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Abstract

AIM: To determine the correlation between methylation
status of 5’ CpG island of cyclooxygenase-2 (COX-2)
gene and protein expression in gastric cancer tissues
for distinguishing the molecular characters of gastric
cancers.

METHODS: Methylation status of 5’ CpG island of COX-2
gene was studied by PCR amplification after HpaII and
Hha I restrictive enzyme digestion; COX-2 expression was
evaluated by immunohistochemical method.

RESULTS: Hpa II and HhaI site were all methylated in 12
normal gastric mucosa tissues, whereas they were
demethylated in 77.27% (34/44) and 84.09% (37/44)
gastric cancer tissues, respectively. Expression of COX-2
was detected in 68.18% (30/44) gastric cancer tissues,
but no expression was found in normal gastric mucosa
tissues. In gastric cancer tissues, COX-2 expression
was correlated significantly with HpaII site demethylation
(29/30 vs 5/14, P<0.001 and HhaI site demethylation
(28/30 vs 9/14, P<0.05).

CONCLUSION: The demethylation of 5’ CpG island of
gene is necessary for COX-2 expression in human gastric
cancer. The expression status of COX-2 may provide
theoretical basis for COX-2 targeting gastric cancer
treatments.
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INTRODUCTION
Cyclooxygenase (COX) is a rate-limiting enzyme involved
in the conversion of arachidonic acid to prostaglandins.
COX-1 is constitutively expressed in a variety of  tissues;
COX-2 is induced by cytokines, growth factors, mitogens,
oncoproteins, etc.[1-4]. Overexpression of  COX-2 has been
reported in various types of tumors and some precancerous
tissues[5-11]. Many epidemiological studies indicate that the
use of nonsteroidal anti-inflammatory drugs (NSAIDs) over
one year reduces the risk of esophageal[12], gastric[13] and
colorectal cancers[14]. Inhibiting COX-2 activity reduces the
growth of polyps in APC△716 knockout mice[15]. Sulindac
and Celecoxib cause regression of colorectal adenomas in
patients with familial adenomatous polyposis (FAP)[16,17]. The
effects of NSAIDs will bring about a new approach to the
prevention and treatment of cancers, especially digestive
cancers. Unfortunately, the mechanisms of  COX-2
expression have not been defined.

Aberrant DNA methylation exists in carcinoma
universally and is manifested as wide DNA hypomethylation
and local CpG island hypermethylation (mainly in the
promoter region). CpG island demethylation facilitates gene
transcription, resulting in oncogene activation[18],
chromosome instability[19,20], mutation hotspots[21,22], and
retrotransposon replacement[23]. CpG island hypermethylation
in the promoter is one of the predominant mechanisms of
inactivating various tumor suppressor genes in tumorigenesis.
Thus aberrant DNA methylation is regarded as ‘the third
tumorigenesis pathway’. In recent years, it was reported that
some cancer cell lines without COX-2 expression exhibit
hypermethylation of  CpG island in the promoter or exon 1
region, and methylation-inhibiting agents restore expression
of  COX-2[24,25], suggesting that COX-2 expression may be
related to the methylation status of  5’- CpG island of  COX-
2 gene. Accordingly, we attempted to compare the methylation
status of 5’ CpG island around the transcriptional starting
site of  COX-2 gene in the normal gastric mucosa and gastric
cancer in order to clarify the mechanisms for COX-2
expression, distinguish the molecular characteristics of gastric
cancers, and provide the theoretical basis for COX-2 in the
prevention and treatment of gastric cancer.

MATERIALS AND METHODS

Materials
Forty-four primary gastric cancer tissue specimens were
obtained from patients undergoing gastrectomy in the First
Affiliated Hospital of Zhengzhou University and Luoyang
Oriental Hospital. The age of patients ranged from 35 to



71 years (a mean of  55.7 years). Twelve normal gastric
mucosal specimens adjacent to cancer were used as controls.
None of the patients received chemotherapy or radiation
therapy. All tissues were immediately frozen in liquid
nitrogen and stored at -80 ℃. Genomic DNA was isolated
by proteinase-K digestion and phenol-chloroform extraction
methods and stored at -20 ℃.

Methods
COX-2 gene methylation status analysis  DNA methylation
status of  CpG island at the 5’ end of  COX-2 gene was
determined by restriction enzyme PCR as described
previously[26]. This method for distinguishing methylated
from unmethylated alleles in a gene is based on cutting by
methylation-sensitive restrictive enzymes (HpaII, HhaI)
and subsequently amplifying the gene fragment by PCR
using primers specific to sequences flanking the restrictive
enzyme cut sites. Design of  COX-2 primers was based on
the following published sequences (D28235, AF044206):
5’-CAGCTTCCTGGGTTTCCGATT-3’ (sense) and 5’-
TTTGCTGTCTGAGGGCGTCT -3’ (antisense), 292 bp
product. One microgram genomic DNA was cut by 12 U
HpaII or HhaI (TaKaRa) in 20 L volume for 8h at 37 ℃.
PCR was performed using primer pairs described above,
under the following conditions: 25 L volume, PCR mix
containing 1× GC buffer, deoxynucleotide triphosphates
(0.3 mmol/L each), primers (1 mol/L each), enzyme-cut
DNA 200 ng, and 1.5 U LA Taq DNA polymerase (TaKaRa).
Amplification was carried out for 30 cycles at 94 ℃ for
45 s, at 56 ℃ for 30 s, at 72 ℃ for 30 s, final extension at
72 ℃ for 5 min. Positive control was performed using
genomic DNA lacking enzyme digestion. Four microliters
of PCR products were loaded onto 20 mg/L agarose gel,
stained with ethidium bromide, and visualized under UV
illumination.

Immunohistochemistry
Paraffin-embedded gastric tumor tissues were cut into 4 m
sections, then deparaffinized in xylene and rehydrated
through a series of alcohol and water. The slides were placed
in 10 mmol/L citrate buffer (pH 6.0) and microwaved for
15 min to enhance antigen exposure. The sections were
incubated in 30 mL/L hydrogen peroxide for 10 min to
quench endogenous peroxidase activity. Slides were then

washed in PBS (pH 7.6) and incubated with PBS containing
normal rabbit serum for 30 min, followed by incubation
with primary goat antibody to COX-2 (SantaCruz) at 4 ℃
overnight. Sections were then incubated with a second
biotinylated antibody for 30 min before they were reacted
with DAB solution. In control slides, PBS was used instead
of the primary antibody. On the basis of the intensity and
the number of  cells stained, expression of  COX-2 was
defined as moderate to strong staining affecting more than
30% of  the tumor area. The COX-2 staining was reviewed
by two immunohistochemistry experts independently.

Statistical analysis
2 or Fisher’s exact test was used, P<0.05 was considered
statistically significant. All analyses were performed using
SPSS 10.0 software.

RESULTS

Demethylation of HpaII and HhaI site was found in 34
(77.27%) and 37 (84.09%) of 44 gastric cancer tissue
specimens, respectively. Both sites were methylated in 12
normal gastric mucosa specimens (Figure 1). Expression
of  COX-2 was negative in normal gastric mucosa specimens
but positive in 30 (68.18%) of 44 gastric cancer tissue
specimens. COX-2 protein was located in cytoplasm of
cancer cells (Figure 2).

Figure 2  Immunohistochemical analysis of COX-2 in gastric cancer. A: Negative
staining for histological normal gastric mucosa (×100); B: COX-2 expression in

Figure 1  Methylation status of 5’ CpG island of COX-2 gene in normal
gastric mucosa and gastric cancer. Lanes 1-3: normal gastric mucosa;
lanes 4-6: gastric cancer tissue; lanes 1 and 4: positive control; lanes 2 and
5: HpaI I digestion; lanes 3 and 6: HhaI  digestion, lane 7: ΦX174-HaeI I I
marker.

high differentiated cancer (×200); C: poorly differentiated cancer (×400).
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The study showed that demethylation of HpaII and HhaI
site was not significantly correlated with the tumor cell
differentiation degree, TNM staging, and lymph node
(LN) metastasis (P>0.05). COX-2 expression was
significantly higher in III/IV stage group than in I/II stage
group(24/31 vs 6/13, P<0.05). In gastric cancer with LN
metastasis, COX-2 expression was statistically higher than
that without LN metastasis (22/27 vs 8/17, P<0.05). There
was no significant difference in COX-2 expression between
high/moderate and poor differentiation groups (16/21 vs
14/23, P<0.05, Table 1).

Among the 30 cases of 44 gastric cancers with positive
COX-2 expression, 28 had demethylation of  both HpaII
and HhaI site, one had methylation of HhaI site, and one
had methylation of both HpaII and HhaI site. In 14
COX-2 negative gastric cancer tissue specimens, four had
methylation of HpaII and HhaI site, five had demethylation
of HhaI site and HpaII site, one had demethylation of
HpaII site and methylation of HhaI site, and four had
demethylation of both HhaI and HpaII site. Demethylation
of DNA at HpaII and HhaI site was correlated significantly
with COX-2 expression in gastric cancer tissue (P<0.001,
P<0.05, Table 2).

Table 1  Relationship between HpaII and HhaI demethylation, COX-2
expression and clinical parameters in gastric cancers

     HpaII       HhaI           COX-2 expression
n

D M D M + –

Differentiation

High/moderate 21 18 3 19 2 16 5

Poor 23 16 7 18 5 14 9

TNM staging

I/II 13   8 5   9 4   6 7

31 26 5 28 3 24 7a

Lymph node metastasis

No 17 11 6 12 5   8 9

Yes 27 23 4 25 2 22 5c

aP <0.05 vs I/II stage group, cP<0.05 vs no LN metastasis group, D: demethylation,

M: methylation.

Table 2  Correlation of HpaII and HhaI site demethylation and COX-2
expression

COX-2                HpaII               HhaI
expression

 D               M  D               M

+ 29 1 28 2

-   5 9b   9 5a

aP<0.05 vs  HhaI, bP<0.001 vs HpaII, D: demethylation, M: methylation.

DISCUSSION

The present study indicates that the demethylation of 5’
CpG islands of  COX-2 gene may be a major cause for
COX-2 expression in human gastric cancer. Human COX-2
gene is located in 1q25.2-25.3, consisting of 10 exons and 9

introns. In the 5’-flanking region, there is a CpG island
containing many transcription factor binding sites including
cAMP response element (CRE), NF-B, Sp-1, TATA box,
etc.[27]. We chose a 292 bp region in the up- and downstream
of the transcriptional starting codon from -194 to +98
(containing 14 CpG sites with G+C content of 51% and
an observed/expected presence of  CpG of  0.75), which
meets the established criteria for a CpG island[28,29].
According to our results, unlike that being fully methylated
in normal gastric mucosa specimens, the 5’ CpG island of
COX-2 was demethylated in most gastric cancer tissue
specimens. Moreover, the demethylation was correlated
significantly with COX-2 expression. Song et al[25], reported
that CpG island is completely methylated in human gastric
carcinoma cell line SUN-601, and treatment of the
demethylating agent 5-aza-deoxycitidine reactivates the
expression of  COX-2 and restores IL-1 sensitivity.
Akhtar et al [30], found that gastric carcinoma cell lines
ASG and KATO III, possessing methylated promoters,
do not express COX-2, and have no response to H pylori
stimulation, but treatment with 5-aza-cytidine and H pylori
subsequently causes significant COX-2 expression. These
results suggest that 5’ CpG island demethylation may be a
prerequisite factor for expression of  COX-2 gene. It has
been suggested that many stimulators can regulate the
expression of  COX-2 gene through complex signal
transduction pathways acting on transcriptional-regulatory
elements, or improving COX-2 mRNA stability through
binding to AU-rich element in 3' untranslated region[31,32].
These results lead us to assume that in the early stage of
gastric cancer, COX-2 gene is firstly demethylated by
unknown mechanisms and then begins to transcript under
the co-effects of many transcriptional factors. In our study,
5’ CpG island of  COX-2 gene was partially or completely
demethylated in 10 cancer tissue specimens without
COX-2 expression, but was methylated in two cancer
tissue specimens with COX-2 expression, suggesting that
the interaction between suppressive effects of CpG island
methylation and activation effects of transcriptional
factors may influence the transcription of  COX-2, namely,
a COX-2 gene with demethylated CpG island, if  there
is no activation of transcriptional factors, may also be in
transcriptional silencing.

We found that in 22.73% (10/44) gastric cancer tissue
specimens, COX-2 gene exhibited a methylated CpG island.
Toyota et al[33,34], reported that a subset of  gastric and
colorectal cancers present a CpG island methylator
phenotype (CIMP), which is characterized by simultaneous
methylation of multiple CpG islands of many genes,
including p16, THBS1, and hMLH1. It was suggested that
CpG island methylation of  COX-2 is strongly correlated
with CIMP+ in gastric cancer[24]. Interestingly, K-ras
mutations are frequently found in CIMP+ colorectal cancer,
compared with CIMP– cases having higher P53 mutations[35],
and P53 could suppress the expression of  COX-2[36].
Furthermore, overexpression of  COX-2 is less frequent in
gastric cancer with microsatellite instability (MSI) than in
that without MSI[37] which is mainly resulted from
methylation of  hMLH1

[38]. These findings suggest that the
COX-2 expression status represents different pathways of

3242           ISSN 1007-9327     CN 14-1219/ R     World J Gastroenterol     June 7, 2005   Volume 11   Number 21



gastric carcinogenesis. COX-2 unexpressed cases have
abnormally high methylating potential of  CpG island of
many genes, including COX-2 gene.

Based on this research, we propose to divide gastric
cancer into two groups according to the expression status
of  COX-2. The clinical treatment targeting COX-2
correspondingly need different strategies. Most gastric
cancers are COX-2 positive, COX-2 inhibitors may get
favorable curative effects[16,17]. The other cases are COX-2
negative, which mainly resulted from transcriptional
silencing caused by 5’ CpG island methylation of the gene.
Demethylating agents may exert beneficial therapeutic
effects[39], but further study is needed to address these
deductions.
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