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Abstract
AIM: The study investigated if EGF signaling inhibitors, EGF
antibody and tyrphostin 51 (a tyrosine kinase inhibitor),
mediated the action of EGF on apoptosis and the expression
of EGF receptors and p21 (a cyclin-dependent kinase
inhibitor) of human colorectal cancer cells.

METHODS: Human colorectal adenocarcinoma cells
(SW480) were incubated with 0.6 mL/L dimethyl sulfoxide
(DMSO, the control group), 225 ng/mL (37.5 nmol/L) EGF
in 0.6 mL/L DMSO, 225 ng/mL EGF+2.5 µg/mL (17 nmol/L)
EGF antibody in 0.6 mL/L DMSO, or 225 ng/mL EGF+215
ng/mL (0.8 µmol/L) tyrphostin 51 in 0.6 mL/L DMSO.

RESULTS: After 48 h incubation, the levels of EGF in medium
significantly increased (P<0.05) in the EGF-treated groups.
The numbers of apoptotic cells were significantly fewer
(P<0.05) in the EGF + EGF antibody and EGF + tyrphostin
51 groups than those in the control and EGF groups after
12 h treatments. The expression of phosphorylated EGF
receptors in the EGF, EGF + EGF antibody, and EGF +
tyrphostin 51 groups was 176.8%, 62.4%, and 138.1% of
the control group, respectively. The expression of p21
protein in the EGF, EGF + EGF antibody, and EGF + tyrphostin
51 groups was 115.7%, 4.8%, and 61.5% of the control
group, respectively.

CONCLUSION: The data suggest that EGF antibody and
tyrphostin 51 can inhibit the action of EGF on apoptosis in
human colorectal cancer cells through down-regulation of
EGF receptor and p21 expression.
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INTRODUCTION
Colorectal cancer is one of the most common human
malignancies. The genetic alterations in colorectal cancer may
drive the transition of normal colorectal epithelium to
adenomas and adenocarcinomas through increased
proliferation and decreased cell death or apoptosis. Several

peptide growth factors have been suggested as autocrine growth
regulators in cancer cell lines[1]. Anomalous expression of
growth factors and/or growth factor receptors, as well as
abnormal response to growth factors and/or their receptors may
be involved in cellular transformation. Among these growth
factors, epidermal growth factor (EGF) is known to play a
major role in regulation of cell proliferation. Epidermal growth
factor has been shown to be a potent mitogen both in vitro and
in vivo studies to stimulate DNA, RNA, and protein synthesis
in the digestive tract[2,3].
     Epidermal growth factor exerts its mitotic signal via a
tyrosine kinase-type cell surface receptor, the EGF receptor
(EGF-R). It has been reported that EGF-R is overexpressed in
a number of human tumors[4-6]. The EGF-R level in patients
with primary colorectal carcinoma ranged between 4 and 79
fmol/mg membrane protein (Kd=0.1-0.4×10-9 M)[7]. Messa
et al.[6] found that the expression of both EGF and EGF-R
significantly increased in neoplastic tissues from patients with
colorectal adenocarcinoma compared with that in their adjacent
normal mucosa. The overexpression of EGF-R in human
epidermoid carcinoma (A431) cells could allow selective
growth advantage for tumor cells in the presence of normal or
decreased ligand availability, and excessive ligand binding
caused down-regulation of growth signaling and furthermore
inhibition of growth and induction of apoptosis[4].
    Epidermal growth factor affects cell proliferation by
modulating the activity of cyclin-dependent kinase complex,
a cell cycle regulator[8]. The cyclin-dependent kinase inhibitor
p21 (also called WAF1, CAP20, Cip1, and Sdi1) may cause
cell cycle arrest by both p53-dependent and -independent
mechanisms[9]. EGF has shown to induce p21 expression in
different human cancer cell lines[10-16].
      Blockade of EGF signaling pathway by several methods
affects the proliferation and/or apoptosis in a variety of tumor
cell lines[4,17-19]. The EGF/EGF-R inhibitors may have potential
for the therapy of tumors that are dependent on EGF-R
signaling pathway for proliferation or survival. The purposes
of this study were to investigate if EGF signaling inhibitors,
EGF antibody and tyrphostin 51 (a tyrosine kinase inhibitor),
mediated the action of EGF on apoptosis of human epithelial-
type colorectal adenocarcinoma cells with EGF-R expression,
and if these inhibitors affected the expression of EGF-R and
p21, which are involved in EGF signaling pathway and cell
cycle regulation, respectively.

MATERIALS AND METHODS

Cell line and treatments
Human colorectal adenocarcinoma cell line (SW480; BCRC
No. 60249) was purchased from Bioresources Collection and
Research Center (BCRC) at Food Industry Research and
Development Institute (Hsinchu, Taiwan). Cells were grown
in 900 mL/L Leibovitz’s L-15 medium with 100 mL/L fetal
bovine serum at 37  without CO2. When cells reached 90%
confluency, cells were switched to serum-free medium for
24 h to deplete growth factors in serum. Cells were then
incubated with 0.6 mL/L dimethyl sulfoxide (DMSO, the



control group), 225 ng/mL (37.5 nmol/L, a physiological
concentration) EGF in 0.6 mL/L DMSO, 225 ng/mL EGF +
2.5 µg/mL (17 nmol/L) EGF antibody (Research and Diagnostics
Systems, Inc., Minneapolis, MN) in 0.6 mL/L DMSO, or
225 ng/mL EGF + 215 ng/mL (0.8 µmol/L) tyrphostin 51 (a
tyrosine kinase blocker to inhibit the EGF receptor, Sigma-
Aldrich Co., St. Louis, MO) in 0.6 mL/L DMSO serum-free
medium for 12 or 48 h. Cells and conditioned medium were
collected. Protein contents in cells and conditioned medium
were measured by the modified method of Lowry et al.[20]

using a Bio-Rad DC protein kit (Bio-Rad Laboratories,
Hercules, CA).

Measurement of EGF in medium
The secretion of EGF into conditioned medium was measured
by a commercial EGF immunoassay kit (QuantikineTM, Research
and Diagnostics Systems, Inc.)[21]. Serum-free conditioned
medium (200 µL) was incubated with murine monoclonal EGF
antibody coated in a 96-well plate for 2 h at room temperature,
washed 3 times with wash buffer, and then incubated with
200 µL polyclonal EGF antibody conjugated to horseradish
peroxidase for 1 h. After several washes, samples were incubated
with 200 µL substrate (tetramethylbenzidine:H2O2=1:1) for
20 min. The reaction was terminated by 50 µL of 1 mol/L
sulfuric acid. The levels of EGF were determined at 450 nm
and corrected at 540 nm using an ELISA reader (Multiskan
RC, Thermo Labsystems, Helsinki, Finland).

Detection of apoptosis
Apoptosis was analyzed by fluorescence microscopy using an
annexin V-fluorescein isothiocyanate (FITC) apoptosis
detection kit (Oncogene Research Products, Boston, MA). The
externalization of phosphatidylserine was as a marker of early-
stage apoptosis using annexin V-FITC binding[22]. Cells (5×105)
were suspended in 0.5 mL binding buffer (10 mmol/L Hepes,
pH 7.4/150 mmol/L NaCl/2.5 mmol/L CaCl2/1 mmol/L MgCl2/
40 mg/L bovine serum albumin (BSA)), and incubated with
1.25 µL of 200 µg/mL annexin V-FITC in 50 mmol/L Tris
(pH 7.4), 0.1 mol/L NaCl, 10 mg/L BSA, and 0.2 mg/L NaN3

solution for 15 min in the dark. Cell suspension was centrifuged
at 1 000 g for 5 min, resuspended in 0.5 mL binding buffer,
and mixed with 10 µL of 30 µg/mL propidium iodide in PBS.
Samples were placed on ice in the dark and analyzed by
fluorescence microscopy immediately.

Measurement of EGF receptor and p21 proteins
Cell suspension (30 µg total protein) pooled from 7 independent
experiments (n=7) was mixed with an equal volume of 2×SDS-
PAGE sample buffer (0.125 mol/L Tris-HCl, pH 6.8/40 mg/L
SDS/200 mL/L glycerol/100 mL/L 2-mercaptoethanol)[23],
denatured at 100  for 3 min, and applied to SDS-PAGE (Bio-
Rad Mini-PROTEAN 3 Cell, Bio-Rad Laboratories). Proteins
were separated by 7.5% or 10% resolving gel for EGF receptor
or p21, respectively, with 4% stacking gel in the running buffer
(25 mmol/L Tris, pH 8.3/192 mmol/L glycine/1 mg/L SDS) at
100 V for 1 h. After separation on the gel, proteins were then
transferred onto the nitrocellulose membrane (0.45 µm) using
a semi-dry transfer unit (Hoefer TE 70, Amersham Biosciences
Ltd. Taiwan Branch, Taipei, Taiwan) in Towbin buffer (25
mmol/L Tris/192 mmol/L glycine/1.3 mmol/L SDS/100 mL/L
methanol)[24] at 200 mA for 1 h. The membrane was washed
briefly with PBS, and incubated with blocking buffer (50 mg/L
skim milk/1 mL/L Tween-20 in PBS) for 1 h. After blocking,
the membrane was incubated with 1 µg/mL mouse anti-human
phosphorylated EGF receptor (eps15, BD Transduction
Laboratories, San Diego, CA), p21 (p21Cip1/WAF1, BD
Transduction Laboratories), or α-tubulin (TU-02, Santa Cruz

Biotechnology, Inc., Santa Cruz, CA) antibody at room
temperature for 1 h. The membrane was washed 3 times with
wash buffer (1 mL/L Tween-20 in PBS), and incubated with
10 µg/mL goat anti-mouse IgG-horseradish peroxide conjugate
(Leinco Technologies, Inc., St. Louis, MO,) for 1 h. The blot
was washed again 3 times with wash buffer, incubated with
ECLTM Western blotting detection reagents (Amersham
Biosciences Ltd. Taiwan Branch) for 1 min, and exposed to
an X-ray film for 15 s. The bands were quantitated by an image
analysis system (Gel analysis system, EverGene Biotechnology,
Taipei, Taiwan) and Phoretix 1D Lite software (Phoretix
International Ltd., Newcastle upon Tyne, UK).

Statistical analysis
Data are expressed as mean±SD. Data were analyzed by one-
way ANOVA to determine the treatment effect using SAS
(version 6.12, SAS Institute Inc., Cary, NC). Fisher‘s least
significant difference test was used to make post-hoc
comparisons if the main effect was demonstrated. Differences
were considered significant at P<0.05.

RESULTS
The secretion of EGF into medium was significantly higher
(P<0.05) in the EGF (8.35±0.82 ng/mg protein, n=7), EGF +
EGF antibody (7.44±1.17 ng/mg protein, n=7), and EGF +
tyrphostin 51 (8.28±0.84 ng/mg protein, n=7) groups than that
in the control group (0.49±0.05 ng/mg protein, n=7) (Figure 1).
However, the level of EGF did not significantly differ among
the EGF-treated groups. Annexin V-FITC apoptosis detection
assay showed that FITC-positive cells were significantly more
often found (P<0.05) in the control (5.0±1.8/field) (Figure 2A)
and EGF (6.0±1.3/field) (Figure 2B) groups, with a range of
2 to 8 positive cells per field (×100), compared with those in
the EGF + EGF antibody (2.1±1.3/field) (Figure 2C) and EGF
+ tyrphostin 51 (1.9±1.3/field) (Figure 2D) groups, with a range
of 0 to 4 cells per field (×100) after 12 h treatments. However,
the numbers of apoptotic cells did not significantly differ
between the control and EGF groups and between the EGF +
EGF antibody and EGF + tyrphostin 51 groups. The expression
of phosphorylated EGF-R in the EGF, EGF + EGF antibody,
and EGF + tyrphostin 51 groups was 176.8%, 62.4%, and
138.1% of the control group, respectively (Figure 3). The
expression of p21 protein in the EGF, EGF + EGF antibody,
and EGF + tyrphostin 51 groups was 115.7%, 4.8%, and 61.5%
of the control group, respectively (Figure 4).

Figure 1  Levels of EGF in medium after incubation of SW480
cells with 0.06% dimethyl sulfoxide (DMSO, the control group),
225 ng/mL (37.5 nmol/L) EGF in 0.6 mL/L DMSO, 225 ng/mL
EGF + 2.5 µg/mL (17 nmol/L) EGF antibody in 0.6 mL/L
DMSO, or 225 ng/mL EGF + 215 ng/mL (0.8 µmol/L)
tyrphostin 51 in 0.6 mL/L DMSO serum-free medium for 48 h.
Data are expressed as mean±SD (n=7). aP<0.05 significantly
different between the control and EGF-treated groups.

EG
F 

(n
g/

m
g 

pr
ot

ei
n)

10

8

6

4

2

0

EGF

EGF+tyrphostin 51

Control

EGF+EGF antibody

a a a

Chao JCJ et al. EGF signaling inhibitors and apoptosis 541



Figure 2  Apoptotic cells stained by annexin V-FITC binding (green) after incubation of SW480 cells with 0.6 mL/L dimethyl
sulfoxide (DMSO, the control group) (A), 225 ng/mL (37.5 nmol/L) EGF in 0.6 mL/L DMSO (B), 225 ng/mL EGF + 2.5 µg/mL
(17 nmol/L) EGF antibody in 0.6 mL/L DMSO (C), or 225 ng/mL EGF + 215 ng/mL (0.8 µmol/L) tyrphostin 51 in 0.6 mL/L
DMSO serum-free medium (D) for 12 h. Micrograph magnified by ×100 is the representative of seven independent experiments
(n=7).

Figure 3  Expression of phosphorylated EGF receptor (EGF-R) with the molecular weight of 145 kDa visualized by Western
blotting (A) and quantitated by an image analysis system (B) after incubation of SW480 cells with 0.6 mL/L dimethyl sulfoxide
(DMSO, the control group), 225 ng/mL (37.5 nmol/L) EGF in 0.6 mL/L DMSO, 225 ng/mL EGF + 2.5 µg/mL (17 nmol/L) EGF
antibody in 0.6 mL/L DMSO, or 225 ng/mL EGF + 215 ng/mL (0.8 µmol/L) tyrphostin 51 in 0.6 mL/L DMSO serum-free
medium for 48 h. Samples were pooled from 7 independent experiments (n=7). Density was calibrated by an internal control,
α-tubulin (55 kDa).

Figure 4  Expression of p21 protein with the molecular weight of 21 kDa visualized by Western blotting (A) and quantitated by an
image analysis system (B) after incubation of SW480 cells with 0.6 mL/L dimethyl sulfoxide (DMSO, the control group), 225 ng/mL
(37.5 nmol/L) EGF in 0.6 mL/L DMSO, 225 ng/mL EGF + 2.5 µg/mL (17 nmol/L) EGF antibody in 0.6 mL/L DMSO, or 225 ng/mL
EGF + 215 ng/mL (0.8 µmol/L) tyrphostin 51 in 0.6 mL/L DMSO serum-free medium for 48 h. Samples were pooled from 7
independent experiments (n=7). Density was calibrated by an internal control, α-tubulin (55 kDa).
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DISCUSSION
Our data showed that EGF treatment at a dose of 225 ng/mL
(37.5 nmol/L) did not further stimulate apoptosis compared
with the control group, but significantly increased to nearly 2-
fold the expression of phosphorylated EGF-R. Gulli et al.[4]

demonstrated that exogenous EGF (60 ng/mL; 10 nmol/L)
inhibited cell proliferation and induced morphological features
of apoptosis in A431 cells with overexpressed EGF-R by
induction of a 15-fold increase in EGF-R autophosphorylation,
which down-regulated EGF signal transduction. At a lower
concentration of EGF (0.06 ng/mL, 10 pmol/L), EGF-R
autophosphorylation and cell proliferation increased to 2-fold
compared with those in untreated cells[4]. Previous studies
showed the expression of EGF-R on the cell surface affected
the action of EGF[15,25]. A431 cells grown as three-dimensional
spheroids showed growth stimulation in response to nanomolar
concentrations of EGF, while monolayer cultures showed
growth inhibition[25]. The expression of EGF-R on monolayers
of A431 cells was 20-fold greater than that on three-dimensional
spheroids. Autophosphorylation of the EGF-R also increased
in response to EGF in monolayer cultures of A431 cells.
However, EGF prevented apoptosis of human bladder
carcinoma 647V cells cultured as three-dimensional spheroids
with lower expression of EGF-R[15]. The data indicated that
EGF could play a dual role in modulation of apoptosis
depending on the level of EGF-R. The overexpression of EGF-
R down-regulated growth-stimulating action of EGF when cells
were grown in monolayer cultures.
     Apoptosis occurred prior to and in response to EGF
treatment in SW480 cells. Previous studies found that cell lines,
such as A431[4] and human mammary adenocarcinoma MDA-
MB-468[26] cells, which overexpress the EGF-R underwent
apoptosis in response to EGF treatment. Additionally, apoptosis
was greatly enhanced when cells were growth-arrested prior
to EGF treatment[26]. Our study showed that apoptosis was also
induced in the control group, probably because cells were
arrested after 24 h incubation in serum-free medium. However,
apoptosis was induced to occur but not further enhanced by
EGF compared with that without EGF (the control group) within
12 h. EGF-induced apoptosis may involve activation of activator
protein-1[26], inhibition of nuclear transcriptional factor-kappaB
(NF-κB)[27] and protein kinase B (PKB/Akt) activation[28], and
cell detachment (a decline in cell adhesion)[29,30].
      Compared with the EGF group, apoptosis was inhibited
after EGF signal transduction was blocked by EGF antibody
or tyrosine kinase inhibitor. The expression of phosphorylated
EGF-R and p21 decreased in the groups treated with EGF
signaling inhibitors, especially in the EGF + EGF antibody
group. Our data indicated that the inhibition of EGF signal
transduction by EGF antibody or by EGF-R inhibitor decreased
apoptosis of human colorectal adenocarcinoma cells, at least
in part, through regulation of EGF-R and p21. SW480 cells
produced the most transforming growth factor (TGF)β-like
rather than TGFα-like activity and had no measurable TGFβ
membrane receptors, but EGF receptors were detectable[31].
Additionally, the concentration of endogenous EGF detectable
in conditioned medium of the control group was much lower
than that of exogenous EGF in the EGF-treated groups.
Therefore, apoptosis of SW480 cells was primarily mediated
by exogenous EGF and EGF signaling inhibitors through EGF-
R signaling pathway in a paracrine rather than an autocrine
manner. Previous studies showed that inhibition of EGF
signal transduction could reverse the action of EGF on cell
proliferation[4,17-19]. Anti-sense EGF-R RNA down-regulated
the proliferation[17] and invasive properties[18] of human colon
tumor cells. When A431 cells were simultaneously treated with
EGF (60 ng/mL, 10 nmol/L) and EGF antibody (15 µg/mL), a

significant reduction in EGF-R autophosphorylation reversed
the action of EGF on cell proliferation[4]. Tyrphostin, the most
potent EGF-R kinase inhibitor, inhibited EGF-dependent
proliferation of A431/clone 15 cells, but with little or no effect
on EGF-independent cell growth[32]. The phosphorylation of
EGF-R was decreased by an inhibitor of EGF-R tyrosine kinase,
RG-13022 (α-(3’-pyridyl)-3,4-dimethoxy)cinnamonitrile), in
A431 cells[4]. Additionally, another tyrosine kinase inhibitor,
CP-358,774 ([6,7-bis(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-
ethynylphenyl)amine), inhibited proliferation and triggered
apoptosis through arrest of cell cycle progression in the G1
phase by accumulation of p27KIP1, a mitotic inhibitor, in human
colorectal carcinoma (DiFi) cells[19].
     Similar to our findings, exposure to EGF at a nanomolar
concentration reduced DNA synthesis, arrested cells in the
G0/G1 phase, and elevated p21 protein in human squamous
carcinoma cells, indicating that p21 plays a role in mediating
EGF-induced growth inhibition[10-12]. Additionally, EGF-
mediated growth inhibition was associated with induction of
p21 in human breast[13, 14], bladder[15], and esophageal[16] cancer
cells. EGF-increasing p21 expression was by stabilization of
p21 at the post-transcriptional and post-translational levels[12],
and activation of signal transducer and activator of transcription
(STAT)1 and STAT3[13,16,33]. Consistent with our study, EGF-
induced p21 expression was inhibited by the EGF-R tyrosine
kinase inhibitor, tyrphostin AG1478 in A431 cells[10].
      In conclusion, EGF antibody and tyrphostin 51 can inhibit
the action of EGF on apoptosis in human colorectal cancer
SW480 cells through down-regulation of EGF receptor and
p21 expression. Furthermore, EGF at a higher concentration
may have potential for the therapy of tumors with overexpressed
EGF-R, which is dependent on EGF-R signaling pathway for
proliferation.
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