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Abstract

AIM: To study morphologic and biomechanical changes of
oesophagus in diabetes rats.

METHODS: Diabetes was induced by a single injection of
streptozotocin (STZ). The type of diabetes mellitus
induced by parenteral STZ administration in rats was
insulin-dependent (type I). The samples were excised
and studied in vitro using a self-developed biomaterial
test machine.

RESULTS: The body mass was decreased after 4 d with STZ
treatment. The length of esophagus shortened after 4, 7,
14 d. The opening angle increased after 14 d. The shear,
longitudinal and circumferential stiffness were obviously
raised after 28 d of STZ treatment.

CONCLUSION: The changes of passive biomechanical
properties reflect intra-structural alteration of tissue to a
certain extent. This alteration will lead to some dysfunction
of movement. For example, tension of esophageal wall
will change due to some obstructive disease.
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INTRODUCTION
Esophagus is a distensible muscular tube that connects pharynx
and stomach. The function of the esophagus is to transport
food by peristaltic movement, which is the result of the
interaction of the tissue forces in the esophageal wall and the
hydrodynamic forces in the food bolus. Esophagus has been
studied by radiography[1], concurrent videofluoroscopy and
manometry[2,3], high-frequency ultrasonography[4-6], and
endoscopic sclerotherapy[7,8]. Motility disorders[9], bolus
transport[10,11], systemic sclerosis[12], pain[13], wall distensibility[8],
impedance planimetric characterization[14] and the effects of
epidermal growth factor[15] on esophagus have been reported

in many papers. Since the function of esophagus is mainly
mechanical, our work was focused on providing quantitative
measurement of passive biomechanical properties of esophagus.
Many investigations on biomechanics of esophagus are
available in the literature[16,17]. Gregersen et al. studied strain
distribution in the layered wall[18,19], relation between pressure and
cross-sectional area[20] and other biomechanical properties[21-23]

of esophagus. A more recent work used a novel ultrasound
technique to study the biomechanics of the human esophagus
in vivo[24]. Patel represented biomechanical and sensory
parameters of the human esophagus at four levels[25]. Researchers
have done a lot biomechanical studies on gastrointestinal tract
such as intestine[26,27], small intestine[28-32], ileum[33], duodenum[34]

and large intestine[35,36].
     Most previous studies have explained the relationship
between the diabetes and gastrointestinal tract function[37,38].
Some researches studied relationship between esophageal
dysfunction and neuropathy[39], oesophagus scintigraphy[40]

and the relationship between esophageal motility and transit[41]

in diabetic patients. More recently, Jorgensen reported tension-
strain relations and morphometry of rat small intestine in
experimental diabetes[42]. Zhao introduced the remodeling of
zero-stress state of small intestine in streptozotocin-induced
diabetic rats[43].
      This paper presents the effect of experimental diabetes on
the morphologic and biomechanical properties of the esophagus.
The result of this study indicated that experimental type I
diabetes caused significant changes in the passive biomechanical
properties in the rat esophagus.

MATERIALS AND METHODS
Materials
Diabetes was induced by a single injection of streptozotocin
(STZ). The form of diabetes mellitus induced by parenteral
STZ administration in rats is insulin-dependent (type I). Twenty-
seven rats were divided into 4 groups according to the survival
time after STZ treatment: 4 d (n = 7), 7 d (n = 7), 14 d (n = 7), 28 d
(n = 6). Another 8 rats were used as normal controls. The samples
were taken from the middle part of esophagus. Two rings were
cut from each end of the sample to measure the geometric
parameters of the no-load state and the opening angle at zero-
stress state. The remaining part was excised and studied in vitro
using a self-developed biomaterial test machine.

Methods
Using this machine, the esophagus was stepwise elongated
and inflated and continuously twisted in circumferential-
longitudinal direction. In the normal controls and 28 d of diabetes
group, after the intact esophagus was tested, the mucosa and
muscle layers were separated using microsurgery and tested in
the same loading procedure as mentioned above. The esophagus
was treated as a membrane when the stress and strain were
calculated, the longitudinal and circumferential stresses were
considered to be evenly distributed along the wall thickness
while the radial stress and other transverse shear stresses were
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ignored. The torque vs twist-angle relation was approximately
linear at a specified pressure and longitudinal stretch ratio.
Thus, the shear modulus can be computed by the torque, twist
angle and polar moment of inertial at this state. However, the
shear modulus varied greatly with the changing inflation
pressure and longitudinal stretch ratio.

Figure 1  Simplified diagram of biomaterial test machine.1:
Linear stage, 2: Torque transducer, 3: Organ bath, 4: Specimen,
5: Force transducer, 6: Motor for axial rotation, 7: Pressure
transducer, 8: Infusion channel, 9: Motor for linear stage, 10:
Rails for linear stage, 11: CCD camera, 12: Plastic rod.

RESULTS
Type I diabetes could induce the following effect on the
biomechanical and morphologic properties of esophagus: body
weight and morphology, shear modulus, circumferential and
longitudinal stress-strain relationship, stress-strain relationship
of muscle layer and mucosa layer.

Body weight and morphology
The body  mass kept a steady increase in the control rats. But
it went down after 4 d in the diabetes rat (Figure 2A). The length
of esophagus in vivo obviously declined after 4, 7, 14 d, but it
would return to normal level after 28 d (Figure 2B). The mass
per unit lengh in vitro changed little (Figure 2C). In the intact
esophagus, the opening angle increased after 14 d of STZ
treatment (Figure 2D).

Shear modulus
Changes of elastic shear moduli in the course of diabetes
development at longitudinal stretch ratio λzz = 1.5 and various

transmural pressure are shown in Figure 3A. Elastic shear
modulus would rise with increased transmural pressure. Especially
when transmural pressure was more than 0.25 kPa, the shear moduli
for various transmural pressure were remarkably different. And
diabetes has notably affected the shear modulus. This effect
showed that shear moduli are obviously increased after 28 d.
      Changes of elastic shear modulus in the course of diabetes
development at transmural pressure P = 1 kPa and various
longitudinal stretch ratio are pictured in Figure 3B. Elastic shear
modulus would rise with increased longitudinal stretch ratio.
Shear moduli were remarkably different at various longitudinal
stretch ratios. And diabetes has notably affected the shear
modulus. This effect demonstrated that shear moduli were
obviously increased after 28 d of STZ treatment.

Circumferential and longitudinal stress-strain relationship
Figure 4A shows the changes of circumferential stress-strain
relationship in the course of diabetes development at
longitudinal stretch ratio λzz = 1.5 and various transmural
pressure. All curves of experimental group inclined to left side
except that after 4 d. The curve after 28 d was on the most left side.
The circumferential stiffness increased after 7, 14, 28 d of diabetes.
     The changes of longitudinal stress-strain relationship in the
course of diabetes development at transmural pressure P = 0.25 kPa
and various longitudinal stretch ratio are pictured in Figure 4B.
The stress-strain curve after 28 d was obviously inclined to left
side. So the longitudinal stiffness notably increased after 28 d.

Stress-strain relationship of muscle layer and mucosa layer
The circumferential stress-strain relationship of muscle layer
and mucosa layer in the process of inflation at a longitudinal
stretch ratio of 1.5 is pictured in Figure 5A. And the experimental
diabetes was after 28 d. For muscle layer, there was no obvious
difference between the control and diabetes groups. For mucosa
layer, the stress-strain curve moved to left side in parallel. So
circumferential stiffness of mucosa layer with diabetes was
larger than that of control.
      Figure 5B shows longitudinal stress-strain relationship of
muscle layer and mucosa layer in the process of elongation at
a transmural pressure of 0.25 kPa. For muscle layer, there was
no obvious difference between control and diabetes groups.
There was no notable difference for mucosa layer either.

Figure 2  Changes of body mass and esophagus morphology and opening angle at zero-stress state in the process of diabetes
development. Dunner’s test result: significant difference vs normal control (aP<0.05). A: Change of body mass, B: Change of in vivo
length, C: Change of mass per unit length, D: Change of opening angle.
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DISCUSSION
A large number of studies have discovered that diabetes can
affect the movement of oesophagus. Transportation of oesophagus
may delay or slow down, and movement of esophagus can not
coordinate.
      This dysfunction of movement can be a result of muscle
and nerve cooperative failure[39-41,44-47]. Histologic research has
proved that diabetes can destroy vagus nerve[48]. Though there
are many papers on movement and function of oesophagus in
diabetes, few data on morphologic and passive biomechanical
properties are seen. The change of passive biomechanical
properties reflects intra-structural alteration of tissue to a certain
extent. This alteration will result in some dysfunction of movement,
for example, tension of esophageal wall will change due to
some obstructive disease[49,50], and therefore, it is necessary to
study biomechanics and morphology together.
      The body mass is decreased in rat with diabetes. This is

consistent with other studies[43,51]. Diabetes will lead to hyperplasia
of some organs. Hyperplasia of esophagus is less frequent
than that of small intestine[52,53]. Diabetes has caused rise of the
opening angle of small intestine[44], also it is seen for esophagus.
      In this paper, the shear, longitudinal and circumferential
stiffnesses were obviously elevated after 28 d with STZ treatment.
Jorrensen[42], Liu[54] and Zhao[51] have discovered that stiffness is
raised in diabetes in small intestine, blood vessel and arterial wall.
     We can draw a conclusion that the changes of passive
biomechanical properties reflect intra-structural alteration of
tissue to a certain extent. This alteration will lead to some
dysfunction of movement.
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Figure 3  Change of elastic shear modulus in the process of diabetes development. A: Change at λzz = 1.5 and various transmural
pressure, B: Change at P = 1 kPa and various longitudinal stretch ratio.

Figure 4  A: Change of circumferential stress-strain relation in the course of diabetes development at λzz = 1.5 and various
transmural pressure. B: Change of longitudinal stress-strain relation in the course of diabetes development at P = 0.25 kPa and
various longitudinal stretch ratio.

Figure 5  A: Circumferential stress-strain relation between muscle layer and mucosa layer in the process of inflation at a
longitudinal stretch ratio of 1.5. N: Normal control, D: 28 d of diabetes. B: Longitudinal stress-strain relation between muscle
layer and mucosa layer in the process of elongation at a transmural pressure of 0.25 kPa. N: Normal control, D: 28 d of diabetes.
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