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AbstractAbstractAbstractAbstractAbstract

AIM: To investigate the frequency and distribution of
N-acetyltransferase 2 (NAT2) and uridine 5’-diphosphate
(UDP)-glucuronosyltransferase 1A7 (UGT1A7) genes in
patients with ulcerative colitis (UC) and Crohn’s disease (CD).

METHODS: Frequencies and distributions of NAT2 and
UGT1A7 SNPs as well as their haplotypes were investigated
in 95 patients with UC, 60 patients with CD, and 200
gender-matched, unrelated, healthy, control volunteers
by PCR-restriction fragment length polymorphism (RFLP),
PCR-denaturing high-performance liquid chromatography
(DHPLC), and direct DNA sequencing.

RESULTS: Multiple logistic regression analysis revealed
that the frequency of haplotype, NAT2*7B, significantly
increased in CD patients, compared to that in controls
(P = 0.0130, OR = 2.802, 95%CI = 1.243-6.316). However,
there was no association between NAT2 haplotypes and
UC, or between any UGT1A7 haplotypes and inflammatory
bowel disease (IBD).

CONCLUSION: It is likely that the NAT2 gene is one of

the determinants for CD in Japanese. Alternatively, a new
CD determinant may exist in the 8p22 region, where NAT2

is located.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Chronic inflammatory bowel disease (IBD) is a multi-factorial
disorder characterized by non-specific inflammation of the
gastrointestinal tract with an increase in the permeability to
xenobiotics in the intestinal mucosa, finally resulting in intestinal
malabsorption and immune defense abnormalities[1,2].
Ulcerative colitis (UC) and Crohn’s disease (CD) are the
major forms of  IBD. Although the precise etiology of  IBD
remains unknown, not only several environmental factors,
such as dietary components and microorganisms, but also
genetic factors may contribute to the occurrence of this
disorder[3,4]. Recently, extensive molecular genetic studies
have been launched to identify genes underlying the etiology[5].
One of them is the caspase activating recruitment domain
15/nucleotide oligomerization domain 2 gene (CARD15/
NOD2) located at 16q12. Although mutations in NOD2
are observed frequently in Caucasian patients with CD, but
not with UC[6,7], they have rarely been found in Japanese
CD patients[8,9], suggesting that NOD2 is not a major
determinant for CD in Japanese.

We have particularly focused on genes for N-
acetyltransferase 2 (NAT2) and uridine 5’-diphosphate
(UDP)-glucuronosyltransferase 1A7 (UGT1A7) as candidates
susceptible to IBD, because they are expressed in the
gastrointestinal tract and play a role in biochemical barriers
against internal and external xenobiotics[10-12]. Diminution
or disturbance of these barriers might result in increased
permeability to xenobiotics in the gastrointestinal tract, and
subsequently their accumulation in the body, probably leading
to the development of  IBD. N-acetyltransferases (NATs)
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are the enzymes catalyzing N-acetylation (deactivation) of
a variety of carbocyclic and heterocyclic arylamines by
means of transferring acetyl-CoA to the amino or hydroxyl
side chain of arylamines in metabolism of the phase II
reaction[10]. NATs are encoded by two genes, NAT1 and
NAT2, both are located at 8p22. NAT1 is ubiquitously
expressed, while the expression of NAT2 is confined to
the gastrointestinal tract and liver[10]. The UDP-glucuronosyl-
transferase 1 family genes located at 2q37 consist of nine
functional genes, UGT1A1, UGT1A3-10, which catalyze
the glucuronidation of small lipophilic agents by means of
conversion of hydrophobic substrates to inactive hydrophilic
UDP-glucuronides, and are expressed in a tissue-specific
fashion in the gastrointestinal tract and liver. In particular,
UGT1A7 is expressed exclusively in the gastrointestinal tract
and lung, but not in the liver[13-15]. The degree of metabolism
with regard to both NAT2 and UGT1A7 varies among
individuals, suggesting the presence of  genetic variations
contributing to the metabolic activation capacity. Current
studies have shown an association between NAT2 or
UGT1A7 polymorphisms and various diseases, i.e., systemic
sclerosis and systemic lupus erythematosus [16], drug
toxicity[17,18], orolaryngeal cancer[19], esophageal cancer[20],
colorectal cancer[21,22], pancreas cancer[23], hepatocellular
carcinoma[15,24], or bladder cancer[25].

Here we report the results of studies on association
between NAT2 or UGT1A7 and IBD in Japanese using
six and three polymorphic haplotypes in the two genes,
respectively.

MAMAMAMAMATERIALS AND METHODSTERIALS AND METHODSTERIALS AND METHODSTERIALS AND METHODSTERIALS AND METHODS

Subjects
The subjects studied comprised 95 patients with UC, 60
patients with CD, and 200 gender-matched, unrelated, healthy
volunteers, and were further characterized as listed in
Table 1. All participants were Japanese, who were randomly
recruited from eight general health clinics in the Nagasaki
area in Japan. The study protocol was approved by the
Committee for the Ethical Issue on Human Genome and
Gene Analysis in Nagasaki University, and written informed
consent was obtained from each participant. Diagnosis of
IBD was made according to endoscopic, radiological,
histological, and clinical criteria provided by both the Council
for International Organizations of Medical Sciences in
WHO and the International Organization for the Study of
Inflammatory Bowel Disease[26-28]. Patients with indeterminate
colitis, multiple sclerosis, systemic lupus erythematosus, or
other recognized autoimmune diseases were excluded from
the subjects studied.

Determination of NAT2 polymorphisms
Genomic DNA was extracted from peripheral whole blood
of each individual using the DNA Extractor WB-rapid Kit
(Wako, Osaka, Japan) according to the manufacturer’s
protocol. Single nucleotide polymorphisms (SNPs) of NAT2
deposited in SNP-database[29] were determined with the
PCR-restriction fragment length polymorphism (RFLP)
method using primer pairs and protocol described by Leff
et al.[30]. The PCR-RFLP method was modified in order to
distinguish among all known NAT2 SNPs[29]. In brief,
polymorphic region in NAT2 was amplified by PCR with a
GeneAmp PCR system 9700 thermal cycler (Applied
Biosystems, Foster City, CA, USA) using 250 ng of  genomic
DNA in a 50-µL reaction containing 10 mmol/L Tris-HCl,
pH 8.3, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.2 mmol/L
each dNTP, 500 ng of forward primer: 5’-GGCTATAA-
GAACTCTAGGAAC-3’, 500 ng of  reverse primer: 5’-
AAGGGTTTATTTTGTTCCTTATTCTAAAT-3’, and
2.0 U Taq DNA polymerase. The amplification protocol
comprised initial denaturation at 94  for 5 min; 35 cycles
of denaturation at 94  for 30 s, annealing at 55  for
30 s, and extension at 72  for 30 s; and a final extension
at 72  for 5 min. PCR product of 896 bp was digested
by restriction enzymes (TaKaRa Biomedical, Shiga, Japan).
Three SNPs, C190T, G191A, and A434C, were detected
by digestion with MspI. Likewise, C282T, C481T, or G857A
was detected by digestion with FokI, KpnI, or BamHI,
respectively. T111C, G590A, and C759T were detected by
digestion with TaqI. These fragments were subjected to
electrophoresis on 2% agarose or 5% polyacrylamide gel,
and visualized with UV transilluminator (Alpha Innotech,
CA, USA) after ethidium bromide staining. Moreover,
T341C, A803G, and A845C were detected by further
nested PCR. Amplified NAT2 product (1 µL) was used as a
template in a 25-µL reaction containing 10 mmol/L Tris-HCl,
pH 8.3, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.2 mmol/L
each dNTP, 250 ng of  forward primer: 5’-CACCTTCT-
CCTGCAGGTGACCG-3’ and reverse primer: 5’-
TGTCAAGCAGAAAATGCAAGGC-3’ for T341C and
A803G, or 250 ng of  forward primer: 5’-TGAGGAA-
GAGGTTGAAGAAGTGCT-3’ and reverse primer: 5’-
AAGGGTTTATTTTGTTCCTTATTCTAAAT-3’ for
A845C, and 0.5 U Taq DNA polymerase. The amplification
protocol comprised initial denaturation at 94  for 5 min;
35 cycles of denaturation at 94  for 30 s, annealing at
62  for 30 s, and extension at 72  for 30 s; and a final
extension at 72  for 5 min. The former nested PCR
products were digested with AciI and DdeI (New England
BioLabs Inc., MA, USA) to detect T341C and A803G,
respectively. The latter products were digested with
DraIII (New England BioLabs Inc.) to detect A845C. All
these products were subjected to electrophoresis on 6%
polyacrylamide gel, and visualized as described above.

Determination of UGT1A7 polymorphisms
Four SNPs have been known within UGT1A7-exon 1[15]. A
SNP at codon 11 is a silent mutation. SNPs at codons 129
and 131 lying in a linkage disequilibrium (LD) block were
detected by PCR-denaturing high-performance liquid
chromatography (DHPLC) with an automated HPLC

Table 1  Clinical characteristics of study subjects

          Disease
Characteristic                 Control

                UC                  CD

Number of subjects                95                   60  200
Age range (yr)             14–83               17–75                   20–60
Age (mean±SD)          44.4±16.4b             35.0±12.6                32.5±11.1
Male/female (%)  53 (55.8)/42 (44.2)   35 (58.3)/25 (41.7)   125 (62.5)/75 (37.5)

bP<0.01 vs control.
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instrument (WAVETM, Transgenomic, CA, USA), and by
direct DNA sequencing with ABI 310 (Applied Biosystems,
Foster City, USA). A DNA fragment containing codons 129
and 131 was amplified by PCR using 125 ng of genomic
DNA in a 25-µL reaction containing 10 mmol/L Tris-HCl,
pH 8.3, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.2 mmol/L
each dNTP, 500 ng of  forward primer: 5’-CCGGGAGT-
TCATGGTTTTT-3’, 250 ng of  reverse primer: 5’-
CACAGAGGGGAGGGAGAAAT-3’, and 1.0 U Taq DNA
polymerase, generating a 260-bp fragment. Amplification
protocol comprised initial denaturation at 94  for 5 min;
35 cycles of denaturation at 94  for 30 s, annealing at
55  for 30 s, and extension at 72  for 30 s; and a final
extension at 72  for 5 min. PCR products were used for
DHPLC analysis. The temperature required for successful
resolution of  heteroduplex molecules was determined to
be 56.8  according to the manufacturer’s protocol.
Another SNP at codon 208 was detected by PCR-RFLP
using primer pair of  5’-GCATGAGGTGGTCGTCGTCA-
3’/5’-CATCACGGGTTTGGGATACT-3’, as in the NAT2
SNP-detection. After digestion of PCR products by RsaI
(Promega, WI, USA), the fragments were subjected to
electrophoresis on 2% agarose gel, and visualized as
described above.

Statistical analysis
Gender and age value among the subjects were evaluated
by χ2 test and unpaired Student’s t test, respectively. Allele
frequencies were estimated by the gene-counting method,
and χ2 test was used to identify significant departures from
the Hardy-Weinberg equilibrium. Subsequently, the odds
ratio (OR) with 95% confidence interval (95%CI) was
calculated by multiple logistic regression analysis using the
JMP program package (version 5, SAS Institute, Cary, NC,
USA) and the StatView program package (version 5, SAS
Institute). Haplotype and genotype frequencies were
compared between individuals with and without haplotype
or genotype, using χ2 test. A P value of 0.05 or less was
considered statistically significant.

RESULRESULRESULRESULRESULTSTSTSTSTS

Haplotype frequencies of NAT2
We identified six haplotypes composed of  six SNPs among
the subjects examined (Table 2). The haplotype “NAT2*4”
comprising 69.5% of controls was wild-type, while five
other haplotypes were variants. Distributions of the
haplotypes in our study population were well corresponded
to the Hardy-Weinberg equilibrium (Table 2). The results
implied that the population we studied had a homogeneous
genetic background, being consistent with the previous
observations[31-33]. However, since the frequencies of  three
haplotypes, NAT2*5B, NAT2*11, and NAT2*13, were
very low, they were not considered for subsequent multiple
logistic regression analysis.

The frequency of haplotype “NAT2*7B” composed of
two SNPs (C282T and G857A) significantly increased in
patients with CD, compared to that in controls (P = 0.0130,
OR = 2.802, 95%CI: 1.243-6.316, Table 3). In contrast,
there was no difference in frequency of NAT2*7B between

patients with UC and controls (P = 0.3338, OR = 1.436,
95%CI: 0.689-2.992). Of the 60 CD patients, 17 (28.3%)
had NAT2*7B, the incidence being significantly higher than
that (32/200, 16.0%) in controls (P = 0.032, OR = 2.076,
Table 4). These results indicated that the haplotype
NAT2*7B was associated with the susceptibility to CD, but
not to UC.

Cascorbi et al.[34], and Gross et al.[35], have shown a
relationship between genotypes of NAT2 polymorphism
and phenotypes. The haplotypes NAT2*4, NAT2*11, and
NAT2*13, code for the rapid acetylator phenotype, while
NAT2*5B, NAT2*6A, and NAT2*7B, code for the slow
acetylators. According to their reports, we divided the
subjects in to two groups: the rapid acetylators comprised
homozygous and heterozygous carriers of the haplotypes
NAT2*4, NAT2*11, or NAT2*13 and the slow acetylators
comprised all homozygous carriers of the other haplotypes.
The frequency and distribution were compared between
these groups, but there were no significant differences in
frequencies of these estimated phenotypes among patients
with UC, CD, and controls (data not shown).

Table 2  Distributions of six NAT2-haplotypes in patients with UC/CD
and controls

      Number (%) of subjects with haplotype
Haplotype           SNP

            UC    CD        Control
  (allele = 190)  (allele = 120)  (allele = 400)

NAT2*4              None      122 (64.2)           77 (64.2)     278 (69.5)
NAT2*5B           T341C, C481T, A803G         3 (1.6)  1 (0.8)           2 (0.5)
NAT2*6A           C282T, G590A        43 (22.6)           21 (17.5)        79 (19.75)
NAT2*7B           C282T, G857A        20 (10.5)           18 (15.0)        35 (8.75)
NAT2*11           C481T           0 (0)  1 (0.8)           1 (0.25)
NAT2*13           C282T           2 (1.1)  2 (1.7)           5 (1.25)

Table 3  Comparisons of frequencies of NAT2-haplotypes among
study subjects by multiple logistic regression analysis

Haplotype      P             Odds ratio               95% confidence
    interval

UC patients vs controls
       NAT2*4 0.6823 0.809 0.293–2.232
       NAT2*6A 0.5621 1.183 0.671–2.084
       NAT2*7B 0.3338 1.436 0.689–2.992
CD patients vs controls
       NAT2*4 0.2616 2.162 0.563–8.304
       NAT2*6A 0.3898 1.349 0.682–2.670
       NAT2*7B 0.0130 2.802 1.243–6.316

Table 4  Number of subjects with or without haplotype NAT2*7B

NAT2*7B                 UC     CD        Control
       (n = 95, %)               (n = 60, %)    (n = 200, %)

Presence           19 (20.0)                  17 (28.3)        32 (16.0)
Absence           76 (80.0)                  43 (71.7)     168 (84.0)

CD patients vs controls: P = 0.032, OR = 2.076.

Haplotype frequencies of UGT1A7
We detected two SNPs at codons 129 and 131 of  UGT1A7
by DHPLC with 100% accuracy, as confirmed by direct



DNA sequencing. Subsequently, on the basis of the results
by PCR-DHPLC and PCR-RFLP, three haplotypes,
UGT1A7*1, UGT1A7*2, and UGT1A7*3, were determined
in the Japanese population studied (Table 5). The UGT1A7*1
haplotype was wild-type, UGT1A7*2 and UGT1A7*3 were
identified as variants, while another haplotype, UGT1A*4,
was not observed, indicating that it was very rare in Japanese.
There were no significant differences in frequencies of
haplotypes and genotypes among patients UC, CD, and
controls (data not shown).

Table 5  Distributions of three UGT1A7 haplotypes among study
subjects

     Number (%) of subjects with haplotype
Haplotype       SNP

           UC   CD        Control
                    (allele = 190)   (allele = 120)   (allele = 400)

UGT1A7*1     None      120 (63.2)          69 (57.5)       242 (60.5)
UGT1A7*2     T387G, C391A, G392A        29 (15.3)          24 (20.0)         55 (13.8)
UGT1A7*3     T387G, C391A, G392A,       41 (21.6)          27 (22.5)          103 (25.7)

         T622C
UGT1A7*4     T622C          0 (0) 0 (0)           0 (0)

DISCUSSIONDISCUSSIONDISCUSSIONDISCUSSIONDISCUSSION

We have shown that a NAT2 haplotype, NAT2*7B, is
associated with CD, and thus, NAT2 could be one of the
genetic factors for the predisposition to the onset and/or
development of CD, although its contribution to this disease
appears relatively small. In contrast, we could not find any
association between UGT1A7 polymorphism and IBD,
suggesting that UGT1A7 never confers to these diseases.
Although there are previous reports demonstrating an
association between certain NAT2 variants and diseases,
they deal with phenotypical variations, such as rapid,
intermediate, and slow acetylators in different conditions
such as systemic sclerosis, systemic lupus erythematosus,
and drug-induced agranulocytosis[16,17]. Therefore, the present
study is the first report documenting an association between
NAT2 genetic variation and CD.

Three NAT2 haplotypes, NAT2*5B, NAT2*6A ,
and NAT2*7B, are estimated to show slow acetylator
phenotypes[34,35]. The present study showed that slow
acetylator carrying these haplotypes was not associated,
with CD (data not shown). Although a role of the NAT2*7B
haplotype in the susceptibility to CD is unknown, Fretland
et al., demonstrated, that this haplotype is functionally related
to low activity of N-acetylation[36]. It is likely, that low activity
of N-acetylation due to NAT2*7B might fail to metabolite
xenobiotics in the state of  increased permeability in the
gastrointestinal tract and subsequently accumulates them in
the body since NAT2 functions as a biochemical barrier
against xenobiotics including dietary intake, intestinal
bacteria, and toxins[10-12,15]. Our hypothesis may be partly
supported by clinical evidence that total parenteral nutrition
and elemental diet placing the gastrointestinal tract “at rest”
can successfully improve CD, and refeeding by oral
conventional diet aggravates the activity of  CD[37].

Recent genome-wide linkage analyses and candidate
gene-based association studies have shown possible IBD

susceptibility regions at 16q12 (IBD1), 12p13 (IBD2), 6p21
(IBD3), 14q11 (IBD4), 19p13 (IBD5), 5q31-q33 (IBD6),
1p36 (IBD7), and at 16p (IBD8)[5,38,39]. Our results indicate
the existence of  a new CD determinant at an LD region
of 8p22, even if it is not NAT2 it-self. It remains to be
confirmed whether the association is reproducible in larger
Japanese samples as well as in other populations.
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