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Abstract
AIM: To study the nuclear microsatellite instability (nMSI)
at BAT26 and mitochondral microsalellite instability (mtMSI)
in the occurrence and development of hepatocellular
carcinoma and the relationship between nMSI and mtMSI.

METHODS: nMSI was observed with PCR and mtMSI with
PCR-SSCP in 52 cases of hepatocellular carcinoma.

RESULTS: mtMSI was detected in 11 out of the 52 cases of
hepatocellular carcinoma (21.2%). Among the 11 cases of
hepatocellular carcinoma with mtMSI, 7 occured in one locus
and 4 in 2 loci. The frequency of mtMSI in the 52 cases of
hepatocellular carcinoma showed no correlation to sex, age,
infection of hepatitis B, liver cirrhosis as well as positive AFP
of the patients (P>0.05). In addition, nMSI was detected in
3 out of 52 cases of hepatocellular carcinoma (5.8%) and
there was no correlation of the incidence of mtMSI to that
of nMSI (P>0.05).

CONCLUSION: mtMSI may be involved in the coccurrence
and development of hepatocellular carcinoma and it is
independent of nMSI.
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INTRODUCTION
Mitochondria are the energy-transducting organelles of
eukaryotic cells in which fuels to drive cellular metabolism
are converted into cellular adenosine triphosphate (ATP)
through the process of oxidative phosphorylation. Mitochondria
are responsible for generating approximately 90% of ATP.
The mitochondrion is the only organelle in the cell, aside from
the nucleus, which contains its own genome and genetic
machinery[1]. Mitochondrial DNA (mtDNA) is a 16 569 base-
pair, double-stranded and closed circular molecule, and encodes
13 polypeptides. All of the polypeptides are components of
the respiratory chain/OXPHOS system, plus 24 genes, specifying
two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs),
which are  required to synthesize the 13 polypeptides.
Mitochondrial genome is far more vulnerable to oxidative

damage and undergoes a higher rate of mutation than nuclear
genome due to its lack of histone protection, limited repair
capacity, and close proximity to the electron transport chain,
which constantly generates superoxide radicals[2-5]. Accumulation
of mutations in mtDNA is approximately tenfold greater than
that in nuclear DNA[6].
      A high frequency of mtDNA mutations has been identified
in cancer of the colon[7], stomach[8], liver[9], pancreas[10], lung[11],
breast[12], kidney[13], prostate[14], ovary[15], Barrett’s esophagus[16]

and leukemia[17]. The majority of these somatic mutations were
homoplasmic, suggesting that mutant mtDNA becomes
dominant in tumor cells. In addition, microsatellite instability
has also been shown in mtDNA of colorectal and gastric
carcinomas [18,19].  Further studies demonstrated that
mononucleotide could repeat alteration, missense mutation,
and small deletion in NADH dehydrogenase genes and
alteration in a polycytidine (C)n tract in the D-loop region of
mtDNA could occur in colorectal carcinomas[20]. These results
imply that microsatellite instability in mtDNA (mtMSI) of
colorectal carcinoma may be resulted from certain deficiencies
in DNA repair. Therefore, it has been proposed that somatic
mutations and mtMSI play a role in tumorigenesis and
development of cancer[21].
       Hepatocellular carcinoma (HCC) is one of the most common
causes of cancer related mortality worldwide. The incidence
of HCC shows a considerable geographical variation with a
very high incidence in China. Epidemiological studies in
high-risk populations have identified chronic hepatitis B virus
(HBV) and chronic hepatitis C virus (HCV) infection as well
as dietary exposure to aflatoxin B1 (AFB1) as major factors
in the etiology of this disease[22]. It has been reported that the
amount of AFB1 combined to hepatocellular mtDNA is 3-4
fold larger than that combined to nuclear DNA(nDNA). This
combined product of aflatoxin cannot easily be expelled
and stays in mtDNA for a long period[22]. Since there is a
prolonged period between initial HBV and HCV infection
and emergence of HCC, multiple genetic events may occur
to promote the malignant transformation of hepatocytes.
Many chromosomal aberrations have been frequently
reported in HCCs including loss of heterozygosity (LOH) at
numerous loci[23,24]. The repeated destruction and regeneration
of liver tissue associated with chronic viral hepatitis would
lead to accumulation of mtDNA mutations[25]. Although MSI
in nuclear DNA (nDNA) of HCCs has been detected[26-32], little
attention has been paid to MSI in mtDNA(mtMSI) in this
tumor. In order to elucidate the role of mtMSI in the
hepatocarcinogenesis, we examined mtMSI and nMSI in a
set of 52 Chinese HCCs.

MATERIALS AND METHODS
Fresh tissues were collected from 52 HCC patients undergoing
hepatic resection in the Southwest Hospital, Third Military
Medical University, Chongqing, China from 1996 to 2002.
Neoplastic and nonneoplastic liver tissues were frozen in liquid
nitrogen immediately and kept at -70  until processing. The
52 patients consisted of 42 males and 10 females, their age
ranged from 22 to 71 years with an average of 48.8 years at
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diagnosis. Thirty-two patients were positive and 20 were
negative for hepatitis B surface antigen (HBsAg). Hepatitis C
virus antibody (Anti-HCV) was negative for all cases.
Hematoxylin and eosin-stained sections were prepared from
the same samples used for mtMSI and nMSI studies and the
diagnosis of HCC was confirmed by histology. None of the
patients included in the present series had a family history
suggestive of HNPCC and none had received previous
chemotherapy or radiation therapy. Necrotic tumors were
excluded from the study. The tumor samples contained
more than 70% malignant cells. Genomic DNA was isolated
from tumor and non-tumor liver tissues and blood, using
standard proteinase-K digestion and phenol-chloroform
extraction protocols.
     PCR-single strand conformation polymophism (PCR-
SSCP) was performed to amplify the microsatellite sequence
of mtDNA using published primers[18]. The primer consisted
of 2 D-loop regions and 5 coding regions (Table 1). The
reaction conditions and procedures were similar to those
reported by Hebano et al[18].
       Each PCR was digested by appropriate restriction enzymes
and electrophoresed at 300V at 22  for 2 hr on a 7.5%
polyacrylamide gel containing 50 mmol/L boric acid, 1 mmol/L
EDTA and 2.5% glycerol. After silver staining, PCR products
showing mobility shifts were directly sequenced using
appropriate internal primer and analyzed using 373A automated
DNA sequencer (Perkin Elmer Cetus). All analyses were
performed twice to rule out PCR artifact.
     MSI at BAT26 microsatellite locus was analyzed using
PCR method. The sequence of upper stream primer was 5’-
TGACTACTTTTGACTTCAGCC-3’ and that of down stream
primer was 5’-AACCATTCA ACA TTT TTA ACC C-3’. PCR
was performed in 20 µl of reaction mixture containing 10
mmol/L Tris-HCl (pH8.3), 50 mmol/L KCl, 1.5 mmol/L MgCl2,
200 µmol/L each deoxyncleotide triphoshate, 0.5 µmol/L of
each primer, 0.5 unit Ampli Taq polymerase (Perkin-Elmer
Cetus, NowalK), 100 ng genomic DNA and 0.5 µCi [33p] dATP.
The reaction was carried out in a thermal cycler at 94  for
1 min, at 55 -62  for 1 min, and at 72  for 1min, for 35
cycles with an initial denaturation step at 94  for 5 min and
final extension step at 72  for 10 min. The PCR products
were then separated on 5% polyacrylamide 7M urea denaturing
gel, and visulized by autoradiography. MSI was defined as
the presence of a band shift in the tumor DNA not present in
the corresponding normal DNA.
     χ2 test was used for statistical analysis and P<0.05 was
considered as statistically significant.

RESULTS
Fifty-two HCC samples were screened for mtMSI at seven
repeat sites using the PCR-RFLP method. Figure 1 exhibits a
representative mobility-shift band compared with normal
counterpart. mtMSI affecting at least one locus was observed
in 11 out of 52 cases (21.2%), in which 7 cases affected 1
locus and 4 cases affected 2 loci. mtMSI occurred in D-loop
in 10 cases (19.2%), in which 8 cases occurred in (C)n region
and 2 cases in (CA)n region. mtMSI occurred in the coding
region in 5 cases (9.6%), and concomitant mtMSI locus was
found in the D-loop in 4 out of the 5 cases. The frequency of
mtMSI in 52 cases of HCC showed no correlation to sex, age,
HBV infection, liver cirrhosis and positive AFP of the patients
(P>0.05, Table 2).

Figure 1  mtMSI in hepatocellular cancer. Arrows indicate con-
formational variants associated with mtMSI, N: normal DNA,
T: tumor DNA.

Table 2  Relationship between MSI and clinical parameters

   n mtMSI positive          mtMSI negative

Sex        Male   42                    10                                32

       Female   10                      1                                  9
Age        <30     1                      1                                  0

       30-60   41                      8                                33
       60   10                      2                                  8

HBsAg        Positive   38                      8                                30
       Negative   14                      3                                11

Cirrhosis      Positive   37                      9                                28
       Negative   15                      2                                13

AFP        Positive   26                      6                                20
       Negative   26                      5                                21

Table 1  Sequences of primer for PCR analysis

Repeat sequence mtDNA region Position Annealing ( ) Primer (5’-3’)

(C)n 270-425 D-loop 58 TCCACACAGACATCAATAACA

AAAGTGCATACCGCCAAAAG

(CA)n 467-556 D-loop 55 CCCATACTACTAATCTCATCAA

TTTGGTTGGTTCGGGGTATG

(C)6 3529-3617 ND1 55 CCGACCTTAGCTCTCACCAT

AATAGGAGGCCTAGGTTGAG

(A)7 4555-4644 ND2 55  CCTGAGTAGGCCTAGAAATAAA

ACTTGATGGCAGCTTCTGTG

(T)7 9431-9526 COIII 55 CCAAAAAGGCCTTCGATACG

GCTAGGCTGGAGTGGTAAAA

(C)6 and (A)8 12360-12465 ND5 55 CACCCTAACCCTGACTTCC

GGTGGATGCGACAATGGATT

(CCT)3 and (AGC)3 12940-13032 ND5 55 GCCCTTCTAAACGCTAATCC

TCAGGGGTGGAGACCTAATT

                 1                      2                      3
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      The mobility shift in tumor DNA compared to corresponding
normal DNA samples representing nMSI is shown in Figure
2. nMSI was found in 3 of 52 cases of HCC (5.8%). In the 3
cases of nMSI, only 1 case showed mtMSI simultaneously.
No correlation was found between nMSI and mtMSI in the 52
cases of HCC.

Figure 2  MSI at BAT-26 in hepatocellular cancer. Arrows indi-
cate conformational variants associated with MSI. N: normal
DNA, T: tumor DNA.

DISCUSSION
It has been discovered so far that mitochondria are the only
organelle to have their own genome and to undergo replication,
transcription and translation without dependence on nuclear
DNA. They are called as the “25th chromosome of human
body”. Many diseases have been found to be related to the
structural and functional defects of mitochondria and
consequently they are known as mitochondrial diseases[33].
mtMSI has been found to be a very common phenomenon
accompanying gastric carcinoma, colorectal carcinoma and
breast carcinoma and may play an important role in the
carcinogenesis of these malignant diseases[12,18-21]. To study the
role of mtMSI in liver carcinogenesis, we analyzed 52 cases
of HCC using seven microsatellite markers known to be altered
in gastrointestinal carcinomas. mtMSI in at least one locus was
found in 11 of the 52 cases (21.2%) of HCC, implying that
mtMSI might occur not only in gastrointestinal cancers but
also in hepatic cancers, and it may play an important role in
the occurrence of a certain number of HCC.
      Unlike other types of cancer, HCC has been found usually
preceded by chronic inflammation due to viral infection[34-37].
Matsuyama et al[11] reported that the frequency of mtDNA
mutations was markedly increased in both noncancerous and
cancerous liver specimens compared with control liver tissue.
Accumulation of mtDNA mutations in HCC tissue could reflect
its malignant potency. The frequency of mtDNA mutations
was significant higher in HBV infection-related HCC than
in other tumors, which implies that repeated destruction and
regeneration of the liver tissue associated with chronic viral
hepatitis would lead to accumulation of mtDNA mutations. In
the current study, we did not find any obvious relationship
between mtMSI and HBsAg, suggesting that HBV infection
might play a limited role in the mtMSI pathway of HCC. In
addition, we did not find an obvious relationship between
mtMSI and sex, age, cirrhosis as well as positive AFP.
      MtDNA contains several mono- and dinucleotide repeats.
The most frequently used mtDNA in the test of mtMSI is a
(CA)n microsatellite starting at 514 bp position of the D-loop[38]

and a homopolymeric C tract extending from 16 184 to
16 193 bp of the D-loop, which could be interrupted by a T at
16 189 bp position[39]. Alonso et al[40] studied mutations in the
mtDNA D-loop region and found three mutations in eight
gastric tumors. Richard et al[41] studied 40 pairs of normal/
cancer breast specimens for the presence of mtMSI and found
a 216-fold  increase in the D-loop point mutations of cancer
cells with regard to the spontaneous rate detected in female

gametes. Maximo et al[19] utilized PCR-SSCP to examine
mtDNA large deletions and mutations in 32 gastric carcinomas
and found that most of the mutations corresponded to
insertions/deletions in the D-loop region or transitions in ND1,
ND5, and COXI. Earlier studies revealed the presence of
mutations in the D-loop of both non-malignant and malignant
gastric tumors[42,43]. Analysis of HCCs indicated that mutations
in the D-loop were a frequent event and could be used as a
molecular tool for the determination of clonality[9,44]. Two
recent studies reported the frequency of D-loop mutations in
esophageal cancer. One group focused on adenocarcinomas
of Barrett’s esophagus. In that study, D-loop alterations were
identified in 40% of the patients examined[16]. The other study
showed that D-loop mutations were much less frequent in
esophageal cancer, occurring in only 5% of the specimens
analyzed[45]. Clearly, analysis of mtDNA from more esophageal
tumor samples is needed in order to determine the frequency of
D-loop mutations and their relevance in this type of cancer. In
our series of 52 cases of HCC, mtMSI was found in 11 (21.2%).
MtMSI occurred in the D-loop region of 10 cases and in the
coding region of 5 cases. Among the 10 cases, mtMSI occurred
in (C)n region of 8 cases and in (CA)n region of 2 cases, So
(C)n region of D-loop is the site at which mtMSI occurs more
frequently than in other regions. Our findings are consistent to
those reported by Habano et al. and Maximo et al[18-20].
     Microsatellite markers might provide evidences of faulty
DNA mismatch repair (MMR) via the detection of MSI[46-49].
The choice of microsatellite markers may impact on the MSI
detection rate. BAT-26, a repeat of 26 deoxyadenosine
localized in intron 5 of hMSH2 gene, has been reported as a
reliable indicator of replication error phenotype in colorectal
cancers, enabling analysis of tumour DNA in the absence of
paired normal DNA[50]. The frequency of nMSI in hepatic
cancer varied in different reports[51,52]. Karachristos et al[52]

studied 27 cases of HCC and found none of the tumors examined
showed alterations in BAT-26. In our series of 52 cases, 3
cases were found to have nMSI at BAT26 (5.8%).Our finding
indicates that nMSI at BAT26 is not common in cases of HCC
and support the hypothesis that HCC is a “low” MSI tumor in
China. Carcinogenesis of HCC may undergo a different
molecular route other than that of nMSI.
      Mutation of mtDNA may result in the occurrence of tumor
but its mechanism remains unknown. Further studies are
required to determine if mtDNA mutations are correlated with
malignant transformation. Recently, scholars have shifted their
attention to the interactions between mtDNA and nDNA.
Fragments of mtDNA are sometimes found in nuclear genes,
and the insertion of mtDNA has been suggested as a mechanism
by which oncogenes are activated[53]. For example, sequences
representing subunits ND4 (Complex I) and subunits
cytochrome C oxidases I, II and III (complex IV) have been
found in the nuclear DNA of various tissues[53]. In yeast cells,
migration of DNA from the mitochondria to the nucleus
occurred 100 000 times more frequently than in the opposite
direction[54]. In our series of 52 cases of HCC, nMSI was
detected in 5.8% and coexistance of nMSI and mtMSI in only
1 out of 3 cases. We failed to confirm there was a correlation
of mtMSI to nMSI in our cases of HCC. This finding is in
agreement with the recently published data on gastrointestinal
cancer[55].
     In conclusion, mtMSI could play an important role at
multiple stages in the process of carcinogenesis. The
mitochondrial production of ROS might be involved in the
initiation and promotion of carcinogenesis, in part due to ROS-
triggered mutagenesis of both mtDNA and nDNA[56]. Also,
other evidences exists for a mechanism of nDNA mutagenesis
involving the integration of mtDNA fragments. Many primary
tumors revealed a high frequency of mtDNA mutations and
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the majority of these somatic mutations were homoplasmic in
nature, indicating that the mutant mtDNA has become
dominant in tumor cells. The mutated mtDNA was readily
detectable in paired bodily fluids from each type of cancer
and was 19 to 220 times as abundant as mutated nuclear p53
DNA. By virtue of their clonal nature and high copy number,
mitochondrial mutations might provide a powerful molecular
marker for noninvasive detection of cancer[57]. Important areas
for future research should include intergenomic signaling
pathways in carcinogenesis and the potential role of
mitochondria and mtDNA mutations in immunological
surveillance of tumor cells. Finally, the role of mitochondria
in stimulating apoptosis could be exploited in cancer
therapeutics[58].
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