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INTRODUCTION

Liver regeneration upon extensive liver damage is critical to 
survive diseases, such as fulminant hepatitis without liver 
transplantation. Beyond the cause of  the underlying liver 
disease, it is well accepted that death receptor-mediated 
hepatocyte apoptosis is an important mechanism for liver 
damage[1,2]. The cascade of  intracellular signaling events 
during apoptosis is reasonably well understood. Of  critical 
importance is the activation of  caspases, the subsequent 
cleavage of  different death substrates and finally the disin-
tegration of  the cell. In this setting, MORT1/FADD is a 
central adaptor molecule for a number of  death receptors 
to recruit and activate the initiator caspase-8 upon ligand-
mediated aggregation[3,4]. Gene targeting of  MORT1/
FADD[5,6] or expression of  a dominant negative mutant[7,8] 
confers resistance to CD95-mediated apoptosis in T cells. 
Recently, we have demonstrated that MORT1/FADD is 
also pivotal for CD95- and TNF-mediated apoptosis in 
hepatocytes in vivo[9]. In addition, emerging evidence sug-
gests that death receptors and their intracellular signal-
ing proteins have a dual role and may also be involved in 
the regeneration and repair mechanisms. TNF receptor 
I (CD120a) has been found to induce proliferation in 
a number of  cells[10] and is involved in the initiation of  
liver regeneration[11]. Even the prototypical death receptor 
CD95 was described to exert non-apoptotic functions[12], 
e.g., stimulation of  liver regeneration after partial hepatec-
tomy (PH)[13]. In line with this observation, mice with the 
lpr genotype and decreased expression of  CD95 showed 
a delayed regenerative response after PH[13]. In addition, 
the most upstream signaling molecules of  the intracellular 
death pathway MORT1/FADD and caspase-8 have been 
described to be critical for T-cell proliferation[5,6,14]. To our 
knowledge, the mechanism by which MORT1/FADD 
contributes to T-cell proliferation is not completely elu-
cidated yet. The regulatory function of  MORT1/FADD 
seems to be structurally independent of  the death domain 
and its role in apoptosis, but to rely on phosphorylation at 
serine residue S191, which has been shown to be critical for 
the regulative role of  MORT1/FADD in cell proliferation[15].
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Abstract    
AIM: To explore the role of the adaptor molecule in liver 
regeneration after partial hepatectomy (PH). 

METHODS: We used transgenic mice expressing an 
N-terminal truncated form of MORT1/FADD under the 
control of the albumin promoter. As previously shown, 
this transgenic protein abrogated CD95- and CD120a-
mediated apoptosis in the liver. Cyclin A expression was 
detected using Western blotting. ELISA and RT-PCR were 
used to detect IL-6 and IL-6 mRNA, respectively. DNA 
synthesis in liver tissue was measured by BrdU staining.  

RESULTS: Resection of 70% of the liver was followed 
by a reduced early regenerative response in the 
transgenic group at 36 h. Accordingly, 36 h after 
hepatectomy, cyclin A expression was only detectable in 
wild-type animals. Consequently, the onset of liver mass 
restoration was retarded as measured by MRI volumetry 
and mortality was significantly higher in the transgenic 
group.

CONCLUSION: Our data demonstrate for the first time 
an involvement of the death receptor molecule MORT1/
FADD in liver regeneration, beyond its well described role 
as part of the intracellular death signaling pathway. 

© 2005 The WJG  Press and  Elsevier  Inc.  All rights  reserved.
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    The role of  MORT1/FADD in liver regeneration has 
not been described so far. We used transgenic mice ex-
pressing a dominant negative mutant of  MORT1/FADD 
in a liver-specific manner to investigate a possible role of  
the adaptor molecule in liver regeneration. We observed 
a delayed onset of  liver proliferation upon PH compared 
to wild-type littermates and found a higher early postop-
erative mortality in dnMORT1/FADD transgenic mice. 
The increased rate of  mortality might be due to initially 
retarded liver regeneration and underlines the critical role 
of  MORT1/FADD in the complex network of  signaling 
proteins which orchestrate liver regeneration.

MATERIALS AND METHODS
Animal model of liver regeneration 
Hete rozyg ous t r ansg en i c m ice ( s t r a in CB6F1) 
expressing liver-specific dominant negative mutant of  
the adaptor protein MORT1/FADD under the control 
of  the albumin promoter were generated as previously 
described[9]. All animals were bred at the animal facility 
of  the University of  Mainz, had ad libitum access to water 
and food under standard conditions with 12-h dark/light 
cycle. All experiments were done in accordance with the 
Federal law and were approved by the Local Committee 
for Experimental Animal Research. 

Partial hepatectomy 
Male transgenic and wild-type animals at 6-8 wk of  age 
were fasted overnight and operated in the morning. Mice 
were anaesthetized with subcutaneous injection of  a 
solution containing 0.16% xylazinum and 1.2 mg ketamin 
(200 µL/20 g body weight). A 70% PH was performed by 
ligating and removing the left and median lobe at its root. 
The mice were killed at different time points and livers 
were harvested. The livers were either shock-frozen in 
liquid nitrogen and stored at -80 ℃ or fixed at 4 ℃ in 40 g/L 
paraformaldehyde overnight for further use. Serum was 
obtained by heart puncture.
 
DNA-synthesis measurement of BrdU incorporation and 
mitosis
After PH, the mice were treated at different time points 
with 1 mmol/L BrdU (10 g/kg body weight) 3 h prior to 
killing. The livers were harvested and shock-frozen. The 
livers were cut into 5-µm-thick slides with a microtome. 
BrdU incorporation was measured using the In situ Cell 
Proliferation Kit (Roche Diagnostics GmbH, 82372 
Penzberg, Germany) according to the manufacturer's 
instructions. Results were presented as an average 
percentage of  BrdU-positive cells counted in at least two 
fields of  each slide under 10× high power field. Mitosis 
of  the was counted by two independent observers in a 
blinded fashion.
 
Cytokine assays 
Cytokine concentrations were assessed using ELISA, 
OptEIA Mouse IL-6 Set (Pharmingen, BD Biosciences, 
69126 Heidelberg, Germany) following manufacturer's 

instructions. Samples were analyzed with an Elisa reader 
(MRX TC II, Dynex Technologies Lim., West Sussex BN).

Western blotting for cyclin A 
Western blot analysis was performed with whole liver 
extract lysed in a lysis buffer. Protein concentration was 
equilibrated using Bradford assay reagent. The samples 
were boiled with sodium dodecyl sulfate sample buffer 
and electrophoresed on a 100 g/L sodium dodecyl sulfate-
polyacrylamide gel. Following electrophoresis, the samples 
were blotted onto a PVDF-membrane (Pall, Germany), 
and the membrane was blocked with 20 g/L milk powder 
for 30 min, followed by an overnight incubation with a 
rabbit anti-cyclin A serum (Anti-rabbit polyclonal Cyc 
A C-19, # sc596, Santa Cruz) at 4 ℃ with phosphate-
buffered saline/Tween (0.1%) with 20 g/L milk powder 
(PBSTM). After washing, the membranes were incubated 
for 45 min with horseradish peroxidase-conjugated 
goat-anti-rabbit serum (dilution 1:3 000) in PBSTM. 
Blots were developed using the Western Lightning 
Chemiluminescence Reagent (PerkinElmer Life Sciences, 
Boston, MA, USA).

Magnetic resonance imaging 
Magnetic resonance imaging (MRI) was performed on a 
Magnetom Vision whole body scanner (Siemens Medical 
Solutions, Germany) at 1.5 T. The scanner was equipped 
with an experimental gradient system with maximum 
gradient field strength of  50 mT/m and a slew-rate of  160 
mT/m/ms. A circular polarized small loop coil with 4 cm as 
diameter was used for imaging the mice.
    For the imaging of the liver, a T1-weighed spinecho sequence 
with fat saturation and TR/TE/α = 640 ms/14 ms/90 ℃ was 
used. The experimental gradient system allowed a high 
resolution of  0.39 mm×0.39 mm with a slice thickness 
of  1 mm at a 50 mm×100 mm field of  view. The gap 
between the slices was 0.8 mm.
    Post processing was done using the Java-based free 
software ImageJ (National Institutes of  Health, USA, 
download at http://rsb.info.nih.gov/ij). After drawing 
a region of  interest (ROI) following the borders of  the 
liver in every slice, the liver volume was calculated from 
the sum of  pixels in each ROI over all slices with respect 
to the pixel size, the slice thickness and the slice gap is as 
follows:
Volumeliver = ∑∑ sizepixel(thicknessslice + gapslice)
                    slice pixels

RT-PCR and light cycler
RNA was isolated from the cells using the First Strand 
cDNA Synthesis Kit for RT-PCR (Roche Diagnostics 
GmbH, 68305 Mannheim) according to the manufacturer's 
instructions. Primers for IL-6 were purchased from 
Metabion GmbH, D-82152 Planegg-Martinsried, Germany. 
    Duplicate PCR amplifications were carried out in a 
Light Cycler Fast Start DNA Master Green ITM (Roche 
Diagnostics GmbH, 68305 Mannheim) using Fast Start 
Light CyclerTM DNA Master containing Taq-polymerase, 
reaction buffer, and dNTPs (Roche). All reactions 
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were performed in 10 µL volumes and fluorescence 
quantification was calculated with the aid of  built-in Light 
Cycler software, version 3.01 (Roche).
    For quantification of  the mRNA, we chose the method 
of  relative quantification with external standards (HPRT-
specific primers).

Liver enzymes 
Liver enzymes in serum were measured with a Roche 
Hitachi 917.

Hematoxylin-eosin staining
Liver samples were fixed overnight at 4 ℃ with 40 g/L 
paraformaldehyde. The tissue was then dehydrated, 
embedded in paraffin, and 5-µm sections were stained 
with HE. Mitosis of  the cells was counted by two 
independent observers in blinded fashion under 10×high 
power fields (about 50 cells/field).

RESULTS
A delayed proliferative response in dnMORT1/FADD mice 
after partial hepatectomy
As previously described, PH was performed by resection 
of  around 70% of  the total liver volume. DNA synthesis 
as a marker of  the regenerative response was measured 
by BrdU staining. Kinetics of  BrdU staining after 
PH obviously differed between transgenic and wild-
type animals (Figure 1A). We observed a significantly 
more BrdU-positive cells in wild-type animals after 36 
h, which was attenuated after 48 h (Figure 1A). In line 
with this observation, the number of  mitoses differed in 
regenerating liver 48 h after PH (Figure 1B). Differences 
were also observed in expression levels of  cyclin A at 36 
h after hepatectomy (Figure 1C), when the expression 
was detected only in wild-type mice. These observations 
were further substantiated by MRI technique (Figure 1E), 
which allowed to follow closely the kinetic of  liver mass 
restoration after hepatectomy. Here we could demonstrate 
that the delayed onset of  liver regeneration was paralleled 
by a retarded gain of  liver volume (Figure 1D). After all, 
surviving transgenic animals finally also reached complete 
volume restoration around at d 10 after PH, as did wild-
type animals.

IL-6 levels after partial hepatectomy 
IL-6 has been shown to be an essential factor during 
initial liver regeneration[16]. Wuestefeld et al.[17] specified 
the effect of  IL-6 and demonstrated an important 
hepatoprotective role of  IL-6 during the early phase of  
liver regeneration. We therefore investigated possible 
differences in IL-6 levels after PH. Serum IL-6 levels 
peaked around 24 h after PH (Figure 2A), however, did 
not significantly differ between wild-type and transgenic 
animals. Interestingly, a significantly higher IL-6 mRNA 
expression was detected in transgenic livers 36 h after 
hepatectomy (Figure 2B). This observation demonstrated 
a functional IL-6 deficiency to be unlikely and rather 
pointed to a compensatory reaction towards delayed 

Figure 1 Retarded liver regeneration in dnFADD mice. A: Onset of DNA synthesis 
was delayed in transgenic animals; after 36 h of PH, the amount of BrdU-positive 
cells was significantly smaller compared to wild-type animals, while the numbers 
did not differ significantly later on; B: Showing a markedly higher number of 
mitosis per high power field in wild-type animals after 48 h (aP<0.05); C: Cyclin A 
protein expression was not detectable in transgenic animals whereas, detectable 
in wild-type animals at 36 h after hepatectomy. D: Onset of liver mass restoration 
was retarded in transgenic animals (aP<0.05) but surviving mice reached around 
90% of the pre-operative volume as did wild-type animals. The average immediate 
postoperative liver volumes in the wild-type and transgenic group were 49% and 
48% of the preoperative liver volume, respectively. E: MRI scans were used to 
determine liver mass during regeneration.
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regeneration.

High mortality after partial hepatectomy in dnMORT1/
FADD mice 
Surprisingly, we observed significantly higher early 
postoperative mortality after resection of  70% of  the liver 
mass among the transgenic mice expressing the dominant 
negative MORT1/FADD mutant (Figure 3) compared to 
the wild-type littermates. We found a significant difference 
in postoperative mortality during the first 24 h, when 
16.49% (13/81) of  transgenic animals whereas, only 2.77% 
(2/72) of  wild-type mice died (P<0.01, Fisher’s exact test). 
However, the mortality did not significantly differ later 
on. In order to elucidate the cause of  different mortality 
rate, we measured liver enzymes during the early phase of  
regeneration. However, we did neither detect significant 
differences in liver function tests (Figure 4) nor differences 
in the degree of  steatosis in liver sections at 36 or 48 h 
after PH (data not shown).

DISCUSSION
In the present study, we could show for the first time that 
MORT1/FADD acts as a multi-functional adaptor protein 
in the liver in vivo. In addition to its critical role in CD95- 
and CD120a-mediated liver failure[9], MORT1/FADD is 
involved in initiating liver regeneration upon PH. These 
results underline the dual role of  MORT1/FADD, i.e., 
it was originally identified as an adaptor protein which 

is pivotal to convey death signals of  the death receptors 
CD95 and CD120a[3,4] and the TRAIL receptors DR4 and 
DR5[18]. Initial evidence that the axis MORT1/FADD-
caspase-8 has an additional role beside mediating apoptotic 
cell death revealed in the experiments with MORT1/
FADD and caspase-8 knock out animals, showing 
that both genetic defects lead to embryonic lethality 
around d 11 in utero with similar pathology of  cardiac 
malformation[5,6,19]. Interestingly, mice lacking functional 
flip/cash gene, a caspase-8 homolog without enzymatic 
activity, also died[20] in utero with a similarly impaired cardiac 
development. Later on, experiments with T-cells lacking 
MORT1/FADD or expressing a dominant negative 
mutant indicated an additional role of  MORT1/FADD in 

Figure 3 Differences in postoperative mortality. Within the first 24 h after PH, 
transgenic mice expressing the dominant negative FADD mutant showed a 
significant higher postoperative mortality (P<0.01). Within the first 24 h, 13 out of 
81 transgenic mice died whereas only 2 out of 72 wild-type mice died. At later time 
points, no difference in postoperative mortality was detected.
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the regulation of  cell proliferation[5-8,21]. 
    The exact mechanism by which MORT1/FADD 
contributes to cell proliferation is sti l l enigmatic, 
especially when the involved downstream molecules are 
not identified. Phosphorylation of  MORT1/FADD at 
position serine 191 in mouse (corresponding to serine 194 
in human beings) seems to be of  crucial importance[15,22]. 
Current data have substantiated the idea of  a bifurcation 
of  the signal pathway at the level of  MORT1/FADD by 
either sending a death signal via activation of  caspase-8 
or signaling towards cell proliferation. FLIP, which is also 
recruited to the receptor complex, has been reported to 
modulate caspase-8-mediated cell death and is a good 
candidate for further delivering a proliferation signal[23]. 
Indeed, FLIP has been shown to be involved in T-cell 
proliferation[23]. However, it has not been completely 
understood how FLIP further mediates the proliferation 
signal leading to the activation of  ERK[23]. The molecular 
architecture of  the intracellular bifurcation is complex, 
since the lack of  caspase-8 does not only provide 
deficiency in death receptor apoptosis signaling but also 
confers an impaired T-cells proliferation[14]. According to 
data of  Iimuro et al.[24] and Chaisson et al.[25], NF-кB is not 
involved in the orchestration of  the initial DNA synthesis 
after PH.
    A regenerating liver is protected against CD95-induced 
cell death[26]. This might partially be attributed to the 
downregulation of  CD95 but resetting the function of  
proapoptotic molecules, such as MORT1/FADD during 
the initial proliferative response might also contribute. It is 
not obvious which receptor engages MORT1/FADD to 
contribute to liver regeneration. CD120a (TNF-receptor 1) 
and CD95 are both candidates since TNF-R1 knock-out 
mice[11] as well as mice with the decreased hepatic CD95 
expression (lpr-genotype)[13] showed a pronounced delay 
of  liver regeneration after PH. In our study, the cause of  
a high postoperative mortality in transgenic mice remains 
unclear. We could not find signs of  liver dysfunction in the 
early postoperative phase and there was also presence of  
IL-6 expression. We even detected higher intrahepatic IL-6 
mRNA levels in the transgenic mice. A previous study also 
reported no difference between wild-type and transgenic 
animals upon LPS or CpG-DNA challenge[27].
    In conclusion, we provide further evidence for a 
complex role of  the adaptor molecule MORT1/FADD 
which is also involved in death and proliferation pathways 
in hepatocytes. This observation should be taken into 
consideration while targeting anti-apoptotic as well as anti-
proliferative therapies.
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