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Abstract
AIM: To assess the effects of somatostatin on proliferation
and apoptosis of activated rat hepatic stellate cells (HSCs).

METHODS: HSCs isolated from the livers of adult Sprague-
Dawley rats (weighing 400-500 g) by in situ perfusion and
purified by single-step density gradient centrifugation with
Nycodenz, became activated after 10 days’ cultivation. Then
the apoptotic rate of HSCs treated with different doses of
somatostatin for 72 h, was assayed by acridine orange/
ethid ium bromide fluorescent staining, terminal
deoxynucleotidyl transferase-mediated dUTP nick end
labeling, transmission electron microscopy and flow
cytometry, while the proliferation of HSCs was measured by
MTT assay. Furthermore, the mechanisms of somatostatin
were investigated by cytodynamic analysis.

RESULTS: Somatostatin at the concentration of 10-6-10-9 mol/L
could decrease the proliferative rate, and promote the
apoptosis of activated rat HSCs in a dose-dependent way.
Its action was most significant when the concentration
reached 10-6 mol/L or 10-7 mol/L (P<0.05-0.01). An obvious
cell-cycle arrest (G0/G1 arrest) was the important way for
somatostatin to exert its action.

CONCLUSION: Antiproliferative and proapoptotic effects of
low-dose somatostatin on activated rat HSCs can be obtained.
These findings reveal its potential antifibrotic action.
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INTRODUCTION
Hepatic stellate cells (HSCs), critical mesenchymal cells in
producing hepatic fibrosis and hepatic cirrhosis[1-9], have been
the major target of antifibrotic treatment for a long time,
although success has been seldom achieved. Fortunately,
progress in the research on inducing apoptosis of activated
HSCs, together with inhibition of their proliferation, may
provide us with a promising solution to fibrogenesis caused

by different kinds of chronic hepatic diseases.
      Recent researches have revealed the apoptosis-inductive
and proliferation-inhibitory effects of somatostatin on various
cells. Furthermore, somatostatin also has an inhibitory effect
on the secretion of some cytokines such as epidermal growth
factor (EGF), transforming growth factor-α (TGF-α) and the
like, which are essential for the activation of HSCs. Thus we
attempted to investigate the effect of somatostatin on
proliferation and apoptosis of HSCs and their possible
therapeutic potential in hepatic fibrosis.

MATERIALS AND METHODS

Isolation, culture and identification of rat HSCs
Adult male Sprague-Dawley rats (400-500 g) were employed
in the experiment. After anesthesia, in situ serial infusions were
performed via the portal vein with D-Hank’s solution and
perfusion medium (Hank’s medium containing 0.5 g/L
collagenase IV and 1 g/L pronase E). Then the liver was broken
into pieces and redigested with collagenase IV and DNase.
Finally, HSCs were separated from the cell suspension by
single-step density gradient centrifugation with 180 g/L
Nycodenz (Sigma,USA). After cultured in Dulbecco’s
modified Eagle medium (DMEM) (Gibco, USA) containing
200 mL/L calf serum (Shishen, China), penicillin (100 IU/mL)
and streptomycin (100 mg/mL), HSCs were inoculated into culture
flasks and maintained at 37  in an atmosphere of 50 mL/L CO2.
      The percentage of freshly isolated living HSCs was up to
95% as defined by trypan blue staining (Sigma, USA), while
their purity was over 90% when assessed by light microscopic
appearance and their characteristic autofluorescence, which
reflected the droplet of vitamin A in cytoplasm (at 325-328 nm).
Immunocytochemical staining of desmin (Boster, China) and
α-smooth muscle actin (α-SMA) (Boster, China), as well as
myofibroblast-like phenotype showed the overall activation
of almost all HSCs on the 10th day.

Determination of proliferation of activated HSCs
Exponentially growing activated first-passage-HSCs seeded
in 96 well plates at 1×104 cells per well, were divided into
six groups at random, namely the control group and five
somatostatin-treatment groups of 10-6 mol/L, 10-7 mol/L,
10-8 mol/L, 10-9 mol/L and 10-10 mol/L. Six duplicate wells
were arranged in each group. They were incubated at 37  in
50 mL/L CO2 for five d, and then the following steps were
taken. (a) Twenty micoliters of MTT (5 mg/mL) was added
to each well and incubated for four h. (b) The supernatant was
aspirated and discarded. (c) One hundred microliters of DMSO
was dropped into each well and the plate was agitated for a
few min. (d) The optical density (OD) was analysed on an ELISA
reader at a test wavelength of 490 nm and a reference wavelength
of 620 nm. The inhibition rate (IR) of cell proliferation was
calculated according to the following equation. IR=[1-(OD of
somatostatin well/OD of control well)]×100%.

Apoptotic analysis of activated HSCs
Activated first-passage HSCs during their logarithmic growth
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period were inoculated on the surface of L-polylysine-covered-
glass slides in six well plates. According to the same grouping
method in the proliferation test, all these wells were divided
into six groups for each item of experiment. The apoptotic
rates of activated HSCs treated with different concentrations
of somatostatin for 72 h, were measured by acridine orange
(AO)/ethidium bromide (EB) fluorescent staining, terminal
deoxynucleotidyl transferase-mediated dUTP nick end labeling
(TUNEL), transmission electron microscopy and flow
cytometry, respectively.
     Firstly, HSC suspension was prepared via trypsinized
method and modulated to a density of 0.5×106 cells/mL. Then
it was mixed with AO/EB solution (PBS medium containing
0.1 mg/mL AO and 0.1 mg/mL EB) at a proportion of 25:1.
Apoptotic cells among 300 randomly selected HSCs were
distinguished under high power fluorescent microscope.
       Secondly, HSCs fixed with 40 g/L polyformaldehyde were
processed in accordance with the instructions of the TUNEL
kit (Boster, China): (a) treatment by 30 mL/L H2O2 and pronase
K successively, (b) reaction with the reactive mixture consisting
of 1 µL of TdT, 1 µL of digoxin-labeled dUTP, 18 µL of signal
buffer and 20 µL of signal medium, in a wet box at 37 
overnight, (c) incubation with blocking medium, anti-digoxin-
biotin and SABC sequentially, (d) exposure to DAB for
coloration. Thereafter, twenty high power fields under the
microscope in each glass slide were chosen at random and
positive cells with brown nuclei were counted. Apoptosis Index
(AI)=(apoptotic cells/total cells)×100%.
     Thirdly, the following steps were taken for the digested
HSCs: namely to rinse with PBS, to fix with cold ethanol
at -20 , to incubate with 100 µL 10 g/L RNase at 37  for 15
min, and to stain with propidium iodide (PI) for 30 min in
darkness. Then the apoptotic rate and cell cycle could be
obtained by flow cytometry.
    Finally, HSCs in culture flask were fixed in 20 g/L
glutaraldehyde, centrifuged, embedded in glass and sliced in
series. HSC ultrastructure was observed by transmission
electron microscopy.

Statistical analysis
Results were expressed as mean±SD. One way ANOVA and
t test were applied for data analysis. P values less than 0.05
were considered statistically significant.

RESULTS
Effects of somatostatin on HSC proliferation
Data taken from colorimetric MTT assays showed that
somatostatin (10-6 mol/L-10-9 mol/L) could significantly inhibit
the proliferation of activated HSCs in a dose-dependent way
(Table 1). As compared with the control group, the inhibitory
rates of somatostatin treatment groups rose up to 30.53% and
15.81% when the concentrations of somatostatin reached
10-6 mol/L and 10-7 mol/L, respectively. But no obvious effect
was found in 10-10 mol/L somatostatin treatment group.

Table 1  Effects of somatostatin on HSC proliferation (mean±SD)

SST concentration (mol/L)     ODs   Inhibitory rates (%)

               10-6 0.19±0.03b 30.53
               10-7 0.23±0.02b 15.81
               10-8 0.25±0.03   7.77
               10-9 0.26±0.03   4.48
               10-10 0.27±0.04   0
                  0 0.27±0.04   0

bP<0.01 vs control group.

Figure 1  Effect of somatostatin on apoptosis of HSCs. A:
Apoptosis rate of somatostatin-treated HSCs (fluorescent
staining), B: Apoptosis of 10-6M somatostatin-treated HSCs dem-
onstrated by TUNEL (×400), C: Apoptosis could not be detected
in normal HSCs by TUNEL (×400), D: Apoptosis of 10-6M soma-
tostatin-treated HSCs demonstrated by transmission electron mi-
croscopy (×8000). E: Apoptosis could not be detected in normal
HSCs by transmission electron microscopy (× 8000).
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Apoptosis of HSCs examined by fluorescent staining
After 72 h’ treatment, round-shaped HSCs with shrunk nuclei
and conglomerated granules became visible in all somatostatin
treatment groups. These HSCs underwent early apoptosis and
displayed stronger green fluorescence. The experimental results
showed that the higher the concentration of somatostatin, the
stronger its proapoptotic action (Figure 1). The apoptosis-
inductive effect of somatostatin reached its maximum at the
concentration of 10-6 mol/L-10-7 mol/L (P<0.05).

Apoptosis of HSC examined by flow cytometry
As detected by flow cytometry, somatostatin of different
concentrations could dose-dependently promote apoptosis of
activated HSCs. In 10-6 mol/L and 10-7 mol/L somatostatin
treatment groups, the apoptotic rate was significantly higher
than that in the control group (P<0.01) (Table 2).

Table 2  Effects of somatostatin on HSC apoptosis (mean±SD)

Somatostatin concentration (mol/L)         Apoptosis rate (%)

                       10-6                                                                                             16.54±4.59b

                       10-7                                                                                               6.06±1.79b

                       10-8                                                                                               2.81±0.72
                       10-9                                                                                               2.25±0.98
                       10-10                                                                                              1.55±0.64
                         0                                                                                                   1.53±1.19

bP<0.01 vs control group.

      Analysis of cytodynamics demonstrated that somatostatin
could increase the percentage of HSCs in G0/G1 phase, and
reduce it in S phase. However, there seemed to be no
alternation in G2/M phase. Experimental findings also made
it clear that the percentage of somatostatin-treated HSCs was
93.14±6.69% (10-6 mol/L) and 90.65±8.03% (10-7 mol/L) in
G0/G1 phase, and 78.48±4.43% in control group respectively.
Meanwhile, the percentage of somatostatin treated HSCs
were 1.75±0.44% (10-6 mol/L), 3.87±0.91% (10-7 mol/L) in
S phase, and 12.50±2.89% in control group, respectively. The
difference between somatostatin treatment groups and control
group was statistically significant (P<0.01-0.05).

Apoptosis of HSC examined by TUNEL
The number of early apoptotic HSCs characterized by pyknosis
of nuclear chromatin and condensation of cytoplasm, increased
with somatostatin treatment in a dose-dependent manner
(Figure 1). The apoptotic rates of different somatostatin
treatment groups were 14.65±3.86% (10-6 mol/L), 5.97±1.04%
(10-7 mol/L), 2.30±0.62% (10-8 mol/L), 2.02±0.81% (10-9 mol/L)
and 1.65±0.88% (10-10 mol/L), respectively. Statistical difference
was found in the rates between two somatostatin treatment
groups (10-6 mol/L, 10-7 mol/L) and the control group (P<0.01).

Apoptosis of HSC examined by transmission electron
microscopy
Typical apoptotic HSCs could be identified under transmission
electron microscope after treatment of somatostatin for 72 h.
They were characterized by shrinkage of cells with vacuoles
in cytoplasm, swelling of mitochondria, dilated endoplasmic
reticulum, irregular nuclei and pyknosis and conglomeration
of chromatin ranging along inside of the nuclear membrane
(Figure 1).

DISCUSSION
Somatostatin, an important peptide for inhibiting cellular
proliferation and differentiation, could slow down the growth

of various kinds of cells by blocking the synthesis and/or
secretion of many important cytokines and hormones[10-14]. On
the other hand, extensive physiological effects of somatostatin
and its analogues are mainly mediated by five subtypes of
somatostatin receptors (SSTR), including SSTR1, SSTR2

(SSTR2a and SSTR2b), SSTR3, SSTR4 and SSTR5. According
to our knowledge, somatostatin-14 may be the main endogenous
molecular form, although somatostatin-20, somatostatin-25 and
somatostatin-28 also exist in the human body.
      In recent years, researches have revealed the involvement
of somatostatin and its receptors in the differentiation of HSC,
i.e., somatostatin-containing nerve fibers inside the liver lobule
are in close contact with sinusoidal endothelium as well as
HSC[15]. In 2001 Reynaert et al[16] demonstrated that HSCs
expressed SSTR1, SSTR2 and SSTR3 during their activation.
Therefore, it is reasonable to deduce that somatostatin may
play a negative regulatory role in the activation of HSCs via
paracrine route. Except for its actions through SSTRs,
somatostatin exerts inhibitory effect on the secretion of
mitogens, including insulin-like growth factor (IGF), EGF and
TGF-α, which are essential for the continuous activation of
HSCs. In addition, somatostatin can even reverse the action of
EGF on EGFR. So somatostatin may be quite a potent
antifibrotic agent for liver cirrhosis.
      Being consistent with the hypothesis, somatostatin shows
an obvious inhibitory effect on the proliferation of activated
HSCs in a dose-dependent way. Its pharmacological action is
most significant when its concentration reaches 10-6 mol/L
or 10-7 mol/L. Once somatostatin binds to SSTRs on HSCs,
the occurrence of cytostatic effect is due to: (a) inhibition of
adenylate cyclase activity through Giα1, leading to a decrease
in cAMP level in cells; (b) active induction of K+ channel via
Giα3, whereas blockage of the voltage-operated Ca2+ channel
through Goα so as to reduce intracellular Ca2+ concentration;
(c) inhibition of mitogen-activated protein kinase (MAPK)-
dependent signal transduction pathway on the basis of
protein tyrosine phosphatase (PTP) activation and amino-
dephosphorylation-induced deactivation of tyrosine kinase.
Then the expression of c-fos, c-jun and c-myc was reduced
significantly[17,18]. As for the action of somatostatin on
cytodynamics, G0/G1 arrest was observed in our study, which
was in accordance with the result of Sharma et al[19]. Cell-cycle-
arrest may reflect the main mechanism of somatostatin.
      In vivo and in vitro studies have illustrated that activated
HSCs can be eliminated by different ways such as spontaneous
apoptosis, stimulation of some membrane receptors, incubation
with proapoptotic compounds[20-28]. Activation of SSTR3 by
somatostatin may be relevant to this process. Binding of SSTR3

and its natural or synthetic ligands can trigger intracellular
acidification, and cause a selective activation of cation-
insensitive acidic endonuclease through PTP. Then DNA
fragmentation caused by acidic endonuclease stimulates the
overexpression of bax and wild-type p53, resulting in apoptosis
of HSCs. Additionally, dephosphorylation of serine in wild-
type p53 has been found to be another pathway towards
apoptosis[29,30]. Our study has proved biochemically and
ultrastructurally for the first time that somatostatin can dose-
dependently promote the apoptosis of first-passage activated
HSCs by fluorescent staining, TUNEL, flow cytometry and
transmission electron microscopy. Furthermore, a significantly
increased apoptosis rate could be obtained with low concentrations
(10-6 mol/L-10-7 mol/L) of somatostatin.
     In conclusion, somatostatin at a low dose may exert
antiproliferative and proapoptotic actions on activated HSCs.
This result may provide a basis for utilizing somatostatin and
even its analogues to protect people from hepatic fibrosis and
to treat those suffering from it. However, the underlying
mechanisms need to be further studied.
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