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AIM: To investigate the effect of all-trans-retinoic acid
(ATRA) on arsenic trioxide (As,03)-induced apoptosis of
human hepatoma, breast cancer, and lung cancer cells
in an attempt to find a better combination therapy for
solid tumors.

METHODS: Human hepatoma cell lines HepG2, Hep3B,
human breast cancer cell line MCF-7, and human lung
adenocarcinoma cell line AGZY-83-a were treated with
As,0; together with ATRA. Cell survival fraction was
determined by MTT assay, cell viability and apoptosis
were measured by annexin V-fluorescein isothiocyanate
(FITC) and PI staining, and intracellular glutathione (GSH)
and glutathione-S-transferase (GST) activities were
determined using commercial Kits.

RESULTS: Cytotoxicity of ATRA was low. ATRA (0.1, 1,
and 10 umol/L) could synergistically potentiate As,0; to
exert a dose-dependent inhibition of growth and to induce
apoptosis in each of the cell lines. HepG2 and Hep3B with
low intracellular GSH or GST activities were remarkably
sensitive to As,0; or As,O;+ATRA, while AGZY-83-a with
higher GSH or GST activities was less sensitive to As,0;
or As,0;+ATRA. Treatment with 2 umol/L As,O; for 72 h
significantly decreased intracellular GSH and GST levels
in each of the cell lines, and 1 umol/L ATRA alone reduced
minimal intracellular GSH and GST levels. ATRA potentiated
the effect of As,O;0n intracellular GSH levels, but
intracellular GST levels were not significantly affected by
the combination of As,O; and ATRA for 72 h as compared
to As,0; alone.

CONCLUSION: ATRA can strongly potentiate As,0s-
induced growth-inhibition and apoptosis in each of the
cell lines, and two drugs can produce a significant synergic
effect. The sensitivity to As,0; 0r As,O;+ATRA is inversely
proportional to intracellular GSH or GST levels in each of
the cell lines. The GSH redox system may be the possible
mechanism by which ATRA synergistically potentiates
As,0O; to exert a dose-dependent inhibition of growth and
to induce apoptosis.
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Liver, breast, and lung cancers are the most common
malignant diseases in the human race. Surgical resection or
radiation therapy is potentially curative for localized diseases.
Advanced liver, breast, and lung cancers are associated with
a poor prognosis, and conventional chemotherapies and
radiation therapy are still of limited effectiveness. Innovative
approaches for advanced disease are necessary.

During the last decade, investigators using As,O; alone
or the combination of all-trans-retinoic acid (ATRA) and
As,O; for patients with acute promyelocytic leukemia (APL),
have achieved great successt=. Because of the many
pathways involved in mediating the effects of arsenic, the
potential exists for synergism with other agents to provide
enhanced therapeutic benefits. Retinoic acid and arsenic
synergize to eradicate leukemic cells in a mouse model
of APLE,

Other studies have also shown that As,O; or ATRA
alone has antiproliferative and apoptotic activities in some
solid tumors, including human hepatoma and breast
cancer®8, Because of the drug resistance of solid tumors
to As,Os, it has not been widely used in the treatment of
solid tumors. Therefore, this study was to investigate the
effect of ATRA on As,O;-induced cell apoptosis in human
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hepatoma, breast cancer, and lung cancer in an attempt to
find a better combination therapy for solid tumors. To our
knowledge, this is the first report on the effects of the
combination of As,O; and ATRA for solid tumors.

The glutathione (GSH) redox system is known to
modulate the growth-inhibitory and apoptotic effect of
As,O;. Different kinds of malignant cells have different
GSH levels. It was reported that the GSH redox system is
relative to sensitivity of malignant cells to As,O5. Elevated
GSH levels are associated with the chemoresistance of
malignant cells. Optimal therapies for chemoresistant
malignant cells should overcome or bypass the increased
intracellular GSH levels. Glutathione-S-transferase (GST),
an enzyme involved in metabolic detoxification of a variety
of xenobiotics, is increased in an arsenic-resistant CHO
cell line®®4, Therefore, we also measured intracellular GSH
and GST levels in malignant cells, when they were treated in
the absence or presence of As,O;, ATRA, or As,O,+ATRA.

Materials

Human hepatoma cell lines HepG2, Hep3B, human breast
cancer cell line MCF-7 (American Type Culture Collection,
Rockville, MD, USA) and human lung adenocarcinoma cell
line AGZY-83-a (Harbin Medical University) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 100 U/mL penicillin, 100 ng/mL
streptomycin, 1 mmol/L L-glutamine, and 10% heat-
inactivated fetal bovine serum in a humidified atmosphere
of 50 mL/L CO; at 37 ;a Cells in logarithmic growth
were seeded at 1x10° cells/mL for studies performed in
duplicate and repeated at least thrice. As,Os solution (0.1%)
was purchased from Harbin Medical University (Harbin,
China). ATRA, MTT, and dimethyl sulfoxide (DMSO) were
purchased from Sigma Chemical Co. (St. Louis, MO, USA).

Cell proliferation and cell survival rate tested with MTT

Cell proliferation was measured by a MTT assay. For
proliferation assays, cells were plated onto 96-well plates
(2x108 cells/well, 200 pL cell suspension per well) and
cultured overnight to allow for cell attachment. Cells were
then treated with drugs of different concentrations in
the absence (control) or presence of As,O; (0.5, 1, 1.5,
and 2 umol/L), ATRA (0.1, 1, and 10 umol/L), or
As,0;+ATRA. All groups had concentrations of four
compound wells. After incubation for 72 h, 20 uL of 0.5%
MTT was added to each well and incubated for another
4 h. The supernatant was discarded and 150 uL of DMSO
was added. When the stain was dissolved, the optical density
ABS (absorbance) value of each well was read on Minireader
Il at 490 nm. Cell survival rate was calculated with the
following equation: average A value of experimental group/
average A value of control groupx100%. Each experiment
was repeated at least thrice.

Quantitation of cell viability and apoptotic cells

Cell viability and apoptosis were measured by annexin
V-fluorescein isothiocyanate (FITC) (Becton Dickinson)
and PI staining. Cells were plated onto six-well dishes
(1x10° cells/dish) and grown overnight to allow for cell

attachment. They were then treated in the absence (control)
or presence of As,O; (2 umol/L), ATRA (1 and 10 umol/L),
or As;O;+ATRA (1 and 10 umol/L) for 72 h. After the
indicated time, cells were harvested, washed once in PBS and
stained with annexin V-FITC (Biovision) and PI (2 mg/mL)
according to manufacturer’s instructions. Samples were
acquired on a FACScan flow cytometer (Becton Dickinson,
San Jose, CA, USA) and analyzed with CellQuest software
(Becton Dickinson).

Intracellular glutathione measurements

Intracellular GSH levels were determined in all cell lines.
Cells were plated onto six-well dishes (1x10° cells/dish) and
grown overnight to allow for cell attachment. They were
then treated in the absence (control) or presence of As,O;
(2 wmol/L), ATRA (1 umol/L), or As,O;+ATRA for 72 h.
After the indicated time, cells were harvested, and
intracellular GSH was measured using the GSH assay kit
(Calbiochem, San Diego, CA, USA). Briefly, cells were pelleted,
resuspended in 500 pL ice-cold 5% metaphosphoric acid,
and homogenized with a Teflon pestle and an overhead
stirrer. After centrifugation at 3 000 r/min for 10 min at
4 ;& 60 uL supernatant, 60 uL solution R1, 2 pL solution
R2, and 1 mL solution R3 were combined according to the
manufacturer’s instructions. Samples were incubated at room
temperature for 5 min in the dark, and the final absorbance
was measured at 412 nm and compared to a GSH standard
curve. To quantitate the total protein, the pellet from the
above centrifugation was resuspended in 1 mol/L NaOH,
and the protein concentration was measured using the
Bio-Rad DC protein assay (Bio-Rad, Hercules, CA, USA).
Intracellular GSH was normalized to total protein content.

Measurement of intracellular GST

GST activity was determined using commercial kits
(Calbiochem, San Diego, CA, USA). GST activity was
measured using 1-chloro-2,4-dinitrobenzene (CDNB) and
GSH as substrates. Cells were plated onto six-well dishes
(1x10° cells/dish) and grown overnight to allow for cell
attachment. They were then treated in the absence (control)
or presence of As,O; (2 umol/L), ATRA (1 umol/L), or
As,O;+ATRA for 72 h. After the indicated time, cells were
harvested. The cell pellets were resuspended in 300 uL of
100 mmol/L potassium phosphate buffer, pH 6.8, sonicated
for 10 s at 4 ;& and centrifuged at 14 000 g for 30 min.
Supernatant was used for GST measurement according to
the manufacturer’s instructions. The absorbance at 412 nm
was continuously recorded for 2 min. The pellet was
dissolved in 1 mol/L NaOH and analyzed for protein by
Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA,
USA). The GST content was expressed as nanomoles per
milligram protein per minute.

Statistical analysis

Data were presented graphically as mean+SD. Treatment
groups were compared by independent t-test or paired t
test as appropriate, with P reported in each figure legend.
Statistical analyses were performed using SPSS 10.1
software.
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Effects of ATRA and As,O; on growth inhibition in each cell line
To examine the possible relationship between serum
concentration and growth-inhibitory effects of the two drugs,
cells were treated with drugs of different concentrations in
the absence (control) or presence of As,O; (0.5, 1, 1.5, and
2 umol/L), ATRA (0.1, 1, and 10 umol/L), or As,O;+ATRA
for 72 h, and then cell growth was measured by MTT assays.
The ATRA alone at 0.1, 1, and 10 umol/L could only
moderately inhibit cell growth in each of the cell lines. As,O;
exerted a dose-dependent growth inhibition of the HepGz2,
Hep3B, MCF-7, AGZY-83-a cells (Figures 1A-D).
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Figure 1 Effects of ATRA and As,O, on growth inhibition in cancer cell lines
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Interestingly, the combination of ATRA (0.1, 1, and
10 umol/L) and As,O; had at least an additive effect on
growth inhibition in each of the cell lines. ATRA (0.1, 1,
and 10 umol/L) could synergistically potentiate As,O; to
exert a dose-dependent growth inhibition in each of the cell
lines. High concentration of ATRA (10 umol/L) exerted
greater synergistic effects on growth inhibition than low
concentration (0.1 umol/L, Figures 1A-D).

Effects of two drugs on apoptosis in each cell line

Cytotoxicity of ATRA was low. The apoptotic rate of 1 or
10 umol/L of ATRA approached to that of control in
each of the cell lines, and the difference was not significant
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Table 1 Basal activities of GSH or GST and As,0;+ ATRA or As,Oz-induced apoptosis in different cell lines (mean+SD)

Apoptosis (%)

Cell lines GSH GST As,0O;

As,05+ATRA (10 umol/L) As,0s+ ATRA (1 umol/L)
HepG2 60.747.1 22.3+1.4 29.3+3.2 61.1+5.6 48.4+4. 1
Hep3B 62.445.4 21.442.8 27.316.5 57.1+4.9 49.3+4.2
MCF-7 76.045.1 31.0+2.6 22.6+3.3 45.5+3.0 40.243.3
AGZY-83-a 104.848.1 50.6+4.5 19.0+3.8 40.845.6 32.9+3.0

(P>0.05). ATRA greatly potentiated the apoptosis induced
by As,O;. Exposure of the cells to the combination of
As,0; (2 umol/L) and ATRA (10 umol/L) for 72 h
synergistically induced apoptosis in HepG2 (61.1+5.6%),
Hep3B (57.1+4.9%), MCF-7 (45.5+3.0%), AGZY-83-a
(40.8+5.6%) respectively, as measured by annexin V-FITC
and PI staining as compared to exposure of the cells to
either agent alone (Figure 2A). A similar, dramatic effect
was observed, when they were treated in the absence (control)
or presence of As,O; (2 umol/L), ATRA (1 umol/L), or
As,0;+ATRA for 72 h, with HepG2 being 48.4+4.1%,
Hep3B being 49.3+4.2%, MCF-7 being 40.2+3.3%,
AGZY-83-a being 32.9+3.0% respectively (Figure 2B). All
these findings indicated that ATRA could synergistically
potentiate As,Oj; to induce apoptosis in each of the cell lines.
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Figure 2 Effects of combined ATRA (10 mol/L: A, 1 mol/L: B) and As,0;, and
either agent alone on apoptosis in cancer cell lines.

Changes of intracellular GSH and GST

HepG2 and Hep3B with low intracellular GSH or GST
activities, were remarkably sensitive to 2 umol/L As,O; or
As,03 (2 umol/L)+ATRA (10 umol/L), the apoptotic rate
was 29.3+3.2% and 61.1+5.6%, respectively. AGZY-83-a
with higher GSH or GST activities was less sensitive to
As,O; or As,O5+ATRA, the apoptotic rate was 19.0+3.8%

and 40.8+5.6%, respectively (Table 1). The sensitivity to
As,O; or As,O;+ATRA was inversely proportional to
intracellular GSH or GST levels in each of the cell lines. A
similar, dramatic effect was observed when they were
treated in the presence of As,O; (2 umol/L), or As,O,
(2 umol/L)+ATRA (1 umol/L) for 72 h (Table 1).

Dramatic changes of intracellular GSH or GST activities
were observed when the cell lines were treated in the
absence (control) or presence of As,O; (2 umol/L),
ATRA (1 umol/L), or As,O3;+ATRA for 72 h. Treatment
with 2 umol/L As,O; for 72 h significantly decreased the
intracelluar GSH and GST levels in each of the cell lines,
and 1 umol/L ATRA alone reduced minimal intracellular
GSH and GST levels. ATRA potentiated the effect of As,Os;
on intracellular GSH levels, but intracellular GST levels
were not significantly affected by the combination of As,O;
(2 umol/L) and ATRA (1 umol/L) for 72 h as compared
to As,O; alone (Tables 2 and 3).

Table 2 Effect of As,0O;0n intracellular GSH levels (mean+SD)

Cell lines Control ATRA? As,05° As,0;+ATRA®
HepG2 60.7+7.1 54.4+4.9 46.7+9.0 26.8+4.4
Hep3B 62.4+5.4 55.6+0.5 35.3+3.0 25.9+3.6
MCF-7 76.0+5.1 69.9+1.7 52.5+2.4 44.1+3.8
AGZY-83-a 104.848.1 99.8+9.4 89.8+5.6 80.4+1.0

3P>0.05, °P<0.05 vs the control cells, ¢P<0.05 vs As,Os-treated cells.

Table 3 Changes in intracellular GST activities (mean+SD)

Cell lines Control ATRA? As,0O,° As,0:+ATRA®
HepG2 22.3+1.4 21.2+1.7 5.5+1.8 8.6+2.3
Hep3B 21.4+2.8 20.4+4.4 8.6+1.8 10.3+34
MCF-7 31.0+2.6 29.7+3.0 16.4+1.6 19.3+1.4
AGZY-83-a 50.6+4.5 49.3+4.7 36.3+0.9 39.3+3.1

apP>0.05, °P<0.05 vs the control cells, ®P>0.05 vs As,0s-treated cells.

Our in vitro studies showed that the combination of As,O;
and ATRA was statistically superior to either As,O; or ATRA
alone in the treatment of the three cell lines. Furthermore,
ATRA (0.1, 1, and 10 wmol/L) could synergistically
potentiate As,O; to exert a dose-dependent growth inhibition
in each of the cell lines. Cell survival rate could be reduced
from 89.5+3.9% to 70.5+3.3% in HepG2 cells exposed to
1 umol/L As,O; or the combination of 1 umol/L As,O,
and 0.1 umol/L ATRA for 72 h.

Apoptosis is important for the development and
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homeostasis of multicellular organisms. Specific therapies
have been designed to enhance the susceptibility of human
cancers to apoptosis. We showed that the combination of
As,O; and ATRA dramatically and significantly increased
the number of apoptotic cells in each of the cell lines,
especially the human hepatoma cell lines HepG2 and Hep3B.

Drug resistance of cancer cells and toxicity of cell
apoptotic agents are the major factors contributing to the
failure of chemotherapy. At least four distinct mechanisms
contribute to the chemoresistance. Cellular response to
steroids typically depends on the expression of the
glucocorticoid receptor, and resistance to steroid therapies
is classically associated with downregulation or loss of
glucocorticoid receptor expression in some malignant
cellst'25, The overexpression of drug efflux pumps, such
as mdr gene product P-glycoprotein (PgP), is also a common
trait of chemoresistant malignant cells®™*l, In addition, it
was reported that the expression of the antiapoptotic protein
Bcl-xL is higher in some chemoresistant malignant cellsi*®,
Furthermore, increased expression or activity of GSH and
GSH-related enzymes confers resistance to antineoplastic
agentst®, GSH is the major auto-oxidant of the cells, and
functions to scavenge free radicals and to detoxify toxins
and chemotherapeutic agents. GSH can bind to arsenic by
the formation of a transient As(GS); complex?,

The GSH redox system is known to modulate the
growth-inhibitory and apoptotic effect of As,Os. Different
kinds of malignant cells have different GSH levels. It was
reported that the GSH redox system is relative to sensitivity
of malignant cells to As,O5*.. Elevated GSH levels are
associated with the chemoresistance of malignant cells.
Optimal therapies for chemoresistant malignant cells should
overcome or bypass the increased intracellular GSH levels.
It is known that GST, an enzyme involved in metabolic
detoxification of a variety of xenobiotics, is increased in
an arsenic-resistant CHO cell line™, Our study showed
that HepG2 and Hep3B with low intracellular GSH or
GST activities were remarkably sensitive to As,O; or
As,0;+ATRA, while AGZY-83-a with higher GSH or GST
activities was less sensitive to As,Oz0r As,O;+ATRA. The
sensitivity to As,0;or As;O3;+ATRA was inversely
proportional to GSH or GST levels in each of the cell lines.

Arsenite can decrease GSH levels which can result in
DNA damage as a result of increased intracellular reactive
oxygen molecules. Our intracellular GSH and GST assays
showed that treatment with 2 umol/L As,O; for 72 h
significantly decreased intracellular GSH and GST levels in
each of the cell lines, and 1 umol/L ATRA alone reduced
minimal intracellular GSH and GST levels (Tables 2 and 3).
ATRA potentiated the effect of As,O; on intracellular GSH
levels, but intracellular GST levels were not significantly
affected by the combination of As,O; (2 umol/L) and
ATRA (1 umol/L) for 72 h as compared to As,O; alone.
These findings indicate that GSH redox system may be the
possible mechanism by which ATRA synergistically
potentiates As,O; to induce apoptosis or to exert a dose-
dependent inhibition of growth. Either As,O; alone or in
combination with ATRA may become a useful adjuvant
therapy for liver, breast, and lung cancers.
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