In 
rats, TCA increased stomach tumorigenesis induced by 
the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine[38]. 
Carcinoma in the gastric stump (generated in rats by 
surgical gastrectomy) was increased by dietary fat intake 
and increased bile acid output[39]. Gastric adenocarcinomas 
were found to develop in a rat surgical model of  duodenal 
reflux[40]. Gastroesophageal reflux in humans is implicated 
in adenocarcinoma of  the gastric cardia[34,35,41]. Thus, 
elevated bile acid exposure is associated with increased 
ROS, induction of  apoptosis and increased development of  
cancer of  the gastric cardia.

SMALL INTESTINE
Small intestinal cancer is relatively infrequent compared 
to other cancers of  the GI tract. In the United States, 
only 0.2% of  all cancer deaths are due to cancer of  the 
small intestine. Elevated risk of  carcinoid tumor of  the 
small intestine is associated with saturated fat intake[42], 
consistent with an etiologic role of  bile acids. Fifty-three 
percent of  adenocarcinomas of  the small intestine arise 
in the duodenum, although the length of  the duodenum 
is only 4% of  the entire length of  the small intestine. 
In addition, 57% of  these duodenal cancers arise in the 
6-7 cm segment that includes the outlet (Ampulla of  
Vater) of  the common bile duct where bile (including 
bile acids) and pancreatic secretions empty into the 
small intestine[43]. Most adenomas and carcinomas of  
the small intestine and extrahepatic bile ducts arise in 
the region of  the Papilla of  Vater (which includes the 
Ampulla of  Vater)[44]. Patients who have undergone 
a cholecystectomy are at increased risk of  cancer of  
the small intestine, a risk that declines with increasing 
distance from the common bile duct[45]. These findings 
indicate that exposure to high levels of  bile might be the 

Table 1  Bile acids induce DNA damage in cells of the esophagus

Cells/tissues Bile acids that induce DNA damage Assay for damage Ref.

Cultured SV40-transformed, squamous esophageal 
epithelial cells (HET1-A) and Barrett’s associated 
adenocarcinoma cells (FLO-1)

DCA; also cocktail containing GCA, 
TCA, TCDCA

Comet assay1 for strand breaks [18]

Cultured SV40-transformed, squamous esophageal 
epithelial cells (HET1-A)

DCA Comet assay for strand breaks; evidence for 
oxidative mechanism involving nitric oxide

[19]

Cultured human adenocarcinoma cells (OE33) DCA Micronuclei assay; induction of micronuclei by 
DCA, reduced by antioxidants

[15,20]

Biopsies from human Barrett’s esophageal 
metaplastic tissue

Cocktail containing DCA, GCA, TCA, 
GDCA, GCDCA

8-OHdG, an oxidized form of the DNA base 
guanine; assayed by IHC

[14]

Mouse model of esophagitis and Barrett’s 
esophagus

DCA (as dietary supplement; also zinc 
deficiency)

8-OHdG assayed by IHC [17]

1Comet assay, also known as the single cell gel electrophoresis assay; 8-OHdG: 8-hydroxydeoxyguanosine; IHC: Immunohistochemical assay.
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underlying cause of  carcinomas of  the small intestine.
Individuals with familial adenomatous polyposis 

(FAP) have an increased risk of  developing adenomas 
and cancer of  the small and large intestine. In the small 
intestine, these lesions arise mostly near the outlet of  the 
common bile duct, where their distribution parallels bile 
acid exposure[46,47]. In a mouse model of  FAP (Apcmin/+), 
higher dietary fat intake was associated with an increase 
in small intestinal tumors[48]. Administration of  CDCA 
in this FAP mouse model increased duodenal tumors, 
suggesting that unconjugated bile acids contribute to 
periampullary tumor formation in the setting of  an 
Apcmin/+ genotype[49].

The farnesoid X receptor (FXR) is a member of  
the nuclear receptor superfamily, and bile acids are 
endogenous ligands of  FXR. FXR is necessary for 
maintaining bile acid homeostasis, and activation of  FXR 
induces the expression of  ileal bile acid binding protein 
(IBAB) and ileal bile acid transporters. In Apcmin/+ mice, 
FXR deficiency led to an increase in the size of  small 
intestine adenocarcinomas[50]. Taken together, these 
results indicate that bile acids play a central role in cancer 
of  the small intestine. 

LIVER
The estimated yearly number of  deaths world-wide from 
liver cancer is 474 215 for men and 205 656 for women[6], 
making it the third leading cause of  cancer deaths 
among men and women combined. The majority of  liver 
cancers world-wide arise as a result of  chronic infection 
by hepatitis B or C virus, or from exposure to aflatoxin 
B1, a carcinogenic food contaminant. Excessive alcohol 
consumption is another risk factor. However, the risk of  
hepatocellular carcinoma is elevated in individuals with 
late stage primary biliary cirrhosis, a possible autoimmune 
disease[51]. Liver cancer can also arise in children with a 
defect in the bile acid export pump[52]. Thus bile acids are 
implicated in at least some cases of  liver cancer.

Several studies have shown that bile acids induce 
ROS in cells of  the liver. TCDCA induced ROS in 
isolated rat hepatocytes[53,54]. ROS were also induced 
in rat hepatocytes by GCDCA[55-57] and by DCA[58]. 
Taurolithocholate-3-sulfate induced ROS both in rat 
hepatocytes and a human hepatoma cell line (Huh7)[59].

Treatment of  human hepatoma cells (HepG2) with 
DCA activated the gadd153 promoter[60]. This promoter is 
activated by DNA damage, suggesting that DCA induces 

DNA damage in hepatoma cells.
DCA is a promoter of  preneoplastic lesions (hyper

plastic nodules) in hepatocellular carcinogenesis[61,62]. 
Evidence has also been presented that DCA, given as a 
dietary supplement in rats, possess initiating activity for he
patocarcinogenesis[63]. At least 12 studies have shown that 
bile acids induce apoptosis in liver cells. These are listed in 
Table 2. Apoptosis induced in liver cells by hydrophobic 
bile acids is likely caused by oxidative stress[59].

Four studies indicated that bile acid-induced apoptosis 
in liver cells is mediated by ROS. A lazaroid antioxidant 
(U83836E) inhibited induction of  apoptosis in isolated rat 
hepatocytes[55]. The antioxidants α-tocopherol, ebselen or 
idebenone (a coenzyme Q analogue) inhibited apoptosis 
of  isolated rat hepatocytes by GCDCA and GCA[57]. Also 
in isolated rat hepatocytes, the antioxidants β-carotene 
and α-tocopherol inhibited GCDCA induced apoptosis[67]. 
LCA and CDCA activated the antioxidant responsive 
element Nrf2 in human hepatoma-derived cells (HepG2), 
mouse hepatoma-derived cells (Hepa1c1c7) and primary 
human hepatocytes[72]. Nrf2 activation inhibits apoptosis, 
and the target genes of  activated Nrf2 include the genes 
that encode the rate-limiting enzyme in glutathione 
biosynthesis and thioredoxin reductase 1. The general 
finding that induction of  apoptosis in liver cells by bile 
acids can be reduced by anti-oxidants implies that this 
induction is mediated by ROS. 

The bile salt export pump conveys bile acids from the 
hepatocyte cytoplasm into bile canaliculi. Mutations in the 
ABCB11 gene cause a deficiency in the bile salt export 
pump, leading to intrahepatic accumulation of  toxic bile 
salts. Children with such mutations have an increased 
incidence of  hepatocellular carcinoma[52,73]. Mice lacking 
the farnesoid X receptor, which controls the synthesis 
and export of  bile acids, have increased hepatic bile acids. 
These mice have a high incidence of  liver tumors[74,75]. 
Such findings led to the suggestion that in cholestatic 
liver disease, chronic exposure to bile acids may play an 
important role in hepatocellular carcinogenesis[51]. 

BILIARY TRACT
Cholangiocarcinoma (CC) is an adenocarcinoma that 
arises from the bile duct epithelium. The CCs that occur 
within the liver are referred to as intrahepatic CCs. 
Those that occur at the confluence of  the left and right 
hepatic duct are termed hilar CCs. The CCs that arise 
between the hepatic hilum and the duodenal papilla (or 

Table 2  Bile acids induce apoptosis in liver cells

Cells/tissues Bile acid(s) that induced apoptosis Ref.

Isolated rat hepatocytes GDCA [64,65]

GCDCA [55,66]

GCDCA, GCA [57]

GCDCA [67]

Isolated rat and mouse hepatocytes DCA [68]

Liver tissue sections from rats fed DCA, and cultured human hepatocellular carcinoma cells (HuH-7) DCA [58]

Cultured rat hepatocyes (McNtcp.24 cells) GCDC [69,70]

Cultured human hepatocellular carcinoma cells (HuH-7) GCDCA [71]

Rat hepatocytes and human hepatoma carcinoma cells (HuH-7) Taurolithocholate-3-sulfate [59]
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Ampulla of  Vater) are called extra hepatic CCs[76].
The gallbladder and bile duct are exposed to high 

concentrations of  bile acids. The bile acids excreted 
from the liver into the gall bladder are at a concentration 
of  approximately 100 mmol/L[77]. The lifetime risk for 
developing cholangiocarcinoma in patients with primary 
sclerosing cholangitis is estimated at 7%-13%[78], and it was 
suggested that chronic exposure to bile acids may play an 
important role in cholangiocellular carcinogenesis[51]. Two 
children with progressive familial intrahepatic cholestasis 
and cholangiocarcinoma were found to have an absence 
of  bile salt export pump expression and mutations in the 
ABCB11 gene[79]. Loss of  a functional bile salt export 
pump may cause cholangiocarcinoma through intracellular 
accumulation of  bile acids. Incubation of  immortalized 
mouse cholangiocytes with GCDC resulted in the 
generation of  ROS and an increase the percentage of  cells 
with oxidative DNA damage (8-OHdG), suggesting that 
the a long-term effect of  excessive exposure of  the biliary 
tract to GCDC may be carcinogenesis[80]. 

PANCREAS
The estimated yearly number of  deaths world-wide 
from pancreatic cancer is 137 206 for men and 122 185 
for women[6], making it the eighth leading cause of  
cancer deaths among men and women combined. Most 
adenocarcinomas of  the pancreas occur in the head of  the 
gland, which is in close proximity to bile[81]. In a hamster 
surgical model, bile reflux into the pancreatic duct was 
shown to induce development of  intraductal papillary 
carcinomas of  the pancreas[82], suggesting that bile acid 
may be an etiologic agent in pancreatic cancer. Consistent 
with this idea, epidemiological studies found a positive 
correlation between ingestion of  a western style high fat 
diet and the incidence of  pancreatic cancer[83-85]. Treatment 
of  human pancreatic cancer cell lines with bile acids 
(CDCA, DCA or TCDCA) induced cyclooxygenase-2 
(COX-2) expression[81]. Since COX-2 is overexpressed 
in human pancreatic adenocarcinomas, these results 
also suggest a possible role for bile acids in pancreatic 
carcinogenesis.

COLON AND RECTUM
The estimated yearly number of  deaths world-wide from 
cancer of  the colon and rectum is 318 798 for men and 
284 169 for women[6], making it the fourth leading cause 
of  cancer deaths among men and women combined. 
Although both inherited mutations, environmental factors 
(e.g. smoking) and dietary factors are involved in colorectal 
cancer development, sporadic colorectal cancer appears to 
be caused predominantly by dietary factors.

The association of  risk of  colorectal cancer and 
consumption of  red meat and processed meat was assessed 
in a meta-analysis of  15 prospective studies on red meat 
and 14 studies on processed meat[86]. The results showed 
consistent associations between high consumption of  red 
and of  processed meat and risk of  colorectal cancer. 
In another recent study, a dose-dependent positive 

association between saturated fat intake and localized 
colorectal cancer was found in women, but not in men[87]. 
In earlier work, a positive association between dietary 
fat consumption and cancer incidence was reported[88-93]. 
Dietary total fat intake and saturated fat intake, but not 
polyunsaturated fat intake, are positively associated with 
colon cancer incidence[94]. In cancer prone Apcmin/+ mice, a 
high fat diet results in a significant increase in tumors[48]. A 
Western-style diet, containing elevated lipids and decreased 
calcium and vitamin D, induced colonic tumors in normal 
CB7Bl/6 mice[95-97]. Taken together, these studies implicate 
dietary fat (primarily from red and processed meat) in the 
etiology of  human colorectal cancer. 

Dietary intake of  high-fat and high-beef  foods results 
in a significantly higher excretion of  fecal secondary bile 
acids, mainly DCA and LCA[98]. Presumably the increase 
in DCA and LCA reflects increased production of  bile 
acids in order to emulsify the increased level of  dietary fat. 
Epidemiologic studies have also found that fecal bile acid 
concentrations are increased in populations with a high 
incidence of  colorectal cancer[99-106]. The most significant 
bile acids with respect to human colorectal cancer appear 
to be the secondary bile acids, DCA and LCA[99]. 

Although repeated exposure of  the colorectal 
epithelium to high physiological concentrations of  bile 
acids appears to be the major etiologic factor in colorectal 
carcinogenesis, other factors may also be significant. 
Intake of  dietary heme iron is associated with increased 
risk of  colorectal cancer[107], suggesting that iron catalyzed 
formation of  ROS may play a role. The risk of  colorectal 
cancer is also increased by smoking[108]. Bile acids and 
nicotine from smoking can interact synergistically in colon 
cells to increase oxidative stress and DNA damage[109].

Twelve studies have reported that bile acids induce 
production of  ROS or RNS in colon cells (Table 3).

Fourteen studies showed that bile acids induce 
DNA damage in colon cells (Table 4), of  which a 
component is likely oxidative DNA damage. Defective 
repair of  oxidative DNA damage is linked to increased 
risk of  colon cancer. The base excision repair pathway 
deals with oxidative damages in DNA caused by ROS. 
8-OHdG is a major oxidative damage in DNA that can 
mispair with adenine causing G:C to T:A transversion 
mutations, unless the mispair is corrected. MUTYH is a 
mammalian DNA glycosylase that initiates base excision 
repair by excising adenine opposite 8-OHdG. Genetic 

Table 3  Bile acids induce ROS/RNS in colon cells

Cells/tissues Bile acid(s) that 
induced ROS/RNS

Ref.

Human colon surgical resections DCA (RNS) [110]

Cultured human adenocarcinoma 
cells (CACO-2)

DCA, LCA (ROS) [111]

Cultured human adenocarcinoma 
cells (HT-29)

DCA, LCA (ROS) [112]

DCA (ROS) [36,113]

DCA (RNS) [114]

Cultured human adenocarcinoma 
cells (HCT116)

DCA (ROS) [109,115,116]

DCA (RNS) [117]

Rat colonic mucosa DCA (ROS) [118]

Mouse colonic mucosa DCA (ROS, RNS) [119]
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defects in MUTYH cause multiple polyps[120] and greatly 
increased risk of  colorectal cancer[121] in humans.

The numerous studies showing that bile acids 
induce DNA damage in colon cells suggest that bile 
acids may also induce mutation and genomic instability. 
In a model system for inducing tumors in the rat 
using the carcinogen azoxymethane, DCA not only 
increased the incidence of  colon tumors, but also 
increased the incidence of  tumors with K-ras point 
mutations[132], suggesting that DCA may induce K-ras 
mutations. Hydrophobic bile acids cause aneuploidy and 
micronuclei formation, indicators of  genomic instability, 
in a variety of  cell types including colon epithelial 
cells[133]. Persistent exposure of  cultured colon epithelial 
cells to DCA results in alterations in expression of  
chromosomal maintenance/mitosis-related genes that 
might give rise to the observed genomic instability[133].

The 27 studies l isted in Table 5 indicate that 
hydrophobic bile acids induce apoptosis in colon cells. 
Exposure of  colon epithelial cells to DCA causes 
induction of  growth arrest and DNA damage-inducible 
genes GADD34, GADD45 and GADD153, probably in 

response to the DNA damage caused by DCA[131]. DCA 
induced expression of  GADD153 is essential for DCA 
induction of  apoptosis[130]. These findings suggest that 
induction of  DNA damage by DCA results in apoptosis. 
Induction of  apoptosis by DCA may protect against the 
survival of  cells with damaged template DNA that upon 
replication might undergo mutation leading to cancer[134].

Repeated long-term exposure of  colonic epithelial 
cells to high physiologic concentrations of  bile acids 
appears to select for cells that are resistant to induction 
of  apoptosis by bile acids. Such apoptosis-resistant cells 
might arise and clonally expand through the processes of  
mutation (or epimutation) and natural selection. Several 
studies of  colon cancer patients have shown that epithelial 
cells in areas of  the colonic mucosa that do not contain 
the cancer itself  have increased resistance to induction 
of  apoptosis by DCA[115,135,137-139]. The expression of  anti-
apoptotic protein Bcl-xL is elevated in the colorectal 
mucosa adjacent to colorectal adenocarcinomas[157]. These 
findings suggest that tumors may often arise in a field 
of  apoptosis-resistant epithelial cells. A variant of  ileal 
bile acid binding protein (IBABP), termed IBABP-L, 

Table 4  Bile acids induce DNA damage in colon cells

Cells/tissues Bile acid(s) Assay for DNA damage Ref.

Isolated mouse colon crypt cells LCA Nucleoid sedimentation for strand breaks [122]

Isolated human and rat colon cells LCA LCA Comet assay for strand breaks [123]

Isolated rat colon cells DCA Immunostaining for poly (ADP-ribose) an indicator of 
DNA damage

[124]

Freshly isolated normal human colonocytes DCA, CDCA Comet assay for strand breaks [125]

Cultured human adenocarcinoma cells (HT-29) DCA, CDCA Comet assay for strand breaks and modified comet assay 
for oxidative DNA damage

Cultured human adenocarcinoma cells (HT-29) DCA, LCA Comet assay for strand breaks [112,126]

Cultured human adenocarcinoma cells (CACO-2) DCA, LCA Comet assay for oxidative DNA damage [111]

Cultured human colon adenocarcinoma cells (HCT-116 & HCT-15) DCA Comet assay for strand breaks [127]

Cultured human colon adenocarcinoma cells (HCT-116 & HT-29) DCA Comet assay for strand breaks [128]

Cultured human colon adenocarcinoma cells (HCT-116) DCA Induction of the DNA repair protein BRCA-1 [129]

Induction of DNA damage inducible gene GADD153 [130]

Comet assay [116]

Cultured human colon adenocarcinoma cells (HCT-116 and HCT-15) DCA Induction of DNA damage inducible genes GADD34, 
GADD45, GADD153

[131]

Colon samples from mouse dietary colitis model DCA Oxidative DNA damage: 8-OHdG assayed by 
immunohistochemistry

[119]

Table 5  Bile acids induce apoptosis in colon cells

Cells/tissues Bile acid(s) that induced apoptosis Ref.

Biopsies from normal human colonic mucosa DCA [135-139]

Colon adenoma cell lines (AA/C1 and RG/C2), and carcinoma cell line (PC/JW/F1) DCA [140]

Cultured human adenocarcinoma cells (HT-29 and CaCo-2) DCA [141,142]

Cultured human adenocarcinoma cells (HCT-116) DCA, CDCA [130,143-146]

DCA [116,147-149]

Cultured human adenocarcinoma cells (HT-29) DCA [114]

Cultured human adenocarcinoma cells (HT-29 and HCT-116) DCA [150]

DCA [128]

DCA, LCA, CDCA [151]

Cultured human adenocarcinoma cells (HT-29) and human fetal colonic mucosal cells (FHC) DCA, LCA, CA, CDCA [152]

Cultured human adenocarcinoma cells (HT-29, SW480, SW620) DCA, CDCA [153,154]

Cultured human adenocarcinoma cells [HCT-116 (p53+) and HCT-15 (p53-)] DCA [127]

Cultured human adenocarcinoma cells (HCT-116SA apoptosis-sensitive and HCT-116RB, 
HCT-116RC and HCT-116RD apoptosis resistant)

DCA [155]

Human colonic mucosal samples from surgical resections DCA [156]
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is upregulated in colorectal cancer and is necessary for 
survival of  HCT116 colon cancer cells in the presence 
of  physiologic levels of  hydrophobic bile acid[158]. This 
finding suggests that IBABP-L is a key factor in the 
development of  resistance to bile acids in colon cancer 
cells. Furthermore, repeated long-term exposure of  
HCT-116 human colonic epithelial cells in culture to 
sublethal concentrations of  DCA selects for cells that 
have further increased resistance to DCA-induced 
apoptosis[159]. These observations suggest a link between 
development of  resistance to bile acid-induced apoptosis 
and colon cancer.

In summary, evidence indicates that, in colonic 
epithelial cells and tissues, bile acids have the short-term 
effect of  inducing oxidative stress that causes DNA 
damage leading to mutation and apoptosis. Over a longer 
period, repeated exposure to high levels of  bile acid 
may select for the development of  apoptosis resistant 
fields of  cells and eventually to the development of  
adenocarcinoma. 

DNA DAMAGE COUPLED WITH 
RESISTANCE TO CELL DEATH DRIVES 
TUMORIGENESIS
We have emphasized, above, the role of  bile acids in 
inducing ROS/RNS and DNA damage in cells of  the GI 
tract. These stresses, if  excessive, can overwhelm cellular 
defenses resulting in cell death[139,160-163]. However, we 
have also shown that bile acids can activate two major 
cell survival pathways, NF-κB[115,124] and autophagy[164] 
(Figure 1). Both of  the pathways are known to be 
activated by ROS[165,166]. Results from our laboratory 
indicate that the activation of  both pathways by DCA 
can be attenuated by the use of  antioxidants[113,115,124,164]. 
We have also shown that the NF-κB and autophagy 
pathways contribute to the stable apoptosis resistance 
that characterizes cell lines persistently exposed to 
DCA[159,164]. The sensitization to DOC-induced cell death 
after interfering with these pathways was documented 
using antisense oligonucleotides against the p65 subunit 
of  NF-κB[159] and pharmacologically through the use of  
3-methyladenine[164], an inhibitor of  autophagy. 

The induction of  persistent DNA damage in 
apoptosis-resistant cells is a dangerous situation that can 
lead to further mutation and ultimately cancer (Figure 1).  
An increase in Bcl-2 (an anti-apoptotic protein), for 
example, may also downregulate Ku DNA binding activity, 
thereby further amplifying genomic instability through 
interference with the non-homologous end-joining 
pathway of  DNA repair[167]. The cross-talk between anti-
apoptotic proteins and DNA repair proteins is a current 
area of  investigation.

NUCLEAR BILE ACID RECEPTORS FXR, 
VDR AND PXR/SXR
Recently, it has become apparent that nuclear bile 
acid receptors FXR, VDR and PXR/SXR play an 

important role in protecting against carcinogenic effects 
of  bile acids. FXR, a member of  the nuclear receptor 
superfamily, responds to bile acids as physiological 
ligands[168-170]. FXR has a key role in activating pathways 
that maintain bile acid homeostasis[50]. FXR protects 
against intestinal tumorigenesis, possibly by a mechanism 
involving induction of  apoptosis[50,171].

The vitamin D receptor (VDR) functions as a 
receptor for the secondary bile acid lithocholic acid, 
and has a key role in activating a pathway that detoxifies 
lithocholic acid[172]. Similarly, the human xenobiotic 
receptor SXR (steroid xenobiotic receptor) and its 
rodent homolog PXR (pregnane X receptor) are bile 
acid receptors that, when activated, induce a response 
that detoxifies bile acids[173,174]. PXR promotes bile 
acid detoxification by activating bile acid metabolizing 
enzymes and transporters. In both human colon cancer 
cells and normal mouse colon epithelium PXR/SXR 
protects against bile acid induced apoptosis[149].

CONCLUSION
In Figure 1, we suggest a possible general pathway for 
bile acid induced carcinogenesis based on evidence 
reviewed above. An immediate effect on cells of  the 
GI tract to exposure to a high physiologic level of  bile 
acids is the induction of  ROS/RNS. This can lead to 
DNA damage and apoptosis in some cells. Among 
surviving cells, some may remain normal by successfully 
employing protective and repair mechanisms. Other 
surviving cells, however, may retain unrepaired DNA 
damage. When such cells undergo DNA replication 
using a damaged strand as template, mutations will likely 
arise. Over years of  frequently repeated exposure to high 

Death Survival

Survival with successful 
         protection or repair

Replication            Repeated 
     exposure to high 
bile acid levels

AutophagyNF-κB

Natural selection

Further mutation and 
natural selection

Apoptotic cells Normal cellsCells with DNA damage 
(some un-repaired)

Gastrointestinal cells

Exposure to high 
bile acid levels

Cells undergo oxidative/
nitrosative stress

Increase in 
mutant cells

Repeated exposure 
over decades to high 
bile acid levels

Mutant cells with a growth advantage 
(e.g. apoptosis resistance, 

increased cell division)

Pre-malignant field 
of defective tissue

Cancer

Figure 1  The role of bile acids in the sequence of events leading to 
gastrointestinal cancer.
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levels of  bile acids many mutations will occur, and some 
of  these mutations may provide a growth advantage 
to the cell in which they occur. The growth advantage 
may involve apoptosis resistance, and increased and/or 
aberrant proliferation. Such cells will tend to expand 
clonally at the expense of  neighboring cells to form a 
field of  defective cells. Further repeated exposure to 
high levels of  bile acids will lead to additional mutations. 
Should some of  these mutations arise within a defective 
field and also provide additional growth advantages, 
a secondary field will spread within the first field by 
natural selection. Repetition of  this “mutation-and-
selection” process over many years, perhaps decades, will 
lead to a pre-malignant field and eventually to cancer.
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