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Abstract

AIM: Cytotoxin-associated protein (antigen) A (CagA)
plays an important role in Helicobacter pylori (H pylori)
pathogenesis. Our aim was to obtain cagA- mutant strains
by a new mutation method so as to better understand
the mechanism of CagA in epithelial cells.

METHODS: In contrast with the traditional method
using suicide plasmid, we constructed cagA– mutant
strains directly with PCR products. The constructed mutant
clones grew on selective media and allelic exchange was
confirmed by Southern blot. Furthermore, two different
transformation methods, electroporation, and natural
transformation, were compared with regard to the
efficiency of recombination.

RESULTS: The mutation by PCR products could be
completed within 3-5 d, and the recombination rate by
electroporation and natural transformation was 4.02×10-8

and 1.03×10-9 respectively. Mutation rate by electroporation
(4.02×10-8) was far higher than by natural transformation
(1.03×10-9) (P = 0.000<0.005).

CONCLUSION: cagA– mutant strains have been constructed,
which is important for further study on the function of
CagA in epithelial cells. A mutation method by directly
using PCR products has been proved successful with a
much higher mutation rate, and is easier, especially when
in combination with electroporation. This method could
be widely used in gene deletion of H pylori.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.
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INTRODUCTION
Helicobacter pylori (H pylori), a Gram-negative bacterial
pathogen, is highly successful in that it has colonized the
human stomach in at least half of the world population.
Epidemiological studies suggest that H pylori have close
relationship with chronic gastritis, peptic ulcer, gastric
cancer, and gastric mucosa-associated lymphoid tissue
lymphomas and some of  them have been confirmed by
animal experiments[1-4]. H pylori strains are divided into two
categories, type I and type II[5]. Clinical isolates of H pylori
from gastric diseases indicate that the pathogenesis of types
I and II strains is different[6]. Compared with type II strains,
type I strains are more closely associated with duodenitis,
duodenal ulcers, and gastric cancer[7]. Type I strains express
CagA protein which is encoded by a gene located in the cag
pathogenicity island (cag PAI). The cag PAI is a 40-kb DNA
segment which encodes for type IV secretion apparatus for
delivering virulent proteins[8]. In contrast, type II strains lack
the entire cag PAI and do not possess the CagA and have
no cytotoxin in vitro[1,9]. It is clear that CagA is transferred
into gastric epithelial cells through type IV secretion system
and phosphorylated by src family protein tyrosine kinases
of host cells. Then, the phosphorylated CagA may lead to
cell skeleton rearrangement and hummingbird phenotype
of epithelial cells[10-15]. Recent studies have shown that the
main difference of CagA of clinical isolates between
different gastric diseases is the amount of  EPIYA motif
that can be phosphorylated at C-terminals of  CagA[16,17].
Other researches showed that the sequences near the
EPIYA motif  also had important functions, which might
affect the function of  the EPIYA motif[17,18]. Moreover,
some research found that EPIYA motif  of  CagA had its
own functions[19].

However, the function of CagA is very complicated
and the roles of  CagA in host cells are still unclear. To
better understand the mechanisms involved in the induction
of host cell responses to CagA and the signal transduction,
it is important to construct cagA mutated strains in an easier
way. Here, we report a simple mutation method by PCR
products to directly construct cagA knockout strains with a
high recombination rate.

MATERIALS AND METHODS

Bacterial strains
H pylori 26695 was grown on Columbia agar plates, which
contain sheep blood (5%) supplemented with vancomycin
(10 g/mL), nystatin (1 g/mL), and trimethoprim (5 g/mL)
for 2 d at 37 ℃ in an anaerobic jar consisting of 5% O2,
100 mL/L CO2, and 85% N2. Chloramphenicol (20 g/mL)
was added for the mutated strains selection.
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Polymerase chain reaction (PCR)
The method of one-step deletion of H pylori gene was as
described previously with slight modifications[20]. Briefly, the
strategy for constructing fragments with chloramphenicol
resistance gene and gene allelic replacement by PCR is shown
in Figure 1. H pylori genomic DNA was extracted by using
BioDev genomic DNA extraction kits (BioDev, China) as
per the manufacturer’s instructions. By use of primers
designated as C1 and C2, chloramphenicol resistance gene
was amplified from plasmid pBSC103, which contained
chloramphenicol resistance gene cassette (Cmr). Two pairs
of primers specific for cagA gene were designed, P1-P2
and P3-P4, which amplified the up- and downstream regions
of cagA gene respectively. Primers P2 and P3 were designed
with leaders at 5’ ends which were complemented with C1
and C2, respectively. In addition, primers B1 and B2 were
designed to detect whether cagA had been deleted. A pair
of primers of cagE gene, E1 and E2, was selected as positive
control. All the primers are shown in Table 1.

Figure 1  Strategy for constructing fragments with chloramphenicol resistance
gene and gene allelic replacement by PCR. Primers P1-P2, P3-P4 and C1-C2
were amplified and each PCR products were purified. Each three PCR products
were mixed and amplified by primer P1 and P4. Then, the PCR product P1-4
was acquired containing three fragments.

Table 1  Primers for amplifying Cmr and up- and downstream regions
of cagA

Primer Sequence (5’–3’)  Expected product size

C1 GAT ATA GAT TGA AAA GTG GAT[20]    742

C2 TTA TCA GTG CGA CAA ACT GGG[20]

P1 GCC ACT ACT ACC ACC GAC AT    364

P2 ATC CAC TTT TCA ATC TAT ATC TAT GAC T

AA GCC ACT GCC GT

P3 CCC AGT TTG TCG CAC TGA TAA TCA AAT A    484

CA CCA ACG CCT

P4 GCA TCC CTA TTA GCC TCT T

B1 ATT AGA CAA CTT GAG CGA G    276

B2 ACA AAC ATC ACG CCA TC

E1 ATG CGA GCC TAT AAT GAG AAG C    841

E2 GAA GCG TGA TAA AAG AGC AAT GTT

Lineated sequences are complementary to C1 and C2. E1, E2 are positive controls

for cagE gene.

Each PCR product was purified by DNA purification
system (Promega, USA). Templates mixture containing 1 g
each of three purified PCR products (P1-2, P3-4, C1-2)

were then amplified using primers P1 and P4 in a single
reaction to generate the linear product with Cmr. The hot-
start PCR conditions are as follows: the templates mixture
were amplified five cycles without primers P1 and P4, at
94 ℃ for 1 min, 45 ℃ for 1 min, and 72 ℃ for 5 min,
followed by 40 cycles with primers P1 and P4, at 94 ℃ for
45 s, 40 ℃ for 1 min, and 72 ℃ for 3 min. Then, the PCR
products were extracted by Qiagen gel extraction kits (Qiagen,
Germany).

H pylori DNA transformation by electroporation and natural
transformation
H pylori were harvested after 2 d’ cultivation and washed
thrice by deionized water with 12% glycerol. They were
then suspended in 0.1 mL deionized water with 12%
glycerol and 0.5 g PCR product was added and mixed
well. To calculate the transformation rate, 9.7×109 H pylori
were used. For electroporation, the mixture was added into
electroporation cuvette (Equibio, USA) and after that
subjected to two-pulse electroporation and scraped onto
Columbia agar plates. The condition is as follows: first pulse:
2500 V, 25 F, delay 10 s; second pulse: 120 V, 150 F.
For natural transformation, the mixture was spotted onto
Columbia agar plates directly. After incubated for 24 h,
cells were scraped onto selective Columbia agar plates
containing 20 g/mL chloramphenicol and incubated for
3-5 d.

Southern blot
The transformants were harvested from selective Columbia
agar plates and genomic DNA was extracted. In order to
confirm that the correct chromosome rearrangement
occurred, transformants were initially screened by diagnostic
PCR using primers B1 and B2. To prepare the blot probes,
the PCR products of C1-2 were purified and labeled using
DIG DNA labeling and detection kits (Roche, Germany).
The genomic DNA of  transformants was digested by EcoRI
for 4 h. The protocol of  Southern blot was performed
following instructions of DIG DNA labeling and detection
kits.

Statistical analysis
2 test was used to calculate the difference of two mutation
methods. P<0.05 was taken as significant.

RESULTS

PCR products with chloramphenicol resistance gene
PCR products C1-2, P1-2, P3-4 and the mixture products
P1-4 are shown in Figure 2. The 1.6-kb PCR products
suggested that the three parts of  PCR products C1-2, P1-
2, P3-4 were linked by primers P1 and P4.

Construction and identification of transformants
H pylori transformed by the 1.6-kb PCR products P1-4 were
cultivated on selective Columbia agar plates. After 3-5 d,
single clones were isolated. In comparison between the two
different mutation methods, 39 clones were isolated by
electroporation and one clone was isolated by natural
transformation from 9.7×109 bacteria. The mutation rates by
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electroporation and natural transformation were 4.02×10-8

and 1.03×10-9, respectively (2 test: P = 0.000<0.005). All
clones (26695△cagA) were diagnosed by primers B1, B2
and E1, E2 as positive control (Figures 3A and B). The
results suggested that the flanking region of  cagA gene, we
designed to delete in all the clones, had been replaced.
Southern blot using probes labeled with chloramphenicol
resistance gene further confirmed that the chloramphenicol
resistance gene had only one copy in the genomic DNA of
H pylori except clones 3, 5, and 9 (Figure 3C). Consequently,
the allelic exchange occurred only in the cagA gene just as
we designed in all clones except clones 3, 5, and 9.

DISCUSSION

The correlation between the expression of CagA and H pylori

virulence was described long time ago[21]. Early studies
found that a 145-ku host protein was phosphorylated in
epithelial cells after being infected by H pylori[22]. Recent
investigations demonstrated that the phosphorylated 145-ku
protein was CagA which was delivered by type IV secretion
system[23,24]. Then, the phosphorylated CagA, binding with
SHP-2, led to rearrangements of the actin cytoskeleton
and hummingbird phenotype[25,26]. The further consequence
of phosphorylated CagA is tyrosine dephosphorylation of
several cell proteins of 120 and 85 ku[23,27-29]. However,
the precise function of this protein is still not understood
well. To study the mechanism of  CagA, we constructed
CagA mutant strains.

Because H pylori has higher mutation ratio than other
bacteria, it is suitable to use PCR products as the allelic
fragments to disrupt genes. The normal method for gene
mutation is by suicide plasmid[29] or PCR products with
plasmid expressing recombinase[29]. Compared with these
techniques, our method was much more simple and efficient.
Suicide plasmid has potential disadvantage in that it may
have many false clones without mutation. The mechanism
is as shown in Figure 4. The suicide plasmid with PCR
products to be exchanged firstly recombines with one allelic
fragment and then recombines with another allelic fragment.
If  the second recombination does not occur, it would form
a loop without flanking regions deletion. Thus, some
investigations disrupting genes with suicide plasmid normally
use two screening markers to confirm the flanking regions
deletion. Another method, by recombination of PCR
products with plasmid expressing recombinase, requires the
phage  Red recombinase, which is synthesized under the
control of an inducible promoter of an easily curable, low
copy number plasmid. In this way, allelic fragments of PCR
products are very short, less than 50 bp. However, phage 
Red recombinase may lead to other unwanted recombination
of events which can hardly be under control. Moreover,
phage  Red recombinase system is mainly used in E.coli.
Its application in other bacteria still needs to be proved.
Allelic exchange directly by PCR products has no such

Figure 2  PCR amplification for constructing fragments with chloramphenicol
resistance gene and gene allelic replacements. The length of cagA/P1-4, a 1.7-kb
fragment, is equal to the sum of the length of cagA/P1-2, cagA/P3-4, and cam.

Figure 3  A: Result of PCR amplified for diagnosing homologous recombination
strains of cagA gene. Lanes 1-12 are 12 clones selected from chloramphenicol-
resistant plates. Control is 26695 wild type. Twelve clones were all negative for
diagnostic primers B1-2 while control is positive, suggesting that the flanking region
of cagA gene of all the selected clones was deleted; B: Result of PCR amplified for
positive control of  homologous recombination strains of cagE gene. Lanes 1-12 are
12 clones selected from chloramphenicol-resistant plates. Control is 26695 wild
type. Twelve clones were all positive of cagE gene; C: Result of Southern blot for
diagnosing homologous recombination strains of cagA gene. Lanes 1-12 are 12
clones selected from chloramphenicol-resistant plates. Control is 26695 wild
type. All the 12 clones except 3, 5, and 9 were positive hybridizat ion with
probes of chloramphenicol-resistant gene while control was negative.

Figure 4  Mechanism of allelic fragments recombination used by suicide
plasmid. The recombination consists of two steps. In the first step, suicide
plasmid with PCR products to be exchanged recombined with one allelic
fragment and formed a loop. Then, the suicide plasmid recombined with another
allelic fragment.
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problems because it is linear DNA and cannot form the
loop. In our study, we successfully deleted virB4, virB10,
virB11, and cag PAI (data not shown). To confirm whether
the flanking regions were replaced, the detective PCR was
used and results proved that the flanking fragment we wanted
to replace by resistant gene was disrupted. On the other
hand, PCR for detecting chloramphenicol resistance gene
indicated that all the mutated strains contained the resistant
gene except the control. In addition, Southern blot using
probes for resistant gene further confirmed that no other
gene replacement occurred except in our designed region.
However, the results of  Southern blot suggested that gene
replacement of clones 3, 5, and 9 did not happen in our
designed region. This could suggest that unwanted
replacement also occurred.

Disrupting H pylori chromosome gene by PCR products
was firstly described by Chalker et al[20]. However, details
were improved by which electroporation was used in this
study. Normally, bacteria can take up free DNA directly
from their environment. This process is called transformation.
However, natural transformation rate is far lower. One
factor that affects the efficiency of  transformation rate is
the size of  DNA to be transformed. Natural transformation
is more sensitive to the size of DNA. Compared with
natural transformation, electroporation can increase the
transformation rate by high electric shock opening the cell
membrane, through which DNA can move into cells. During
this process, the size of DNA has minor effects on its
movement. Moreover, another advantage of electroporation
is that it can transform not only the linear DNA such as
PCR products, but also circular plasmids or phage DNA.
Natural transformation cannot transform circular DNA
efficiently because natural transformation requires breakage
of the double-stranded DNA and degradation of one of
the two strands so that a linear single strand can enter the
cells. So, natural transformation is more suitable for up-
taking PCR products which are linear. Our data indicated
that, in H pylori, at least in 26695, the efficiency of
transformation rate of  electroporation was 4.02×10-8,
far higher than natural transformation, 1.03×10-9 (2 test:
P = 0.000<0.005).

In conclusion, we have successfully constructed the
26695 cagA- strain which is very important for investigation
of mechanism of CagA. Moreover, we have developed a
new mutation method which can be wildly used in gene
mutation of H pylori.
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