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Abstract
In adults, the hepatobiliary system, together with the 
kidney, constitute the main routes for the elimination 
of several endogenous and xenobiotic compounds into 
bile and urine, respectively. However, during intrau-
terine life the biliary route of excretion for cholephilic 
compounds, such as bile acids and biliary pigments, is 
very poor. Although very early in pregnancy the fetal 
liver produces bile acids, bilirubin and biliverdin, these 
compounds cannot be efficiently eliminated by the fetal 
hepatobiliary system, owing to the immaturity of the 
excretory machinery in the fetal liver. Therefore, the 
potentially harmful accumulation of cholephilic com-
pounds in the fetus is prevented by their elimination 
across the placenta. Owing to the presence of detoxify-
ing enzymes and specific transport systems at different 
locations of the placental barrier, such as the endothe-
lial cells of chorionic vessels and trophoblast cells, this 
organ plays an important role in the hepatobiliary-like 
function during intrauterine life. The relevance of this 
excretory function in normal fetal physiology is evi-
dent in situations where high concentrations of biliary 
compounds are accumulated in the mother. This may 
result in oxidative stress and apoptosis, mainly in the 
placenta and fetal liver, which might affect normal fetal 
development and challenge the fate of the pregnancy. 
The present article reviews current knowledge of the 
mechanisms underlying the hepatobiliary function of 
the fetal-placental unit and the repercussions of sev-
eral pathological conditions on this tandem.
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INTRODUCTION
In the adult liver, most cholephilic organic anions are 
taken up from the portal blood by hepatocytes across 
the basolateral plasma membrane by sodium-dependent 
and -independent carriers (Figure 1). These are mem-
bers of  two groups of  proteins: (1) the organic anion-
transporting polypeptides family (OATP, gene symbol 
SLCO), whose isoforms OATP1B1, OATP1B3 and to a 
lesser extent OATP1A2[1], play a major role in the uptake 
of  cholephilic compounds by human hepatocytes; (2) 
the Na+-taurocholate-cotransporting polypeptide (NTCP, 
SLC10A1)[2]. Several members of  the organic anion 
transporter (OAT) and organic cation transporter (OCT) 
family (gene symbol SLC22A) collaborate in the uptake 
of  a large variety of  organic molecules by the liver.

The secretion of  cholephilic compounds into bile is 
accounted for by export pumps located at the canalicular 
plasma membrane. These are proteins belonging to the 
ATP-binding cassette (ABC) superfamily, which, in this 
region of  the hepatocyte include the P-glycoprotein or 
multidrug resistance protein (MDR1; ABCB1), able to 
transport organic and inorganic cations[3]; the sister of  
P-glycoprotein or bile salt export pump (BSEP; ABCB11), 
which constitutes the main secretory system for bile ac-
ids[4]; the isoform 2 of  the multidrug resistance-associated 
protein (MRP2; ABCC2), which exports conjugated forms 
of  bilirubin, bile acids and xenobiotics[5,6], and the breast 
cancer resistance protein (BCRP; ABCG2), able to export 
sulfated steroids, which probably include bile acids[7].

In normally functioning healthy adult livers, at least as 
far as the excretion of  cholephilic compounds into bile is 
concerned, the expression levels of  MRP1 (ABCC1) and 
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MRP3 (ABCC3) at the basolateral membrane of  hepato-
cytes is low[8,9]. However when the biliary excretory route 
is impaired, such as in cholestasis or endotoxemia, chole-
philic compounds accumulate in hepatocytes, inducing 
an up-regulation of  basolateral export pumps[10-12]. This 
acts as an adaptative response to reduce the cytotoxic ef-
fects of  cholephilic compounds by pumping them back 
to the systemic circulation and accounts for an increased 
elimination of  these substances into urine[13].

During pregnancy, owing to the immaturity of  the 
fetal hepatobiliary excretory function, the existence of  
an alternative mechanism for the detoxification of  chole-
philic compounds produced by the fetus is required. The 
placenta, in collaboration with the maternal liver, carries 
out this function, which is very important for maintaining 
low bile acid and bilirubin levels in the fetal compartment. 
Moreover, the placenta also protects the fetal compart-
ment, at least to a certain extent, from potentially toxic 
compounds coming from the maternal blood[14]. When 
the fetal-maternal homeostasis is altered, as happens dur-
ing intrahepatic cholestasis of  pregnancy, and these mol-
ecules accumulate in the conceptus, the consequences can be 
as serious as stillbirth and fetal death[15]. 

THE HEPATOBILIARY EXCRETORY 
FUNCTION DURING INTRAUTERINE LIFE
Fetal bile acid synthesis and maturation of  the enzyme 
equipment required for bile acid and bile pigment me-
tabolism precede the development of  an efficient biliary-
secretory system. Thus, although during intrauterine life 
bile acids are not required for digestive purposes, the fetal 
liver is able, from very early on during gestation, to syn-
thesize primary bile acids, mainly cholic acid and cheno-
deoxycholic acid from cholesterol. Indeed, these two 
molecules are the major components of  the human fetal 
bile acid pool[16,17]. The fetal bile acid pool is also charac-
terized by the presence of  molecular species with hydroxyl 
groups in positions that are unusual in bile acids found in 
adults. These are C-1, C-4 and C-6[18], which convert the 
molecule into a more hydrophilic one. This is believed to 
protect the fetal liver against the cytotoxic effect of  less 
polar bile acid species when detoxification pathways are 
poorly developed. Another important characteristic of  
the fetal bile acid pool is the existence of  bile acids with 
“flat” structures, accounted for by the presence of  ∆4 or 
∆5 insaturations or the alpha configuration of  a hydroxyl 
in C-5[18]. Although the fetal gut is germ-free, the bile acid 
pool contains small amounts of  secondary bile acids, such 
as deoxycholic acid and lithocholic acid, together with ter-
tiary bile acids, such as ursodeoxycholic acid. This is prob-
ably due to placental transfer of  these compounds from 
the maternal circulation[19].

Data collected from both rats[20] and humans[16,19,21] 
have revealed that serum bile acid concentrations are 
higher in fetuses than in their mothers, and that the 
composition of  the bile acid species in both compart-
ments is different. This has been explained in terms of  
the selective transplacental transfer of  these cholephilic 
compounds[19], together with a different degree of  matu-

ration of  the enzymatic machinery involved in bile acid 
metabolism[22]. The recently described role of  bile acids 
as signaling molecules with several endocrine and para-
crine functions[23] might account for the yet unknown 
physiological meaning of  the early synthesis and special 
composition of  the bile acid pool in fetuses.

From early gestation, the fetus also produces biliary 
pigments. The green pigment biliverdin, mainly the IXα 
isomer, is generated by cleavage of  protoporphyrin IX by 
heme oxygenase[24,25] and is reduced to the golden pigment 
bilirubin IXα by the enzyme biliverdin reductase. The 
high production of  bilirubin by the fetal liver, together 
with the still low activity in this organ of  glucuronosyl 
transferase, the enzyme that produces more polar glucuro-
nide conjugates to facilitate biliary excretion in adults, ac-
count for the higher concentrations of  the unconjugated 
pigment in fetal serum than in maternal serum[19,26].

For many years, these bile pigments were considered 
mere waste products from heme metabolism, and the bio-
logical advantage of  the conversion of  the water-soluble 
and non-toxic compound biliverdin into the poorly water-
soluble and neurotoxic compound bilirubin was not 
understood. Since the efficacy of  biliverdin and bilirubin 
glucuronide transfer across the placenta is very poor, 
it was suggested that the formation of  bilirubin from 
biliverdin may play a role in facilitating the elimination of  
heme-derived pigments in utero[27]. During the last decade, 
however, different studies have demonstrated the ability 
of  bilirubin to protect cells against free radical damage 
both in vitro and in vivo in several tissues[24,28,29]. A recent 
work carried out by our group[30] revealed that, up to a 
certain degree of  accumulation of  bilirubin (below toxic 
levels), this pigment may help to protect the placental-fetal 
unit from maternal cholestasis-induced oxidative stress. 
Together with its direct antioxidant properties, bilirubin is 
also able to induce the expression of  antioxidant systems. 
Thus, the current concept is that, when maintained in the 
physiological non-toxic range, bilirubin must be consid-
ered a beneficial compound[31].

In spite of  the immaturity of  fetal bile secretion, 
small amounts of  bile acids have been detected in the 
gallbladder bile collected from human fetuses obtained 
from abortions older than 12 wk of  age[32]. Regarding 
bile pigments, although the IXβ isomer of  bilirubin 
constitutes only a small fraction of  the total amount 
produced in the fetus[33], this more water-soluble isomer 
is the most abundant isomer found in fetal gallbladder 
bile and meconium[34,35]. The reason for this is two-fold: 
(1) bilirubin IXβ cannot easily cross the placenta; and (2) 
it can be excreted into bile without previous conjugation 
with glucuronic acid[36].

The fact that the expression of  export pumps, such 
as Mrp2 and Bsep, only appears in rat fetal liver in the 
last third of  gestation[37,38] is probably the cause of  the 
low efficiency of  this route of  excretion during preg-
nancy. As previously commented, the serum levels of  
bile acids and bile pigments are higher in the fetus than 
in the mother. It is not known how cholephilic organic 
anions generated by the fetal liver reach the sinusoidal 
blood, but because some OATPs may act as bi-direction-
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al transporters[39-41], they are good candidates for carrying 
out this function. Moreover, the expression of  several 
OATP isoforms has been detected in rat fetal liver[38,42]. 
However, the abundance of  these transporters in fetal 
liver is much lower than in adult liver, except for Oat-
p4a1[43] and its human orthologue OATP4A1[44]. Another 
possibility is that cholephilic compounds may exit the 
fetal liver via ATP-dependent pumps of  the ABC family 
located in the basolateral plasma membrane. Supporting 
this concept is the higher expression of  Mrp1 and Mrp3 
in fetal than in maternal rat liver[38,42].

The accumulation of  bile acids in fetal serum can 
have serious consequences, depending on the magnitude 
of  the hypercholanemia[45]; in the most severe cases there 
is an increased risk of  stillbirth and perinatal mortality[46], 
while in less severe conditions, maternal hypercholane-
mia can affect normal fetal development, the liver being 
one of  the tissues most affected[47]. In fact, in a labora-
tory animal model of  maternal hypercholanemia, the 
repercussions on fetal hepatobiliary function, although 
reversible, are maintained in young animals[20], and are 
characterized by a partial impairment in the ability of  
the liver to secrete organic anions, whereas the bile acid-
induced biliary secretion of  phospholipids, but not cho-
lesterol, is increased[20,48].

The fetal kidney is able to secrete small amounts of  
organic anions into the amniotic fluid[17]. This, together 
with the detection of  ABC proteins in the apical mem-
brane of  the yolk sac, has led to the suggestion that fetal 
membranes provide an additional route to protect the 
fetus against endogenous and xenobiotic compounds[49]. 
However, owing to the immaturity of  the fetal renal 
system, the importance of  this route in excreting chole-
philic compounds during gestation is low[50-52].

ROLE OF THE PLACENTA IN THE 
EXCRETION OF BILIARY COMPOUNDS
Based on the foregoing it is clear that in contrast to what 

happens in the adult where the hepatobiliary system with 
the collaboration of  the kidney are responsible for the 
biotransformation and elimination of  bile acids, biliary 
pigments, drugs and food components, the main route 
for the elimination of  these compounds during intrau-
terine life is their transfer to the mother across the pla-
centa. Later on, the biotransformation and elimination 
into feces and urine is carried out by the maternal liver 
and, to a lesser extent, by the maternal kidney, respec-
tively.

Excretion of bile acids
As mentioned above, there is a transplacental gradient 
for bile acids in the fetal-to-mother direction, except for 
secondary and tertiary bile acids, which are more abun-
dant in maternal serum[19]. Several experimental lines of  
evidence suggest that simple diffusion is not the main 
mechanism by which these organic anions cross the hu-
man placenta[53]. In fact, ATP-dependent mechanisms 
account for the vectorial transfer of  these compounds 
in the fetus-to-mother direction[54]. This has important 
implications, because in situations of  maternal hyper-
cholanemia there is only a moderate increase in bile acid 
concentrations in fetal serum[47].

The human placenta is of  the haemochorial type, i.e. 
only the endothelium of  chorionic vessels, the stroma of  
chorionic villi and the trophoblast layer separate the fetal 
and maternal blood. This means that in order to elimi-
nate fetal metabolic by-products across the placenta, they 
must cross these three components of  the placental bar-
rier. Once in the maternal blood, most foetal bile acids 
are eliminated in bile by the maternal liver and excreted 
into feces. Regarding this task, the maternal kidney only 
contributes slightly to the excretion of  sulphated and 
glucuronidated species[55].

For several years there has been functional evidence 
for a mediated transport of  cholephilic organic anions at 
both poles of  human and rat trophoblasts[56]. Functional 
studies carried out on isolated human trophoblast mem-
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Figure 1  The foetal liver-placenta-
maternal l iver excretory pathway. 
Schematic representation of transporters 
( N T C P,  s o d i u m - t a u r o c h o l a t e  c o -
transporting polypeptide; OATP: Organic 
anion-transporting polypeptide), ATP-
dependent pumps (BCRP: Breast cancer 
resistance protein; BSEP: Bile salt export 
pump; MDR: Multidrug resistance protein; 
MRP: Multidrug resistance-associated 
protein), and phase Ⅰ (ALDH: Aldehyde 
dehydrogenase; BVR: Biliverdin reductase; 
CYP: Cytochrome P450 enzyme; HO: Heme 
oxygenase) and Ⅱ (EH: Epoxide hydrolase; 
GST: Glutathione-S-transferase; NAT: 
N-acetyltransferase; ST: Sulfotransferase; 
UGT: UDP-glucuronosyl transferase) 
enzymes involved in excretion of biliary 
compounds during intrauterin life.
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brane vesicles have suggested the presence of  an anion 
exchanger transport system for the uptake of  bile acids 
across the basal membrane of  trophoblasts[53]. The trans-
activation of  this transport system with bicarbonate[57], 
the fact that substrate specificity is not restricted to bile 
acids[58] and the different affinities found for bile acid 
species depending on the number of  hydroxyl groups 
and amidation[59] have led to the speculation that in the 
fetal-side membrane of  the trophoblast there are pro-
teins, probably belonging to the OATP family, that could 
be responsible for the uptake of  organic anions by the 
trophoblast from fetal blood. 

With respect to the opposite pole of  the polarized 
epithelial trophoblastic cells, functional studies using 
plasma membrane vesicles have demonstrated that the 
transfer of  bile acids toward the maternal circulation 
is dependent on ATP hydrolysis, in both human[54] and 
rat[60] placentas. However, it has been suggested that 
in the absence of  ATP, bile acids could also cross this 
membrane by electrogenic-facilitated diffusion[61] and/or 
anion exchange[62]. The ATP-dependent system has high-
er substrate affinity, while the ATP-independent system 
has greater capacity[54]. These data suggest that in the 
apical membrane of  trophoblasts, ABC proteins may be 
involved in pumping out bile acids towards the mother 
and, that proteins of  the OATP family may participate in 
the ATP-independent component of  this transport.

Concerning human OATPs, the mRNA of  OAT-
P1A2, OATP1B1 and OATP1B3 was detected in human 
placenta using real-time quantitative PCR[63,64]. The ex-
pression levels of  OATP1A2 and OATP1B1 were shown 
to be very low at term, although they were detected at 
higher levels early during gestation[65]. Both OATP2B1 
and OATP4A1 were also highly expressed in human 
placenta[44,66]. However, the former is not believed to be 
involved in the transport of  bile acids[67], while the latter, 
which is considered to be a thyroid hormone carrier, is 
able to transport several bile acids[44]. 

Regarding the expression of  Oatps in rat placenta, 
several isoforms have been detected. Under normal physi-
ological circumstances, mRNA expression levels at term 
were low for Oatp1a1, Oatp1b4 and Oatp1b2, but high 
for Oatp4a1[42]. However, maternal cholestasis induces 
an up-regulation of  these transporters, which is further 
enhanced when pregnant rats are treated with UDCA[68]. 
In addition, Oatp2b1 is also present in rat placenta and its 
ability to transport taurocholate has been described[69].

Little is known about the sub-tissue and sub-cellular 
localization of  OATPs in the placenta. It has been sug-
gested that OATP2B1 would be localized in the basal plas-
ma membrane of  the trophoblast[66], whereas OATP4A1 
has been detected in the apical plasma membrane[44]. 

Regarding ABC proteins, several members of  this su-
perfamily are expressed in the placenta. The main system 
accounting for bile acid excretion into bile, BSEP, has 
been detected at very low levels in human and rat pla-
centas at term[42,64,70], but at higher levels during the first 
trimester of  pregnancy in humans[65]. 

Some members of  the MRP family with the ability to 
transport biliary compounds - MRP1, MPR2, MRP3 and 

MRP4 - have been identified in human placenta[64,71]. The 
mRNA expression levels of  MRP1 are higher in placenta 
than in liver; the abundance of  MRP2 in the placenta 
is low compared to liver, and the expression levels of  
MRP3 and MRP4 are similar and low in both tissues, re-
spectively[64].

The available data for the rat orthologues Mrp1, 
Mrp2, Mrp3 and Mrp4 suggest that they have similar 
expression patterns as those described for human iso-
forms[68]. Moreover, it has been observed that, at least in 
rats, there is a strong up-regulation of  these transporters 
during maternal cholestasis, which can contribute to the 
protection of  the fetus against the high concentrations 
of  bile acids and biliary pigments existing on the mater-
nal side of  the placenta under these circumstances[68].

The cellular localization of  some of  these proteins in 
the placenta is controversial. MRP1, MRP2 and MRP3 
have been detected by immunofluorescence and West-
ern blotting in the apical membrane of  the syncytiotro-
phoblast[71], and MRP1 is also expressed in fetal blood 
vessels[71], and in the basal membrane of  the syncytiotro-
phoblast[72].

Another important member of  the ABC family is the 
breast cancer resistance protein (BCRP, ABCG2), also 
known as ABC placental protein (ABCP) due to its high 
expression in this organ[73]. This protein is able to export 
a broad range of  substrates, which have been reported 
to include bile acids[7]. BCRP has been detected in the 
apical membrane of  trophoblasts and in fetal vessels[64,74]. 
Both the mRNA and protein levels of  Bcrp are higher 
in rodent placenta during mid-gestation but decrease at 
term[75].

Excretion of biliary pigments
The endothelium of  chorionic vessels and the syncy-
tiotrophoblast are exposed to high concentrations of  
hemoglobin through their direct contact with fetal and 
maternal blood, respectively. Hemoglobin and free heme 
can undergo auto-oxidation to produce superoxide (O2

-) 
and H2O2, which in turn promote the formation of  
other highly reactive and damaging radical species. These 
include lipid peroxides and the very reactive hydroxyl 
radical if  trace amounts of  free iron are available[76]. 
Heme can be degraded either enzymatically or chemi-
cally. Both mechanisms utilize molecular oxygen (O2) 
and require a reducing agent. In the reaction catalyzed 
by heme oxygenase (HO), NADPH is the source of  the 
reducing equivalent[77]. 

HO is a microsomal enzyme that induces the cleav-
age of  heme, a pro-oxidant, to produce the biliary pig-
ment biliverdin, iron and carbon monoxide (CO)[77]. 
There are three HO isoenzymes: HO-1 is a 32 kDa pro-
tein also known as heat-shock protein (HSP) 32, which 
is expressed at high levels in spleen and liver. HO-1 
can be induced by several stimuli including hypoxia and 
hyperoxia[78,79]. The induction of  HO-1 was coupled to 
the synthesis of  the iron-sequestering protein, ferritin[80]. 
Ferritin avidly binds iron and interrupts the redox cy-
cling of  iron, thereby preventing iron from being useful 
as a catalyst for oxidant stress[81]. Subsequent studies 
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have demonstrated that the induction of  HO-1 is also 
coupled to the synthesis of  iron-exporting proteins and 
hence a critical role of  HO-1 in maintaining iron home-
ostasis in vivo has been suggested[82]. 

HO-2 is a 36 kDa protein that is widely distributed 
in tissues throughout the body, where it is constitutively 
expressed and not readily inducible[83]. HO-2 appears 
to have an additional function as a “heme/oxygen cell 
sensor”, accounted for by the presence of  an oxygen-
sensing consensus region in the sequence of  the gene[84]. 

As compared with the other two isoforms, HO-3 has 
low catalytic activity[85]. The differences between the HO 
isoforms also include the control of  their expression, 
which is probably due to differences in the regulatory 
elements present in their promoter regions[77].

The expression of  HO in human placenta has been 
studied extensively. The contribution of  this enzyme 
to normal placental function is based on its sub-tissue 
localization, its enzymatic activity and the ability of  the 
HO-related by-products to exert physiological effects 
on placental and fetal tissues[86]. Using RT-PCR, the 
amounts of  mRNA encoding both the HO-1 and HO-2 
isoforms have been measured in placental tissue. These 
studies demonstrated an elevated expression of  HO-2 as 
compared to that of  HO-1[87-89]. Moreover, the placental 
expression of  both HO-1 and HO-2 increased as gesta-
tion advanced[88]. 

The cytoprotective properties of  HO are partly due 
to the products of  its activity, such as CO and biliary 
pigments. Notably, while the clinical toxicity of  CO is 
clearly recognized, much smaller quantities of  CO are re-
markably cytoprotective, antiapoptotic, vasorelaxant, and 
anti-inflammatory[90]. As has already been mentioned, 
biliary pigments, long regarded to have adverse conse-
quences in hyperbilirubinemic states, are now recognized 
as anti-inflammatory and antioxidant when present in 
low concentrations. 

Biliverdin-IXα and subsequently bilirubin-IXα are 
the major biliary pigments in humans. However, small 
amounts of  the other three isomers are also generated 
depending on the position of  the protoporphyrin IX 
that is cleaved. These include biliverdin-IXγ, biliverdin-
IXδ and biliverdin-IXβ, which is the most abundant of  
these three pigments in humans and other mammals[35]. 

Biliverdin, which is produced by HO-1 and HO-2 ac-
tivity, is further biotransformed to bilirubin by biliverdin 
reductase: mainly biliverdin-IXα reductase (BVRα). This 
enzyme also functions as a kinase and as a transcription 
factor in the MAPK signalling cascade[91]. BVRα is ex-
pressed in many tissues[92], including the placenta[27]. Bi-
lirubin is conjugated in the liver with glucuronic acid by 
bilirubin uridine diphosphate-glucuronosyl transferase-
1A1 (UGT1A1)[93] prior to being secreted into bile. Ow-
ing to the immaturity of  the fetal liver, no hepatobiliary 
elimination of  bilirubin occurs, at least at a physiologi-
cally relevant rate. 

Unconjugated bilirubin concentrations are higher in 
fetal than in maternal serum[19,26]. Several factors contrib-
ute to the existence of  this gradient. In the fetus, there 
is a very active heme catabolism, and hence a high rate 

of  bilirubin production, together with a very low ex-
pression of  bilirubin uridine diphosphate-glucuronosyl 
transferase in the liver[94]. Moreover, simple diffusion is 
not the major route for the placental transfer of  biliary 
pigments[56]. 

In the presence of  reactive oxygen species, bilirubin 
is oxidized to biliverdin and then converted back into bi-
lirubin by BVRα[95]. Thus the biliverdin-bilirubin tandem 
acts as an efficient scavenger of  reactive oxygen species 
and inhibits lipid oxidation both in vitro and in vivo[96,97]. 
Bilirubin is also an effective antioxidant of  peroxynitrite-
mediated protein oxidation and inhibits the production 
of  superoxide by blocking the activation of  NADPH 
oxidase[98,99]. Sub-toxic bilirubin concentrations have 
direct anti-oxidant properties and indirect beneficial ef-
fects against cholestasis-induced toxicity during pregnan-
cy, such as the enhanced expression of  several elements 
of  the anti-oxidant defence system, i.e. BVRα, SVCT1 
and SVCT2, as well as several nuclear receptors sensitive 
to activation by biliary compounds[100]. This function is 
mainly dependent on the expression of  BVRα, which 
has been found to be moderately up-regulated in the ma-
ternal liver-placenta-fetal liver trio in pregnant rats with 
surgically induced obstructive cholestasis during the last 
week of  gestation[100]. However, beneficial antioxidant 
properties are limited to low bilirubin concentrations 
because at higher levels this pigment can also cause irre-
versible damage or even death when it is accumulated in 
the nervous system[101]. 

It has been suggested that the reduction of  biliverdin 
to bilirubin could have the evolutionary advantage of  fa-
cilitating the placental excretion of  bile pigments by simple 
diffusion[102]. However, in vitro[103] and in vivo[104] studies have 
suggested that under normal physiological circumstances 
the major pathway for bilirubin placental transfer involves 
carrier-mediated transport across both poles of  the plas-
ma membrane of  the human trophoblast[103]. Moreover, 
at least in rodents, bilirubin does not undergo any major 
biotransformation during its residence in the placenta[104]. 
The existence of  vectorial properties for transplacental bi-
lirubin transfer are consistent with the moderate increases 
in serum bilirubin concentrations observed in the fetuses 
of  pregnant rats with marked hyperbilirubinemia due to 
common bile duct ligation[47]. The mechanism for the pla-
cental uptake of  fetal biliary pigments is not completely 
understood. Proteins of  the OATP family, in particular 
human OATP1B1 and OATP1B3, have been reported 
to confer the ability to take up unconjugated bilirubin 
when expressed in Xenopus laevis oocytes[63]. However, the 
mRNA of  OATP1B1 is almost absent in isolated human 
trophoblast cells, whereas OATP1B3 is clearly expressed 
in this epithelium, although at low levels[63]. 

Inside trophoblast cells, bilirubin is probably partly 
bound to lipids and proteins such as glutathione-S-
transferase[105]. Functional studies have suggested that 
bilirubin might be exported across the apical pole of  
the trophoblast via an ATP-dependent mechanism[103]. 
Whether one or several isoforms of  MRPs expressed in 
human[71] and rat[42,68] placenta are involved in this proc-
ess is not known. 
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MRP2, and probably MRP1, are also able to perform 
ATP-dependent transport of  bilirubin glucuronides[5]. 
However, owing to the low UDP-glucuronosyl trans-
ferase activity of  the fetal liver and the absence of  pla-
cental biotransformation of  unconjugated bilirubin dur-
ing transplacental transfer[106], MRP2 and MRP1 are not 
expected to play an important role in bilirubin transfer 
across the placenta. 

It has been shown that biliverdin itself  is poorly 
transferred-without prior reduction to bilirubin - across 
the guinea pig[26] and rat[106] placenta. However, biliverdin 
is able to inhibit bilirubin transfer in rat placenta when 
co-administered through the umbilical artery of  in situ 
perfused rat placentas[106]. The transport of  biliverdin 
from the trophoblast toward the mother is very poor 
and/or that placental biotransformation of  biliverdin 
into bilirubin is very efficient. Part of  the endogenous 
biliverdin produced by the fetus could be transformed 
into bilirubin by the fetal liver prior to being taken up by 
the placenta, because the expression of  BVRα in fetal 
liver is even higher than in rat placenta[100]. 

Among the transporters involved in fetal biliverdin 
uptake by rat placenta, several OATPs, in particular 
Oatp1a1, may be involved[106]. Once in the placenta, and 
prior to being transferred to the mother, biliverdin is 
extensively converted into bilirubin by BVRα, which is 
highly expressed in this organ[106]. The small amount of  
biliverdin that reaches the maternal blood is efficiently 
taken up, probably in part by Oatp1a1, Oatp1a4 and 
Oatp1b2, and biotransformed into bilirubin, which 
joins the fetal bilirubin transferred by the placenta, to be 
eliminated mainly through secretion into the bile by the 
maternal liver[106]. 

PROTECTION AGAINST DRUGS AND 
TOXINS
Fetal exposure to foreign molecules is partly dependent 
on the maternal capacity to eliminate such compounds 
and on the ability of  the xenobiotics to cross the placen-
ta. One important characteristic of  the placenta is that 
this organ undergoes continuous development. This im-
plies the existence of  changes that must be compatible 
with the maintenance of  a partially permeable epithelial 
barrier required to provide protection against exposure 
to potentially harmful substances present in the maternal 
blood[56,107,108]. Therefore, before any pharmacological in-
terventions, the different stages of  pregnancy should be 
considered, because these will determine both the per-
meability of  the placental barrier and the vulnerability of  
the conceptus to xenobiotics[109].

Although most drugs administered during pregnancy 
may cross the placenta to some extent, the magnitude of  
this depends on the size and structure of  the molecule. 
Diffusional transfer across the placenta for drugs with 
a molecular weight higher than 500 Da is usually very 
restricted[110]. Liposolubility and ionization are strong 
determinants for drug diffusion across the placenta. 
For instance, several penicillins, in spite of  being strong 

acids, can be efficiently transferred across the human 
placenta, probably by simple diffusion[111]. Among weak-
base drugs, acetaminophen, phenobarbital, phenytoin 
and clonidine are able to cross the placenta at a high rate, 
probably by simple diffusion[112]. Nucleoside analogue re-
verse transcriptase inhibitors (NRTIs) are molecules with 
low molecular weight and low protein binding, so most 
of  them are also able to cross the placenta by simple dif-
fusion and are concentrated in the amniotic fluid[113].

Carrier-mediated uptake
Although most transporters localized at the plasma 
membrane of  cells and forming part of  the placental 
barrier have specific physiological substrates, some of  
them also transport structurally similar compounds. In 
some cases, however, there are no known physiologi-
cal substrates and only certain xenobiotics have been 
reported to be transported by them. Moreover, some of  
the xenobiotics able to cross the placental barrier may 
have the ability to affect gene expression. This may result 
in a decrease in the expression of  placental transporters, 
which may affect their ability to accomplish their physi-
ological roles and eventually lead to an enhanced entry 
of  drugs into placental tissue[114].

The placenta expresses some isoforms of  monocar-
boxylate transporters (MCTs)[115]. The primary substrate 
of  MCTs in placenta is lactate, although pyruvate and 
b-hydroxybutyrate are also transported. Placental MCTs 
exert a significant influence on the transfer across the ma-
ternal-fetal interface of  drugs such as valproate, benzoate, 
salicylates, statins, nateglinide, and foscarnet[114,115].

Equilibrative nucleoside transporters (ENTs) are 
widely distributed and have broad substrate specificity. 
There is evidence of  the presence of  two ENT isoforms 
in the human placenta: ENT1 (SLC29A1) and ENT2 
(SLC29A2)[116,117]. Moreover, concentrative nucleoside 
transporters (CNTs), CNT2 (SLC28A2) and CNT3 
(SLC28A3) are also expressed in human placenta. Both 
ENT1 and ENT2 are able to transport a wide variety of  
therapeutic agents such as the anticancer drugs cytara-
bine and gemcitabine and the antiviral drugs zalcitabine 
(ddC) and zidovudine[117,118], and they therefore probably 
play a role in fetal exposure to these types of  drugs.

Regarding amino acids and monoamines, 17 mam-
malian transport systems for amino acids have been 
functionally identified in the human placenta[119,120]. The 
interaction of  xenobiotics with amino acid transport 
systems in the syncytiotrophoblast may result in a defi-
cit in the transport of  amino acids across the placenta. 
This seems to be the case for cocaine, which readily 
crosses the placental barrier and enters the fetal circula-
tion. This constitutes a potential cause of  adverse effects 
on the developing fetus in pregnant women consuming 
this drug[121]. Maternal smoking during pregnancy also 
decreases the ability of  the placenta to efficiently take 
up amino acids and hence affects the overall transfer of  
these important metabolites from the maternal to the 
fetal circulation[121].

Additionally, cocaine may also interact with other 
placental carriers, such as those involved in monoamine 
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transport[121]. This may affect serotonin and noradrena-
line transport across the apical (maternal-facing) plasma 
membrane of  the trophoblast[122]. Moreover, antide-
pressants (fluoxetine, paroxetine, sertraline, citalopram, 
and desipramine) as well as cocaine are inhibitors of  
monoamine transporters but are not transportable sub-
strates. In contrast, amphetamines are transportable 
substrates for monoamine transporters, thereby gaining 
access into the placenta and fetus[122,123].

Many xenobiotics are substrates of  OATP isofor-
ms[124], which are expressed in the human placenta[63,66]. 
These transporters have partially different and overlap-
ping substrate preferences for a wide range of  exog-
enous organic solutes, including gadodexate, ouabain, 
iloprost, Gd-B 20790, methotrexate, rifampicin, the 
endothelin receptor antagonist BQ-123, the thrombin 
inhibitor CRC-220, the opioid receptor agonists D-pen-
icillamine-(2,5)-enkephalin (DPDPE) and deltorphin Ⅱ, 
the angiotensin-converting enzyme inhibitors enalapril 
and temocaprilat, the HMG-CoA reductase inhibitor 
pravastatin, and the antihistamine fexofenadine, in addi-
tion to several cytostatic derivatives obtained by coupling 
bile acid moieties to chlorambucil or cisplatin[125-127]. 
Some OATP isoforms have also been shown to trans-
port bulky organic cations[124,128]. This suggests that 
isoforms detected in placenta could serve as a route for 
the transfer of  anions and relatively hydrophilic cationic 
organic drugs.

Organic cations can be transferred across the pla-
centa using a different route. At least one member of  
the subfamily of  carriers for organic cations (OCTs), 
namely OCT3, is very abundantly expressed in the hu-
man placenta[129,130]. Examples of  OCT3 substrates in-
clude cimetidine, MPP+, agmatine, tetraethylammonium, 
and prazosin[131]. The sodium-dependent carnitine trans-
porter (OCTN2) also belongs to the SLC22A family and 
is expressed in human placenta[132]. OCTN2 transports 
a variety of  organic cations including tetraethylammo-
nium, nicotine, MPP+, pyrilamine, cimetidine, clonidine, 
procainamide, quinidine, quinine, and verapamil[133] and 
certain β-lactam antibiotics of  zwitterionic nature[134].

Metabolic barrier
During the first trimester of  pregnancy, a broader variety 
of  xenobiotic-metabolizing enzymes are expressed in the 
placenta as compared to at term[135,136]. However, placental 
expression of  phaseⅠand Ⅱ metabolizing enzymes is 
moderate and probably more closely involved in the en-
docrine functions of  this organ than in the metabolism of  
xenobiotics[135]. The placenta expresses several cytochrome 
P450 enzymes (CYPs) at mRNA levels that increase 
throughout pregnancy. Although placental CYPs are ca-
pable of  metabolizing several xenobiotic compounds at 
term[135,136], only a few of  these enzymes are actually func-
tionally active[137,138]. Moreover, the abundance of  some of  
these CYPs has been shown to be affected by exposure 
to xenobiotics, as occurs in tobacco-smoking pregnant 
women[138,139]. Other phaseⅠmetabolizing enzymes such 
as aldehyde dehydrogenases (ALDHs) participate in the 
detoxification of  endogenous and exogenous compounds, 

including ethanol. The presence of  this activity in human 
placenta may be relevant in the toxicity of  a number of  
substances and for the gestational consequences of  alco-
hol consumption[140].

Among phase Ⅱ enzymes, glutathione-S-transferases, 
epoxide hydrolase, N-acetyltransferases, sulfotransferas-
es, and UDP-glucuronosyl transferases are expressed at 
moderate levels in the placenta and have been shown 
to be involved in the detoxification of  several xeno-
biotics[141]. In contrast, drug- and toxin-induced up-
regulation of  biotransforming enzymes can lead to an 
enhanced production of  reactive metabolites able to 
interact with DNA, resulting in the formation of  DNA 
adducts[142]. This may challenge the normal development 
of  the conceptus. Indeed the levels of  smoking-related ad-
ducts in the placenta have been inversely correlated with 
offspring birth weight[143]. 

Export systems
ATP-dependent efflux transporters expressed in the api-
cal membrane of  placental syncytiotrophoblasts are very 
important in limiting the magnitude of  drug penetration 
across the placental barrier, hence reducing fetal drug 
exposure. The superfamily of  ABC proteins includes a 
large number of  members with the ability to translocate 
a broad variety of  substrates across extra- and intra-
cellular membranes. These proteins are involved in many 
physiological processes, such as sterol homeostasis, im-
mune mechanisms, and the transport of  endogenous 
and xenobiotic substances such as sugars, amino acids, 
metal ions, peptides and proteins, and a large number 
of  hydrophobic compounds and metabolites. Several 
members of  three families of  ABC transporters, ABCB, 
ABCC and ABCG, known to be involved in multidrug 
resistance are major candidates for involvement in the 
placental barrier for drugs[144,145].

The first ABC transporter recognized to play a 
significant role in the placental barrier was MDR1[145]. 
MDR1 is abundantly expressed during pregnancy, and in 
particular in the syncytiotrophoblast[146]. The substrates 
of  MDR1 are usually organic molecules ranging in size 
from about 200 Da to almost 1900 Da. Most of  them 
are uncharged or weakly basic in nature, but some acidic 
compounds can also be transported. As a consequence, 
a large number of  drugs from several pharmacothera-
peutic groups are recognized as MDR1 substrates. Thus, 
placental MDR1 may contribute to the protection of  the 
foetus from a wide variety of  drugs, including antivirals 
and anticancer agents[147]. 

Other major efflux transporters involved in the pro-
tection of  the developing fetus from exposure to these 
drugs are members of  the MRP subfamily, involved in 
the transport of  conjugates of  several drugs and en-
dogenous compounds, have been found in the human 
placenta. MRP2 is expressed in the syncytiotrophoblast, 
whereas MRP1 and MRP3 are expressed both in blood 
vessel endothelia and in the syncytiotrophoblast[71], and 
MRP5 is expressed in the basal membrane of  syncytio-
trophoblasts and around fetal vessels[148], where aside 
from its potential role in drug disposition this transport-
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er may mediate the cellular efflux of  3′,5′-cyclic nucle-
otides, cAMP, and cGMP, thus playing an important role 
in paracrine signal transduction. 

BCRP expression in the placenta is possibly tightly 
controlled during pregnancy by pregnancy-related steroid 
hormones, growth factors, and cytokines[149]. BCRP trans-
ports a broad variety of  conjugated or non-conjugated 
organic anions, but from a physiological point of  view 
it is probably involved in the elimination of  endogenous 
sulphate conjugates[150]. Substantial variations in BCRP 
expression have been observed in human placenta[151], 
suggesting that considerable variability could exist in the 
ability of  the placenta to protect the fetus from exposure 
to drugs, xenobiotics and metabolites. Such variable ex-
pression and/or activity has been suggested to be due to 
genetic polymorphisms in the BCRP gene[151].

CONCLUSION
The immaturity of  the fetal hepatobiliary system pre-
cludes the use of  this mechanism of  defence against 
endogenous and xenobiotic compounds during intrau-
terine life. Consequently, this function is carried out by a 
complex and efficient combined action of  the placenta 
and the maternal liver. However, when one of  these two 
members of  the defensive tandem is impaired the overall 
function may be compromised, resulting in deleterious 
effects in the fetus. A better understanding of  the mo-
lecular mechanisms involved in hepatobiliary excretory 
function during intrauterine life is needed to recognize 
the danger the fetus may face, to develop novel pharma-
cological tools to manipulate the placental transfer of  
xenobiotics, and to generate new drugs with enhanced 
or reduced ability to cross the placental barrier.
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