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Abstract
Inflammatory bowel disease (IBD) is a common and 
lifelong disabling gastrointestinal disease. Emerging 
treatments are being developed to target inflammatory 
cytokines which initiate and perpetuate the immune 
response. Adenosine is an important modulator of 
inflammation and its anti-inflammatory effects have 
been well established in humans as well as in animal 
models. High extracellular adenosine suppresses and 
resolves chronic inflammation in IBD models. High 
extracellular adenosine levels could be achieved by 
enhanced adenosine absorption and increased de novo  
synthesis. Increased adenosine concentration leads to 
activation of the A2a receptor on the cell surface of 
immune and epithelial cells that would be a potential 
therapeutic target for chronic intestinal inflammation. 
Adenosine is transported via concentrative nucleoside 
transporter and equilibrative nucleoside transporter 
transporters that are localized in apical and basolateral 
membranes of intestinal epithelial cells, respectively. 
Increased extracellular adenosine levels activate 
the A2a receptor, which would reduce cytokines 
responsible for chronic inflammation.
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INTRODUCTION
Adenosine is a purine molecule necessary for normal cell 
metabolism and growth. Recently, adenosine has been 
recognized as a potential anti-inflammatory molecule. 
In general, cellular adenosine is produced by both  
de novo synthesis and by absorption from the diet into 
the body through transporters in the gastrointestinal 
tract. It is thought that activation of  adenosine receptors 
deactivates the synthesis of  critical components necessary 
for activation of  chronic inflammatory diseases, including 
inflammatory bowel disease (IBD). Many reviews have 
focused on the general aspects of  adenosine activation of  
its receptors in inflamed tissues. This review focuses on 
the identification of   the role of  intestinal epithelial cell 
adenosine transporters during IBD.

CURRENT UNDERSTANDING OF 
INFLAMMATORY BOWEL DISEASES
IBD, including Crohn’s disease (CD) and ulcerative colitis 
(UC), is a common and lifelong disabling gastrointestinal 
disease[1,2]. It has highest incidence and prevalence in the 
developed countries. The worldwide incidence varies 
greatly with that of  UC ranging from 0.5-24.5/100 000 
and that of  CD ranging from 0.1-16/100 000 in different 
populations. There are more than 2 million IBD patients 
in the United States[3]. The precise mechanism of  IBD 
is still unknown. CD and UC differ in their histological 
presentation and cytokine profile. The accumulated 
data indicate that IBD results from a complex interplay 
of  genetic, environmental, and immunologic factors. 
The presence of  one or more genetically determined 

defects leads to an over-reaction of  the host mucosal 
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immune system to normal constituents of  the mucosal 
microflora. The genetically determined alterations of  
gut epithelial barrier function enhance exposure of  the 
mucosal immune system to microflora components. The 
over-reaction causes either a Th1-type T cell-mediated 

inflammation (Crohn’s disease) or a Th2-type T cell-
mediated inflammation (ulcerative colitis). Multiple 
cytokines are released in the inflammatory process. 
The most important factors are tumor necrosis factor 
(TNF)-a, interleukin (IL)-1, interferon (INF)-g, IL-6, 12, 
13 and 17, monocyte chemotactic protein (MCP)-1 and 
IL-8[4]. These cytokines attract and activate neutrophils, 
eosinophils, mast/plasma cells and macrophages. These 
inflammatory cells produce large amounts of  unstable 
chemical species such as reactive oxygen species (ROS) 
or oxyradicals (i.e. superoxide anions, hydrogen peroxide, 
hydroxyl radicals, peroxynitrite), resulting in tissue 
injury[5,6].

Since the cause of  IBD is still unknown, currently 
available treatments for the disease are non-specific 
and may cause side effects such as osteoporosis and 
suppression of  the immune system. Many patients 
respond and maintain remission with existing therapy. 
Thus, at present, there is no cure for IBD. But for some 
patients, the available therapeutic options for IBD 
are still inadequate. The conventional treatments use 

corticosteroids, mesalamine, and immunosuppressants. 
These either nonspecifical ly block downstream 
inflammatory events, such as the secretion of  cytokines 
and activation of  immunocytes and neutrophils, or 
increase tissue adenosine levels, regardless of  the nature 
of  the underlying T cell response that generated these 
events. These agents have been used for treatment of  
mild and moderate IBD with some success for many 
years despite shortcomings and toxicities. The newer 

therapies using biologics, such as antibodies against 
TNF-a and a-integrin molecules, eliminate a specific 
major inflammatory cytokine or act by disrupting 
accumulation of  cells at areas of  inflammation. Both 
strategies have been successful in subsets of  IBD 
patients but have also been associated with significant 
complications including fatal infections[7-12].

Emerging treatments are being developed to target 
the hierarchy of  the inflammatory cytokine effect 
including IL-12/IL-23[13], IFN-g[14], IL-6[15], and IL-10 
levels[16]. Several antibodies currently on clinic trial 
include: anti-IL-12p40, an antibody against IL-12 and 
IL-23, the master cytokines underlying the Th1 response, 
for Crohn’s disease[13]; anti-IL-23p19, a potentially useful 
treatment for patients with resistance to anti-TNF 
therapy which acts by targeting IL-23 and IL-17 rather 
than IL-12 and IFN-g in experimental colitis. Other 
approaches to the treatment of  IBD currently under 
investigation are leukocytapheresis to eliminate effector 
cells[17,18], administration of  probiotics, use of  GM-CSF 
to enhance innate immune function[19], administration of  
microbe-derived agents or intestinal parasites to activate 
the innate immune system by inducing counter-regulatory 
immune responses to quell established inflammation[20], 
administration of  anti-CD3 antibodies[21], autologous 

hematopoietic stem cell transplant[22], extracorporeal 
photophoresis to restore immunoregulation[23], and 
adipose stem cell infusion[24].

ADENOSINE MODULATES CHRONIC 
INFLAMMATION IN IBD
Adenosine exerts broad biologic effects, including 
smooth muscle contraction, neurotransmission in 
the peripheral and central nervous systems, platelet 
aggregation, pain, exocrine and endocrine secretion, 
lipolysis, glycogenesis, immune system development  and 
response (e.g. severe combined immunodeficiency is due 
to lack of  adenosine-deaminase), cardiac conduction 
and contractility, and anti-inflammation[25]. It has long 
been reported that adenosine, a purine nucleoside that 
is released at injured and inflamed sites, plays a central 
role in the regulation of  inflammatory responses and in 
limiting inflammatory tissue destruction[26]. Early after 
the injurious or infectious signal, high concentrations of  
extracellular adenosine favor a transition from neutrophil 
infiltration to macrophage recruitment, to facilitate a 
highly efficient specific immune response carried out by 
macrophages. At later stages of  immune or inflammatory 
processes, adenosine contributes to the resolution of  
inflammation, both by down-regulating macrophage 
activation and by advancing Th2- vs Th1-cell response[26]. 
Some anti-inflammatory and immunomodulating drugs, 
such as salicylates, methotrexate and purine analogs 
like 6-MP and cyclosporine, exert their therapeutic 

actions in inflammatory diseases, at least in part, by 
decreasing intracellular adenosine 5’-triphosphate (ATP) 
concentrations and increasing extracellular adenosine 
levels[27].

There are numerous reports that have demonstrated 
the ability of  adenosine to exert anti-inflammatory 
actions in a variety of  animal models. The anti-
inflammatory effects can be achieved by increasing 
intracellular or extracellular adenosine levels through the 
mechanism of  either enhanced production or inhibition 
of  adenosine catabolism. The majority of  work has been 
focusing on inhibition of  adenosine catabolism or direct 
activation of  adenosine receptors. A recent article by 
Antonioli et al[28] reported that inhibition of  adenosine 
deaminase can attenuate mucosal inflammation in 
experimental colitis through the mechanism of  reducing 
mucosal myeloperoxidase activity, production of  
malondialdehyde and TNF-a levels as well as plasma 
TNF-a and interleukin-6 levels. Other studies have 
demonstrated that adenosine acting on the A2a receptor 
of  T-lymphocytes can selectively suppress the expression 
of  pro-inflammatory cytokines while sparing anti-
inflammatory activity mediated by IL-10 and TGF-b[29]. 
The tissue injury and inflammation in mice with enteritis 
induced by Clostridium difficile toxin A can be alleviated 
by a new A2a receptor agonist, ATL 313, through 
the mechanism of  inhibiting neutrophil infiltration, 
TNF-a production and adenosine deaminase activity[30]. 
Adenosine can down-regulate neutrophil functions by 
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decreasing their adhesion, degranulation, and oxidant 
activities[25]. An increase in endogenous adenosine levels 
by inhibition of  adenosine kinase ameliorates colitis 
by suppression of  IFN-g in colonic tissue and CD69 
expression in splenocytes, as well as maintaining tissue 
integrity by reducing energy demand, increasing nutrient 
availability, and modulating the immune system[31]. At 
a molecular level, adenosine has been demonstrated to 
be a negative regulator of  NF-kB and MAPK signaling 
in human intestinal epithelial cells[32]. Based on these 
findings, the adenosine system can represent a very 
promising target for therapies of  inflammatory bowel 
diseases.

PHYSIOLOGY OF ADENOSINE 
METABOLISM BY INTESTINAL 
EPITHELIUM CELLS
Intracellular adenosine level is maintained by constant 
synthesis and degradation, as well as by trans-membrane 
transport through nucleoside transporters. The 
intracellular adenosine is produced by de novo synthesis 
from amino acids, CO2, carbon-1-tetrahydrofolate 
and ribose-5-phosphate, salvage of  endogenous 
adenine, dephosphorylation of  ATP, ADP and AMP, 
as well as by transportation of  exogenous nucleobases 
and nucleosides through concentrative nucleoside 
transporters (CNTs) or equilibrative nucleoside 
transporters (ENTs). Adenosine is metabolized to 
inosine by adenosine-deaminase, to either an end product 
uric acid or phosphorylated to ATP by adenosine-kinase 
or diffused into the extracellular space via ENTs[33,34].

Most tissues and cells have de novo synthesis capacity 
to produce adenine endogenously from amino acids, 
CO2 and carbon-1-tetrahydrofolate for their own use. 
However, some tissues and cells either lack or have very 
limited de novo synthesis capacity. These tissues and cells 
rely largely on exogenous nucleoside supply and salvage 
of  endogenous nucleobases and nucleosides. Bone 
marrow, lymphocytes, leukocytes and intestinal epithelial 
cells are among them[35-39]. The liver is the major organ 
supplying the nucleobases to these tissue and cells. The 
dietary nucleobases and nucleosides are absorbed by 
intestinal villous epithelial cells and degraded to end 
products such as uric acid. The uric acid is brought 
to the liver by blood and is taken up by hepatocytes 
and transformed into nucleobases. The synthesized 
nucleobases are released into the blood stream and 
carried to the tissues.

The intestinal epithelial cells have a very limited 
capacity for de novo synthesis; the villous cells can directly 
use the absorbed dietary nucleosides but the cryptal cells 
depend on blood supply. The impact of  lack or limitation 
of  nucleoside supply to cryptal cells on epithelial repair 
and barrier function during IBD has not been fully 
investigated[40,41]. It is reasonable to speculate that poor 
absorption in the intestine or suppression of  synthesis in 
the liver will ultimately result in disruption of  epithelial 
barrier function in chronic bowel inflammatory diseases 

like IBD, which in turn will lead to over-exposure of  the 
innate immune system to intraluminal bacterial antigens 
and cause persistent inflammation or exacerbation of  
the diseases.

In general, the extracellular adenosine is produced 
by dephosphorylation of  ATP by an enzymatic cascade 
consisting of  Ntpases and ecto-5’-nucleotidase (Ecto 
5’NTase), and direct diffusion of  intracellular adenosine 
through ENTs. It is removed by enzymatic degradation 
by adenosine deaminase to inosine or by adenosine 
kinase to AMP. It can also be transported back into 
cells by membranous transporters like CNTs/ENTs. 
The extracellular adenosine level is believed to be lower 
than 1 mmol/L in normal tissue but can be as high as 
100 mmol/L in inflamed or ischemic tissues[25]. Only 
a high adenosine level can exert immunomodulatory 
and immunosuppressive effects. Luminal adenosine 
level is estimated to be 5 mmol/L in normal intestine, 
while it is 6 mmol/L in inflamed intestine due to ATP 
and adenosine secretion in inflammatory and other cell 
types[42].

It is not entirely clear which cell types are the 
most important producer of  extracellular adenosine, 
but endothelial cells, neutrophils, nerve terminal and 
epithelial cells have been identified in the literature[43,44]. 
Extracellular adenosine binds to adenosine receptors 
(AR) 1, 2a, 2b and 3, all of  which are expressed on the 
surface of  immune cells. Low level expression of  A1R 
is demonstrated in small intestine. A2bR is the only 
receptor expressed in epithelial cells of  cecum and 
colon. A3R can be detected in jejunum and proximal 
colon[45,46]. Adenosine receptors are members of  the 
G protein-coupled family of  receptors[47]. A1 and A3 
receptors are usually coupled with Gi proteins that 
inhibit adenylate cyclase, whereas the A2aR and A2bR 
receptors are coupled with Gs proteins that activate 
adenylate cyclase. Several studies have demonstrated 
that adenosine attenuates intestinal inflammation 
predominantly through the effects of  the A2aR receptor 
of  neutrophils and T-lymphocytes[29,30,48]. However, 
Yang et al[49] found that activation of  the A2bR can also 
have anti-inflammatory effects, using a gene knock-
out method to delete this gene in order to show a pro-
inflammatory phenotype.

MOLECULAR MECHANISM OF 
ADENOSINE TRANSPORT
The significance of  exogenous adenosine transport by 
intestinal epithelial cells in the treatment of  IBD and 
its impact on epithelial cell barrier function has not 
been explored. Concentrative nucleoside transporters 
(CNTs) have been identified as the major transporters 
for absorption of  exogenous nucleosides from the diet. 
Three distinct CNTs (CNT1, CNT2 and CNT3) that 
exhibit different substrate specificity have been cloned 
and characterized from humans, rats and mice[34]. CNT1 
predominantly transports pyrimidines. CNT2 transports 
purine and uridine, while CNT3 transports purines and 
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pyrimidines. The expression of  CNTs and their substrate 
specificity vary among species. CNT3 was not found in 
intestinal epithelial cells of  human and rat[34,50,51]. CNTs 
belong to the solute carrier family 28 (SLC-28). CNTs 
are expressed in the apical membranes of  intestinal 
epithelial cells, as well as in other cell types including 
hepatocytes, endothelial cells, neutrophils, lymphocytes 
and macrophages.

CNT2 has been cloned and characterized in humans, 
mice, rats and rabbits. The rat CNT2 cDNA is 2.9 Kb 
and encodes a 659 amino acid protein with molecular 
weight of  72 kDa[52]. The apparent molecular weight 
on western blot is usually around 60 kDa due to high 
hydrophobicity of  membrane protein. Fourteen putative 
transmembrane domains were identified by hydropathy 
analysis. The presence of  several consensus sequences 
for protein kinase-C (PKC) and protein kinase-A (PKA) 
phosphorylation sites on both N- and C-termini, and 
an ATP/GTP binding motif  in N-terminus, suggest 
that CNT2 may be regulated by protein kinases and 
intracellular ATP and GTP. CNT2 may be a glycoprotein 
as there are five possible N-linked glycosylation sites. 
Na+-adenosine cotransport in brush-border membranes 
from rabbit  i leum was ident if ied and par t ia l ly 
characterized in one previous study[53]. In vitro expressed 
CNT2 in Xenopus laevis oocytes exhibited Na+-dependent 
adenosine uptake with an apparent Km for adenosine 
of  6 mmol/L, with substrate selectivity to purine and 
uridine[54].

REGULATION OF ADENOSINE 
TRANSPORT AND CNT2 EXPRESSION IN 
GENERAL
The CNT2 expression and adenosine uptake are 
highly regulated processes and are species and tissue 
specific[55]. Sub-cellular trafficking (i.e. internalization of  
membrane transporters to sub-cellular storage vesicles) 
has been shown to be a regulatory mechanism for 
CNT2 in several cell lines including adrenal chromaffin 
cells, reticulocytes and cholangiocytes[56-58]. Although 
CNT1 has been shown to be up-regulated in intestine 
and down-regulated in hepatocytes of  pyrimidine-
free diet fed animals, the dietary effects of  adenosine 
on CNT2 activity and molecular expressions are not 
known[59,60]. Several studies have shown that nucleoside 
transport functions and expressions are regulated 
by hormones[61-66]. Tyrosine and glucagon have been 
shown to stimulate adenosine transport and CNT2 
expression in both in vitro and in vivo models[61-63]. Studies 
with insulin and glucose have yielded different results 
regarding adenosine transport and molecular expression. 
Insulin regulates adenosine transport through different 
signaling pathways that involve PI3K, MAPK, NO 
synthase, PKC and MAP kinase[64-66]. One study showed 
that adenosine transport is up-regulated by activation 
of  the A1 adenosine receptor through ATP-sensitive 
K-channels in hepatocytes, suggesting some positive 
feedback regulation among adenosine receptors and the 

adenosine transporter[67].
The effects of  proliferative (EGF and TGF-a) 

and differentiating (glucocorticoid) hormones were 
demonstrated in IEC-6 cells (a rat intestinal cryptal 
cell line). A four-fold increase of  adenosine transport 
activity and CNT2 molecular expression after treatment 
with dexamethasone was observed while no significant 
impact was noted from treatment with proliferative 
hormones[68]. However, a more recent paper by the same 
research group found that TGF-b can transcriptionally 
up-regulate CNT2 gene expression in rat hepatocytes[69]. 
Adenosine transport and CNT2 expression are 
altered during cell growth cycle and differentiation. 
Hepatocarcinogenesis is accompanied by loss of  CNT2 
expression and increased expression of  ENTs. CNT2 
mRNA and protein levels were increased right before 
the peak of  incorporation of  thymidine into DNA and 
during liver regeneration after partial hepatectomy[70,71].

CNT2 expression was up-regulated by lipopo-
lysaccharide (LPS),  NO, INF-a  and TNF-a  in 
macrophages and B-lymphocytes in several studies[72-74]. 
The LPS-induced increase of  adenosine transport and 
molecular expression is TNF-a-dependent but not 
iNOs-dependent. cNOs is required for maintaining 
the basal transport activities of  adenosine in activated 
B-cells. The CNT2 is recognized as an important 
regulator of  extracellular adenosine concentrations. 
CNT2 expression is suppressed in inflamed tissue as 
a mechanism to maintain high extracellular adenosine 
concentration. The CNT2 expression is suppressed in 
neutrophils and macrophages during inflammation[75]. 
There is controversy between the in vivo and in vitro 
studies about the functional status of  adenosine 
transport and CNT2 expression during inflammation 
and the effects of  inflammatory mediators.

MECHANISM OF REGULATION OF 
ADENOSINE TRANSPORT AND CNT2 
EXPRESSION IN INTESTINAL EPITHELIAL 
CELLS
A systematic study for the mechanism of  regulation of  
adenosine transport and CNT2 expression in intestinal 
epithelial cells is not available. Adenosine functions 
as a nutrient for nucleic acid metabolism, an energy 
carrier molecule for cell energy metabolism, and a 
second messenger in autocrine and paracrine hormone 
regulation. Adenosine transport is regulated differently 
from other nutrient transporters such as glucose and 
amino acid transporters. Luminal adenosine and ATP 
have been reported to regulate glucose and bile acid 
transport in intestine, proximal renal tubule cells and 
cholangiocytes[42,76,77]. The role of  the activation of  
purinergic receptors on adenosine uptake was also 
studied in vascular endothelial cells and chromaffin cells. 
ATP has been shown to up-regulate adenosine transport 
and protein expression in vascular endothelial cells and 
chromaffin cells[78-80]. However, the effect of  ATP on 
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adenosine transport in normal and inflamed intestine 
remains to be elucidated.

MECHANISM OF REGULATION OF 
NA+-CO-TRANSPORT IN INTESTINAL 
EPITHELIAL CELLS DURING CHRONIC 
INTESTINAL INFLAMMATION
The regulation of  intestinal epithelial transporters during 
chronic inflammation is a very complex process, involving 
many cell types and immune-inflammatory mediators. The 
cells involved in chronic enteritis include all inflammatory 
cells (neutrophils, basophils, eosinophils, macrophages, 
lymphocytes), fibroblasts, vascular endothelial cells, nerve 
cells and epithelial cells. These cells produce numerous 
cytokines and immune-inflammatory mediators such as 
prostaglandins, leukotrienes, reactive oxidative metabolites 
(ROMs) and nitric oxide[1-6]. So far, there are no perfect 
animal models for IBD though several different models 
exist with chemically-induced and genetically-induced 
enteritis. It is very difficult to fully understand the 
regulation of  nutrient and electrolyte transport in the 
chronically inflamed intestine. 

The mast cell has been implicated as an important 
player in chronic intestinal inflammation. It releases 
multiple inflammatory mediators including histamine, 
serotonin, cytokines, prostaglandins, leukotrienes and 
ROMs. The released mediators are very important 
regulators of  transporters in epithelial cells. It was 
consistently demonstrated  that blocking mast cell 
degranulation prevented down-regulation of  a number 
of  transporters including Na+-glucose and Na+-amino 
acid cotransport as well as electrolyte transporters such 
as Cl-/HCO3

- exchange[81].
Nitric oxide has been identified as an important 

regulating factor in the intestinal tract. Constitutive 
nitric oxide synthase (cNOs) plays an important role 
in the regulation of  transporters in normal intestine. 
It is essential for some transporters to function 
properly under physiologic conditions. Inducible nitric 
oxide synthase (iNOS) is activated during chronic 
inf lammation, ischemia and tissue injury. iNOS 
produces large amounts of  nitric oxide (NO) during 
chronic inflammation, which is generally considered 
as detrimental to tissue and cells because of  formation 
of  peroxynitrous acid, though controversy continues 
about its role in inflammation. The mechanism of  
cNOS and iNOS effects on nutrient co-transporters in 
epithelial cells is possibly through direct and indirect 
effects, by stimulating the production and/or release of  
other inflammatory mediators such as arachidonic acid 
metabolites (e.g. prostaglandins and leukotrienes)[82-84].

Prostaglandins have been shown to be very 
important inflammatory mediators in chronic intestinal 
inflammation. A large amount of  prostaglandins 
are produced in the intestinal tissue during IBD. 
Prostaglandins inhibit electrolyte absorption and Na-

nutrient co-transporter functions[85-89]. In addition, they 
also promote mucous secretion and cytoprotection in 
the gastrointestinal tract during IBD[85,88]. Prostaglandin 
E2 (PGE2) was also reported to suppress glucose 
transport in the ovine intestine[90]. Leukotrienes have 
been demonstrated to inhibit electrolyte transport in a 
similar pattern to prostaglandins[91-98].

Corticosteroids are the most frequently used broad 
spectrum immunomodulators in IBD for blocking the 
production of  most major inflammatory mediators. 
Corticosteroids prevent mast cell degranulation and 
block the phospholipase A2 (PLA2) enzyme pathway.  
They also down-regulate arachidonic acid release and 
production of  prostaglandins and leukotrienes. In 
addition, corticosteroids suppress the production of  
iNOS and inducible cyclooxygenase (COX-2) during 
chronic inflammation[99].

It is possible that mast cells, nitric oxide, arachidonic 
acid metabolites and steroids are all involved in 
the regulation of  adenosine transport and CNT2 
expression during chronic enteritis. It should be noted 
that adenosine itself  is an inflammatory modulator. 
Extracellular adenosine can suppress all these above-
mentioned inflammatory cells and mediators. The 
interplay among adenosine, inflammatory cells and 
mediators can be very complex and is also very 
interesting for further study.

Figure 1  Pathways and roles of adenosine. Absorbed and de novo synthe-
sized adenosine delivered to extracellular space. Adenosine binds to A2aR 
of immune cells and activates signaling pathways to inhibit the production of 
inflammatory mediators. A: Adenosine; APM: Apical membrane; BLM: Basolat-
eral membrane; CNT: Concentrative nucleoside transporter; ENT: Equilibrative 
nucleoside transporter.
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CONCLUSION
The pathways of  adenosine metabolism and transport 
are fully illustrated in Figure 1. Luminal adenosine is 
absorbed by intestinal epithelial cells through CNT 
and ENT transporters and can also be synthesized  
de novo. The increase in intracellular levels of  adenosine 
leads to extracellular transport along with the release 
of  adenosine from damaged cells during inflammation. 
Using various therapies during IBD, it may be possible to 
eventually increase the extracellular levels of  adenosine 
so that the appropriate receptors can be activated to 
inhibit and reduce the effects of  chronic inflammation 
on the gut. IBD is a common and lifelong disabling 
gastrointestinal disease. At present, there is no cure for 
IBD. Emerging treatments are being developed to target 
cytokines that perpetuate the chronic inflammatory 
response. Adenosine is an important modulator of  
inflammation and its anti-inflammatory effects have been 
well established in humans as well as in animal models. 
Therapeutic targeting of  receptors such as the A2a 
receptor could reduce cytokine levels and thus reduce 
the effects of  chronic inflammation during IBD.
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