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Abstract

AIM: To investigate the inhibitory effect of tumor suppressor
p33ING1b and its synergy with p53 gene in hepatocellular
carcinoma (HCC).

METHODS: Recombinant sense and antisense p33ING1b

plasmids were transfected into hepatoma cell line HepG2
with lipofectamine. Apoptosis, G0/G1 arrest, cell growth
rate and cloning efficiency in soft agar of HepG2 were
analyzed after transfection. In three hepatoma cell lines
with different endogenous p53 gene expressions, the
synergistic effect of p33ING1b with p53 was analyzed by flow
cytometry and luciferase assay was performed to detect
the activation of p53 downstream gene p21WAF1/CIP1. In
addition, the expression and mutation rates of p33ING1b in
HCC tissues were measured by immunohistochemistry
and polymerase chain reaction-single strand conformation
polymorphism (PCR-SSCP).

RESULTS: Overexpression of p33ING1b inhibited cell growth
of HepG2, induced more apoptosis and protected cells
from growth in soft agar. Combined transfer of p33ING1b and
p53 gene promoted hepatoma cell apoptosis, G0/G1 arrest
and elevated expression of p21WAF1/CIP1. Immunostaining
results showed co-localized P33ING1b with P53 protein in
HCC tissues and there was a significant relation between
protein expression rates of these two genes (P<0.01).
Among 28 HCC samples, p33ING1b presented a low gene
mutation rate (7.1%).

CONCLUSION: p33ING1b collaborates with p53 in cell growth
inhibition, cell cycle arrest and apoptosis in HCC. Loss or
inactivation of p33ING1b normal function may be an important
mechanism for the development of HCC retaining wild-
type p53.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.
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INTRODUCTION

Inhibitor of growth 1, ING1, is a newly cloned tumor
suppressor[1], and appears to play a role in programed cell
death and cell cycle arrest, whereas antisense ING1 protects
cells from apoptosis in various experimental systems. Ectopic
expression of ING1 cDNA or ING1 suppression by antisense
RNA demonstrates that ING1 is a negative regulator of
cell proliferation[2-4]. ING1 protein has been reported to
bind directly to p53 protein by immunoprecipitation in vitro,
modulating the function of p53 as a transcription activator[5].
ING1 gene is mapped on human chromosome, 13q33-34,
a region that has been implicated in the progression of
various tumors[6,7]. Deregulated expression and mutation of
ING1 gene are found in breast carcinoma, oral/esophageal
squamous cell carcinoma, gastric carcinoma and malignant
lymphoma, etc.[9,12-16]. It was also found that ING1 gene
encodes several differentially initiated and spliced mRNAs,
which have common 3’exon and encode at least two distinct
proteins in mice, and possibly three distinct proteins in
human cells (p47ING1a, p33ING1b, and p24ING1c). RT-PCR
analysis showed that the ING1b form is a major transcript
in human normal tissues. All the known ING1 protein
isoforms share an identical C-terminal domain with a
conserved PHD finger motif, which might directly interact
with DNA[17,18,33].

HCC is one of the 10 most common cancers in the
world and is almost uniformly fatal. The genetic events
leading to the development of hepatocellular carcinoma
are not well documented. Gene mutation and dysfunction
of wild-type tumor suppressor p53 are important molecular
events in the process of hepatocarcinogenesis[19-32]. p33ING1b

has a close relationship with p53 and neither p53 nor p33ING1b

alone can cause cell growth inhibition[4,5], which prompted
us to investigate their potential role in hepatocellular
carcinogenesis. We examined whether genetic mutation
and altered protein expression of p33ING1b and p53 were
responsible for the development and progression of human
HCC.
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MATERIALS AND METHODS
Materials
Human hepatoma cell lines HepG2, PLC/PRF/5, and
Hep3B were maintained in Dulbecco’s MEM with 10%
FCS (Hyclone), 2 mmol/L L-glutamine, and antibiotics at
37 ℃ in a 50 mL/L atmosphere. Plasmid pCI-ING1b (kindly
provided by Dr. Karl Riabowol, Department of Medical
Biochemistry, Calgary University, Canada) was digested with
EcoRI/XbaI and XhoI/BamHI, and the resultant 900 bp
fragment (ING1b cDNA full length) was ligated into the
pcDNA3 vector (Invitrogen) containing the neomycin-
resistance gene. This recombinant produced sense pcDNA3-
p33ING1b plasmid (EcoRI/XbaI-digested) and antisense
plasmid, pcDNA3-p33ING1b (XhoI/BamHI-digested).
Recombinant plasmids pCMV containing sense and antisense
wild-type p53 gene were constructed in our laboratory
(reported in other manuscripts, data not shown). Plasmid
WWP-LUC containing the promoter of  p21WAF1/CIP1 gene
derived the expression of a luciferase reporter gene (kindly
provided by Dr. B. Vogelstein, John Hopkins Oncology
Center).

HCC and para-cancerous liver tissues were obtained
from 57 patients with hepatocellular carcinoma who
underwent surgery between 1997 and 2002 at the Department
of  Pathology, Changhai Hospital, Second Military Medical
University. Twelve normal liver tissues were obtained from
autopsy. All tissues were fixed in 10% formalin and paraffin-
embedded.

Transient transfection
To determine the effects of  p33ING1b and p53 gene upon the
growth of hepatoma cells, 1×106 cells of HepG2, PLC/PRF/
5, and Hep3B were plated overnight and co-transfected by
Lipofectamine 2000 (Gibco BRL) following the manufacturer’s
instructions. The plasmids used in co-transfection were
divided into four groups. HepG2 cells with endogenous
wild-type p53 gene[22] were transfected with 3 g of
pcDNA3-p33ING1b, pcDNA3-p33ING1b, pcDNA3-
p33ING1b+pCMV- wtp53, respectively, and pcDNA3
vector alone as a control. PLC/PRF/5 cells with endogenous
mutant p53 and Hep3B with endogenous p53 completely
deleted[22] were treated with 3 g of pcDNA3-p33ING1b,
pcDNA3-p33ING1b+pCMV-wtp53, pcDNA3-p33ING1b
+pCMV-wtp53, respectively, and pcDNA3 plain vector
alone as control group. Cells were incubated overnight with
the lipofectamine mix, then washed with PBS and maintained
in complete medium.

Apoptosis and cell cycle arrest assay
Forty-eight hours after transfection, cell apoptosis was
assayed using annexin V-FITC apoptosis detection kit (BD
PharMingen, USA). Cells were collected, washed twice with
cold PBS and resuspended in binding buffer (10 mmol/L
Hepes/NaOH pH7.4, 140 mmol/L NaCl, 2.5 mmol/L CaCl2,
sterile filtered) at a concentration of 1×106 cells/mL. One
hundred microliters of the solution was transferred to a
5 mL culture tube, and 5 L of  annexin V-FITC and 5 L
of propidium iodide were added, then the cells were gently
vortexed and incubated for 15 min at room temperature in
the dark. Cell apoptosis was analyzed with FACSalibur.

CycleTEST plus DNA reagent kit (Becton Dickinson, CA)
was applied to the cell cycle arrest assay. The number of
each cell cycle phase was determined by FACSalibur following
instructions of the manufacturer. All these assays were
repeated at least twice.

Growth of HepG2-pcDNA3-p33ING1b, HepG2-pcDNA3-
p33ING1b, and HepG2-pcDNA3 in serum medium and soft agar
HepG2 cells were plated at 1×106 cells per 100 mm dish
and incubated overnight, then transfected with 3 g of
pcDNA3-p33ING1b, pcDNA3- p33ING1b, respectively,
and pcDNA3 vector alone as a control by lipofectamine
2000 (Gibco BRL). After transfection, the cells were selected
in 800 g/mL of G418 (Gibco BRL) for 3 wk. All resistant
colonies were tripsinized and grown in complete medium.
Resistant colonies of HepG2-pcDNA3-p33ING1b, HepG2-
pcDNA3- p33ING1b and HepG2-pcDNA3 cells were
grown in complete medium and the number of viable cells
was determined at daily intervals for 7 d after seeding. Cell
viability was determined by trypan blue staining. All
experiments were constructed in triplicate, and the results
were evaluated blindly. For growth in soft agar, 1×104 cells/
well were seeded in triplicate into six-well plates and allowed
to grow for 21 d. The colonies were counted under a phase
contrast microscope.

Luciferase assay
HepG2, PLC/PRF/5 and Hep3B cells were added to 24-
well plates (1×105 cells/well) and incubated overnight in
complete medium, then cotransfected using lipofectamine
method. The plasmids transfected into each cell line were
the same as in the apoptosis assay but plus 0.2 g of the
reporter plasmid WWP-LUC and 10 ng of an internal control
renilla luciferase plasmid, pSV40 (Promega, Madison, WI)
in each well. Cells were harvested 48 h after transfection.
The activities of firefly and renilla luciferase were measured
with a luminometer simultaneously using the dual-luciferase
reporter assay kit (Promega) and normalized for the variation
in transfection efficiency. All tests were done in triplicate.

Ethanol treatment
After transient transfection, the cells were treated with
60 mL/L ethanol in complete medium or PBS as control
to induce apoptosis. Four hours after treatment, all cells
(adherent or floating) were collected by trypsinization. Then
apoptosis assay and luciferase assay were repeated again as
described above. All tests were done in duplicate.

Immunohistochemistry
Protein staining of p33ING1b and p53 of 57 HCC and para-
cancerous tissues was determined using EnVision method
(DAKO). Histological sections (4-m thick) on 0.02% poly-
L-lysine coated slides (Sigma Chemical Co.) were deparaffinized
and rehydrated, and the endogenous peroxidase activity was
blocked by incubation with 2% H2O2 in phosphate buffer,
followed by microwave antigen retrieval in citrate buffer
(pH6.0). Nonspecific binding was blocked with goat serum,
and sections were incubated with p33ING1b antibody and p53
antibody (clone DO-7, purchased from American antibody
Corp. USA) overnight at 4 ℃, respectively. Having washed
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thrice to eliminate the residual antibody, the sections were
incubated with EnVision complex. The reaction was developed
by incubation with 3,3’-diaminobenzidine tetrahydrochloride
(Sigma Chemical Co.), washed and counterstained with
hematoxylin.

Genomic DNA extraction and PCR-SSCP analysis
Genomic DNA from 28 cases of HCC was isolated from
paraffin-embedded tissues by SDS/proteinase K treatment,
phenol-chloroform extraction and ethanol precipitation[8].
The coding region of ING1b gene exon-1a was amplified
by PCR with primers S1(5’ATGTTGAGTCCTGCCA-
ACGGGGA3’) and AS1 (5’CTCTTGGTATTTCGCGTC-
GAT3’). Exon-2 was amplified as four overlapping fragments
with four primer sets: S2 (5’ATCCTGAAGGAGCTAG-
ACGAGTGC3’) and AS2 (5’CTTGCCGCTGTTGC-
CCGCTG3’), S3 (5’TTCGAGGCGCAGCAGGAGCT3’)
and AS3 (5’CTTGGCCTTCTTCTCCTTGGG3’), S4
(5’CAGCAACCACGACCACGACG3’) and AS4 (5’TGA-
GCCCCACGCACGAGAAG3’), and S5 (5’CCTCC-
CCATCGACCCCAACG3’) and AS5 (5’CTACCTGTT-
GTAAGCCCTCTC3’). PCR mixture contained 100 ng of
genomic DNA as the template, with 1.2 mmol/L MgCl2,
1×PCR buffer, 200 mol/L of each deoxynucleotide
triphosphate, 20 pmoL of each primer and 1 unit of rTth
DNA polymerase XL (Perkin Elmer, Foster city, CA) in a
50 L volume. After 35 cycles, 1 L of PCR product was
mixed with 8 L of  loading dye (95% formamide, 20 mmol/L
EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol),
heat denatured, chilled on ice, and applied onto 8%
polyacrylamide gel with 5% glycerol. The bands were then
detected by silver staining. Aberrantly migrating bands were
excised, re-amplified with the same sets of primers, then
cloned into EcoRV-digested PMD18-T vector (TaKaRa Corp.
Japan) and sequenced (completed by TaKaRa Corp. Japan).

Statistical analysis
The relationship between p33ING1b and p53 protein positive
staining was evaluated using Wilcoxon signed rank test. The
growth difference of HepG2-p33ING1b and HepG2-
p33ING1b in soft agar was analyzed by Student’s t-test. All
data were represented as mean±SD. P<0.05 was considered
statistically significant.

RESULTS

Drastically enhanced apoptosis and G0/G1 arrest in hepatoma
cells by synergy of p33ING1b with p53
In HepG2 cells with endogenous wildtype p53 gene, the
apoptosis rate of HepG2-pcDNA3-p33ING1b (22.53±1.4%)
was significantly higher than those of other HepG2
experiment groups (P<0.01, Figures 1A-C). The proportion
of HepG2-pcDNA3-p33ING1b cells arrested at G0/G1

phase (67.45±9.6%) was much more than cells transfected
with vector or other control plasmids (P<0.05, Table 1)
(Figure 1D-G). To further investigate the synergistic effect
of p33ING1b with p53, HepG2 cells were treated by 6%
ethanol. After treatment, the apoptosis rate of HepG2
experiment groups was elevated, and the elevation extent
of HepG2-pcDNA3-p33ING1b was the most significant
(48.92±1.6%, P<0.01, Figures 1A-C).

In PLC/PRF/5 cells with endogenous mutant p53, the
difference in apoptosis rate between cells cotransfected with
pcDNA3-p33ING1b and pCMV-wtp53 (7.81±0.3%) and
control plasmid was not significant (P>0.05). After 6%
ethanol treatment, apoptosis of all PLC/PRF/5 experiment
groups was enhanced. The apoptosis rate of cotransfection
with p33ING1b and wtp53 (42.8±1.3%) was significantly
higher than that of other groups (P<0.01). In addition, the
apoptosis induced by cotransfection with p33ING1b and wtp53
(1.59±0.2%) in Hep3B cells without endogenous p53

Figure 1  FACS analysis of cell apoptosis in three hepatoma cell lines (A-C) and arrest of HepG2 cells at G0/G1 cell cycle (D-G).
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(1.59±0.2%) was significantly lower than that in HepG2-
pcDNA3-p33ING1b group, but the difference in apoptosis
rate between each experiment group of Hep3B was not
significant (P>0.05). After 6% ethanol treatment, the difference
was still not significant although the apoptosis rate of each
Hep3B experiment group had a slight increase (Figure 1A-
C). The proportion of PLC/PRF/5 cells cotransfected with
p33ING1b and wtp53 arrest at G0/G1 phase (78.16±10.6%)
was significantly higher than those in other control groups
(P<0.05), but the difference between each Hep3B experiment
group was not significant (P>0.05, Table 1).

Overexpression of p33ING1b inhibited hepatocellular growth and
survival
The growth curve of  HepG2 cells showed that HepG2-
pcDNA3-p33ING1b cells grew significantly slower than
HepG2-pcDNA3 and HepG2-pcDNA3-p33ING1b cells
(P<0.01, Figure 2). Additional experiments were conducted
to test whether p33ING1b overexpression correlated with
anchorage-independent growth in soft agar. Results showed
that the growth in soft agar of HepG2-pcDNA3-p33ING1b
cells with p33ING1b overexpression was inhibited compared
with that of HepG2-pcDNA3 cells (P<0.01). However,
HepG2 cells stably transfected with pcDNA3- p33ING1b
significantly promoted the anchorage-independent growth
in soft agar (P<0.01, Table 2).

Synergistic effect of p33ING1b with p53 on activating p53
downstream gene, p21WAF1/CIP1

The results of luciferase assay showed that the activity of

p21WAF1/CIP1 promoter in HepG2-pcDNA3-p33ING1b
(13.81±1.0), or PLC/PRF/5 (12.99±1.1) and Hep3B cells
(10.32±0.6) cotransfected with p33ING1b and wtp53 genes
was significantly stronger than that in control cells transfected
with insert-free vector (3.027±0.4) (P<0.01). Whereas after
transfection with antisense-p33ING1b and antisense-wtp53
plasmids, the activity of  p21WAF1/CIP1 promoter activated by
p33ING1b or p53 gene alone was significantly lower than that
activated by p33ING1b and p53 in combination (P<0.01), and
similar to that activated by transfection with plain vector
(P>0.05). After 6% ethanol treatment, the activity of
p21WAF1/CIP1 promoter was elevated in all experiment groups,
especially in HepG2-pcDNA3-p33ING1b (17.82±0.8),
Hep3B and PLC/PRF/5 cells cotransfected with p33ING1b

and wtp53 genes (18.128±1.0 and 16.82±0.7, respectively)
(P<0.01, Figure 3). These results indicate that the function
of p53 as a transcriptional activator depends on the presence
of p33ING1b, and the synergistic action of p33ING1b with p53
might enhance the activation of  p21WAF1/CIP1.

Expression of p33ING1b and p53 and mutation analysis of p33ING1b

gene in HCC
Immunohistochemistry results revealed that both p33ING1b

Table 1 G0/G1 cell cycle arrest analysis of hepatoma cells after
cotransfection with p33ING1b and wtp53 gene or control plasmids
(mean±SD, %)

Cell line Transfection plasmids                 G0/G1 arrest

HepG2 p33ING1b 67.45±9.6a

p33ING1b 53.45±10.1

p33ING1b+wtp53 55.61±8.3

pcDNA3 58.78±10.3

PLC/PRF/5 p33ING1b 64.79±11.1

p33ING1b+wtp53 78.16±10.5c

p33ING1b+ wtp53 60.17±9.8

pcDNA3 56.56±8.8

Hep3B p33ING1b 48.90±7.6

p33ING1b+wtp53 55.91±10.1e

p33ING1b+ wtp53 50.92±8.5

pcDNA3 52.87±7.0

aP<0.05, cP<0.05, and eP>0.05 vs the control groups.

Table 2  Cloning efficiency of HepG2 cells after transfection of sense
and antisense p33ING1b gene (mean±SD)

     Number of colonies
Experiment

HepG2-p33ING1b b        HepG2-p33ING1b d         HepG2-pcDNA3

1                65±7 149±12        86±9

2                68±15 151±10        93±11

3                72±10 148±11        94±10

bP and dP<0.01,  vs HepG2-pcDNA3 control.

Table 3  Relation of p33ING1b and p53 protein expression in HCC
tissues

      p53
p33ING1b expression   Cases (n)

– + ++ +++

HCC          57

–          33 19 7  3   4

+          10   4 3  2   1

++          10   0 0  3   7

+++          4   1 1  2   0

Para-cancerous tissues          51

–          38 38 0  0   0

+          13 13 0  0   0

++          0   0 0  0   0

+++          0   0 0  0   0

Normal liver tissues          12

–          10 10 0  0   0

+          2   2 0  0   0

Note:  Staining was estimated as follows: –, negative;  +, weak;  ++, intermediate;

+++, strong positive staining.
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Figure 2  Growth curves for HepG2 cells stably transfected with
pcDNA3 (▲), pcDNA3-p33ING1b (●), or pcDNA3- p33ING1b (■) in
complete medium containing 10% serum.
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and p53 proteins were all nuclear positive in paraffin-
embedded tissues from 57 cases of HCC. The positive
rate of p33ING1b and p53 was 42.1% and 57.9%, respectively.
Both had the same positive localization in HCC tissues, and
their expression had a positive correlation (Wilcoxon test,
r = 0.783, P<0.01). In 13 out of 51 para-cancerous liver
tissues and 2 out of  12 normal liver tissues, p33ING1b protein
presented weak staining, whereas p53 protein was negative
in all para-cancerous liver tissues and normal liver tissues
(Table 3 and Figure 4).

No aberrant PCR-amplification products were found in
tumor and para-cancerous tissues compared with normal
liver tissues, suggesting that ING1b gene did not have a
fragmental frame shift or more than a dozen of base pairs
deletion in HCC. Five HCC cases presenting abnormal band
shifting were identified by SSCP, two of them showed a G
to C transversion at the middle nucleotide of codon 215
with an amino change in ING1b gene exon2 by DNA
sequencing, resulting in a cysteine to serine substitution.
p33ING1b gene did not exhibit mutation in para-cancerous

tissues. All the point mutations were confirmed by repeated
PCR amplification and sequencing from both ends (Figure 5).
The frequency of missense mutation of the ING1b gene
in HCC was low (7.1%). Our results were consistent with
those of head and neck squamous cell carcinoma (13%)
reported by Gunduz et al[18], and esophageal squamous cell
carcinoma (12.7%) reported by Chen et al[16].

DISCUSSION

Ectopic expression of the first isolated human ING1 cDNA
is growth-suppressive in different cell lines[1,2]. One of the
reasons why this gene has gained increasing attention from
the biological community is that it has no structural similarity
with p53, but has many tumor suppressive functions including
growth arrest, apoptosis, senescence and sensitization to
drug treatment.  p33ING1b, one of the alternative transcripts
of ING1 gene, is physically associated with p53, further
proving its role in carcinogenesis[4,5]. As an important
member of p53-interacting proteins family, p33ING1b inactivation

Figure 4  IHC staining for p33ING1b on HCC (A), para-cancerous tissues (B), and normal liver tissues (C), and for p53 on HCC (D). A and D: p33ING1b

and p53 were nuclear-positive and located in the same area of HCC, ×400; B and C: p33ING1b presented weak IHC staining,  ×200.

A B

C D
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Figure 3  Analysis of p21WAF1/CIP1 promoter activation in three hepatoma cell lines.
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might be another critical reason for the loss of tumor
suppressive function of p53 in HCC. Moreover, the tumor
suppressive activity of p33ING1b requires an intact p53 gene,
neither of these two genes can inhibit tumor cell growth
when one of them is suppressed[26,27,35].

We found that overexpression of  p33ING1b inhibited the
growth of HepG2 cells and suppressed the cell anchorage-
independent survival in soft agar, which is consistent with
the tumor-suppression role of p33ING1b in the development
of HCC. However, the synergic effects of p33ING1b and
p53 on apoptosis and cell cycle arrest in hepatoma cell lines
have not been well established. In this study, overexpression
of p33ING1b effectively inhibited the growth of hepatoma
cells and protected cells from malignant transformation;
cointroduction of p33ING1b and p53 enhanced apoptosis of
hepatoma cells, arrested more cells at G1/G0 phase and
elevated the expression of  p21WAF1/CIP1 gene compared with
introduction of either p33ING1b or p53 gene alone; the expression
of p33ING1b and p53 proteins had a close relation and exhibited
the same positive staining localization in HCC; p33ING1b gene
had a low mutation rate (7.1%) in HCC. These results suggest
that p33ING1b plays an important role in refraining the process
of hepatocarcinogenesis and the cooperation of p33ING1b

and p53 is essential to normal biological functions of  these
two genes[29-31]. However, this cooperation in hepatoma cells
might be influenced by other factors such as HBV infection
or Rb gene deletion.

There is evidence that HBV X antigen is capable of
binding to wild-type p53 protein, leading to p53 inactivation
and accumulation in HBV-infected liver cells, which in turn
result in HBV-associated hepatocarcinogenesis[25,32]. p33ING1b

protein also binds to p53 protein and forms a complex in
vivo. It is hypothesized that HBxAg may interact with p53-
p33ING1b protein complex and influence the biological synergy
of p33ING1b with p53. After cotransfection of p33ING1b and
p53 into PLC/PRF/5 or Hep3B cells infected with HBV,
apoptosis and G0/G1 arrest are elevated, but the extent is
not as significant as that in HepG2 cells without HBV
infection[22]. These results suggest that HBV may play an
important role in repressing the cooperation of p33ING1b

with p53. Whether HBV can directly bind to p33ING1b protein
and the mechanism of HBV inactivating p33ING1b remain
to be studied.

Tumor suppressors contribute to the regulation of
mammalian cell cycle and apoptosis, largely through

interaction with multiple proteins, which form a complex
gene network[28,33]. P33ING1b is an important member of p53-
related gene network, and other downstream genes may
influence the synergy of  p33ING1b with p53. It is interesting
that in Hep3B cells with HBV infection and endogenous
Rb gene complete deletion[22], apoptosis and cell cycle arrest
induced by combined transfection of p33ING1b and p53 gene
are much lower than those in HepG2 and PLC/PRF/5
cells, suggesting that loss of  normal function of  other
important genes, such as Rb gene, may be a potential
mechanism for inactivation of p33ING1b and its cooperation
with p53.

The data from other laboratories demonstrate that
overexpression of p33ING1b in human fibrosarcoma cell lines
containing endogenous wild-type p53 greatly increases cell
sensitivity to DNA damage caused by chemotherapeutic
drug etoposide or  irradiation[5]. Our study showed that
combined transfer of p33ING1b and p53 enhanced cell
sensitivity to ethanol, rendered more cell apoptosis and
arrested in G0/G1 phase, and strongly activated the expression
of  downstream gene p21WAF1/CIP1, suggesting that the synergy
of p33ING1b with p53 may enhance the tumor-suppressing
effect of chemotherapy on HCC.

Although the sequence of ING1 gene is not altered
frequently, previous study also noted the presence of
p33ING1b gene mutation in head and neck squamous cell
cancer (HNSCC)[18] and esophageal squamous cell cancer
(ESCC)[16], which are similar to our HCC results. There
is accumulating evidence that gene mutation is not the
main mechanism of biological inactivation of p33ING1b in
HNSCC[18]. Many studies have shown that p33ING1b protein
is downregulated in other cancers such as breast cancer,
gastric and colon cancer, malignant lymphoma, but
methylation of the ING1 promoter region occurs in
HNSCC[8-16]. ING1 gene may serve as a “class II tumor
suppressor” being inactivated at the level of RNA rather
than DNA[36,37]. As p33ING1b and p53 have a close cooperation,
low expression of p33ING1b protein may be a mechanism
underlying the inactivation of wild-type p53 in these cancers.
Immunostaining in this study showed that p33ING1b and p53
had a positive relation in HCC tissues and both had the same
nuclear localization. Cells positive for p53 staining can
express mutant p53 protein because of its prolonged half-
life, and cells expressing wild-type p53 protein are usually
negative for p53 staining. Our results demonstrate that
p33ING1b might also have a close relation with mutant p53
and wtp53. It is still not clear which domain of p53 protein
binds to p33ING1b protein. If mutation does not locate in the
interaction domain of p53, physical interaction between
p33ING1b and p53 proteins would not be affected. Whether
p33ING1b binds to mutant p53 still has normal biological
functions needs further study.

In conclusion, p33ING1b cooperates with p53 in inhibiting
hepatoma cell growth. Whether the interaction between these
two genes occurs at other levels such as at p53 DNA binding
level or p53 nuclear transport needs further investigation.
The involvement of p33ING1b in p53 signaling pathway indicates
that p33ING1b is essential for p53 function, loss or inactivation
of  p33ING1b may contribute to malignant transformation of
HCC retaining wild-type p53.
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Figure 5  Altered migration pattern of PCR products of p33ING1b

gene from HCC genomic DNA by SSCP. N, normal DNA; T, tumor DNA;
S, para-cancerous tissue DNA.
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