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Abstract
Cancer development is essentially a tissue remodeling
process in which normal tissue is substituted with cancer
tissue. A crucial role in this process is attributed to
proteolytic degradation of the extracellular matrix (ECM).
Degradation of ECM is initiated by proteases, secreted by
different cell types, participating in tumor cell invasion
and increased expression or activity of every known class
of proteases (metallo-, serine-, aspartyl-, and cysteine)
has been linked to malignancy and invasion of tumor cells.
Proteolytic enzymes can act directly by degrading ECM or
indirectly by activating other proteases, which then
degrade the ECM. They act in a determined order, resulting
from the order of their activation. When proteases exert
their action on other proteases, the end result is a cascade
leading to proteolysis. Presumable order of events in this
complicated cascade is that aspartyl protease (cathepsin
D) activates cysteine proteases (e.g., cathepsin B) that can
activate pro-uPA. Then active uPA can convert plasminogen
into plasmin. Cathepsin B as well as plasmin are capable
of degrading several components of tumor stroma and may
activate zymogens of matrix metalloproteinases, the main
family of ECM degrading proteases. The activities of these
proteases are regulated by a complex array of activators,
inhibitors and cellular receptors. In physiological conditions
the balance exists between proteases and their inhibitors.
Proteolytic-antiproteolytic balance may be of major
significance in the cancer development. One of the reasons
for such a situation is enhanced generation of free radicals
observed in many pathological states. Free radicals react
with main cellular components like proteins and lipids and
in this way modify proteolytic-antiproteolytic balance and
enable penetration damaging cellular membrane. All these
lead to enhancement of proteolysis and destruction of ECM
proteins and in consequence to invasion and metastasis.
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INTRODUCTION

The conversion of  normal cells into invasive cancers with
metastatic potential is a process that involves several steps.
These steps are manifested in distinguishable histological
and temporal stages; for instance, normal tissue, hyperplasia
with a high incidence of proliferating cells, dysplasia with
the induction of angiogenesis before the emergence of frank
tumors with metastatic potential. Analysis of the latter stages
of tumor progression has resulted in a multi-step theory of
carcinogenesis on the basis of genetic changes involving
activation of oncogenes, inactivation of tumor suppressor
genes and altered expression of tumor-associated molecules.

Requisite for neo-plastic cell and capillary or inflammatory
cell invasion during carcinogenesis processes is the remodeling
events that occur within the stroma or extracellular matrix
(ECM). The ECM is a complex meshwork of collagens,
fibrillar glycoproteins and proteoglycans that determines
tissue architecture and conditions many biological activities.
The ECM is involved in both normal and pathological
processes. Components of the ECM provide a large variety
of specific signals that directly influence cell proliferation,
migration, morphology, differentiation, and biosynthetic
activities[1]. In addition, ECM plays an essential role in cell
survival, since loss of  adhesive contact, results in apoptosis
termed anoikis[2]. In tumors, alterations of  the ECM might
therefore lead to abnormal host and cancer cell functions and
even to cancer progression. Perturbations in the production,
deposition and degradation of matrix components have been
observed in mammary carcinoma[3]. Quantitative changes
in matrix components may be related to an imbalance
between their synthesis and degradation. Tumor cells may
directly alter the adjacent matrix by changing the production
of matrix proteins or proteolytic enzymes. Alternatively,
the desmoplastic response may depend on specific interactions
between tumor cells and host fibroblastic cells.

It is suggested that perturbation of  the tissue microen-
vironment may be sufficient to induce tumor formation.
Moreover, tumor cell invasion and metastasis also require
destruction of the ECM during local invasion, angiogenesis,
intravasation and extravasation. These processes are
mediated by multiple degradative actions of proteolytic
enzymes and these complex events need cooperation of
different specificity proteases. There are four major groups
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of endoproteases: the aspartyl and cysteine enzymes (mainly
cathepsins), which function at low pH and are involved
mainly in intracellular proteolysis within lysosomes and serine
and metal-dependent enzymes, which are active at neutral
pH and responsible for extracellular proteolysis[5]. These
enzymes can act directly by degrading ECM or indirectly
by activating other proteases, which then degrade the ECM.
They act in a determined order, resulting from the order
of their activation. When proteases exert on other proteases,
the end result is a cascade leading to proteolysis. Presumable
order of events in this complicated cascade is that procathepsin
B can be activated by cathepsin D and other proteases[6].
Once activated, cathepsin B may play an important role as
an activator of  other proteases. For example, active cathepsin
B can activate pro-uPA, which is secreted as an inactive
proenzyme[7]. Then active uPA can convert plasminogen into
plasmin. However, cathepsin B and plasmin are capable of
degrading several components of tumor stroma and may
activate zymogens of matrix metalloproteinases (MMPs)
(Figure 1)[8].

Figure 1  Regulation of ECM proteolysis.

In the result of the above reactions, the first glycoproteins
are degraded by cathepsins and plasmin and afterwards
collagen is degraded by metalloproteinases. This order is a
result of ECM composition. Glycoproteins surround
collagen structures and protect them against proteolysis.
Removing glycoproteins by plasmin enables collagen
degradation by collagenases. The degradation of these
components destabilizes ECM structure and enables
neoplastic cells to migrate. Normal and neoplastic cells
adhere to adhesive proteins localized on cell membrane
surface junctions. There are also cell adherence to cell and
cell to ECM adherence. Detachment of neo-plastic cells
from the tumor is enabled by action of proteolytic enzymes
degrading these proteins[9]. Free neo-plastic cells migrate in
dense mesh of ECM due to proteolytic enzymes. Neo-
plastic cells that cannot change their shape easily are
particularly difficult to pass through ECM. The basement

membrane also stands in the way of migrating neo-plastic
cells. The main component of the basement membrane is
collagen type IV. Leukocyte proteases participate in the
process of protease activation and facilitate neoplastic cells
passing through the basement membrane[10]. The contact
of leukocytes with neoplastic cells enhances the synthesis
of other proteolytic enzymes. Consequently, common action
of different substrate specificity and localization in protease
activation processes are completed and degradation of the
ECM proteins and the basement membrane contribute to
cancer development.

LYSOSOMAL PROTEASES - ASPARTYL AND

CYSTEINE PROTEASES

Activation of cascade proteases participating in ECM
degradation, in general, is induced by acidic proteases that
are named cathepsins and collected mainly in lysosomes. In
normal cells,  only a small (5-10%) quantity of  cathepsins
occurs in cytosol. However, tumor promotion is connected
with disturbances in post-translational glycolization and
phosphorylation of proenzymes in Golgi apparatus that
prevents their transport to lysosomes. Consequently, a great
majority of these proteases occur in cytosol of neoplastic
cells[11]. The biological task of cathepsins is to degrade cellular
and extracellular proteins and cathepsins, with different
specificity, are complementary in their action on proteins.
They cause total proteolysis degrading proteins of ECM
and basement membrane components, as well as, participate
in limited proteolysis, e.g., activating proenzymes and
prohormones[12-14]. Aspartyl protease cathepsin D and many
cysteine proteases participate in tumor development.

Aspartyl protease
Cancer cells are characterized by over-expression and secrete
a large proportion of cathepsin D[15]. Over-expression of
cathepsin D has been described both at mRNA and at
protein levels[16-18]. Cathepsin D is synthesized in an inactive
form as procathepsin D, which has no proteolytic activity[19].
It is auto-activated in an acidic environment (pH<5) in acidic
intracellular vesicles or activated during the action of other
proteases[20]. Secreted procathepsin D could also be activated
extracellularly in sufficiently acidic milieu. The extracellular
pH in tumors is generally more acidic than that in
corresponding normal tissue[21]. Above transformations lead
to the formation of  an active mono-chain form and then
to the formation of  an active bi-chain form. No difference
has been shown in the composition and amino acid sequence
of  cathepsin D in normal and neoplastic tissues. The
observed qualitative differences concern only the enzyme
structure depending on post-translation processes[22]. But
there are differences in distribution of cathepsin D, i.e., it
is found not only in the lysosomes of cancer cells but also in
the cytosols as well[23-25]. The significant increase in cytosols
and in the neo-plastic cells has been shown in cases of
breast cancer[26]. Moreover, the correlation between high
cathepsin D expression in cytosols and poor survival in
node-negative breast cancer is observed[27,28]. Marked
expression of cathepsin D takes place in carcinomas of uterus,
ovary, lung, intestines and many other organs[24,26,29-31]. Related
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increase of cathepsin D activity and concentration is also
observed in the fluids of  the body cavities and in the blood
serum of patients with carcinomas[32-37].

Cathepsin D as an endopeptidase degrades many
intracellular and endocytosed proteins, as well as, ECM
proteins and proteins of the basal epithelium. Cathepsin D
participates in limited proteolysis and activates cysteine
procathepsins B and L; it also degrades and makes inactive
their active forms[6]. In addition, it inactivates cysteine
proteases inhibitors - cystatins[38]. It has been shown that
human cathepsin D stimulates tumor growth by acting
directly or indirectly as a mitogenic factor on cancer cells
independently of its catalytic activity[39]. Cathepsin D
stimulates proliferation and tumor angiogenesis of cancer
cells. It was suggested that cathepsin D stimulates angiogenesis
by releasing ECM-bound bFGF or pro-cathepsin D is
responsible for generation of specific inhibitor of angiogenesis
angiostatin[12,40]. Now it is speculated that cathepsin D may
stimulate endothelial cell growth via a paracrine loop, acting
as a protein ligand, by directly or indirectly triggering a yet
unidentified cell surface receptor[39,41]. Moreover, it has been
documented that cathepsin D influences apoptosis and
mediates apoptosis induced in cell lines by various agents, i.
e., INF-, Fas/APO, FNF- and oxidative stress[42,43].
However, now it is suggested that proteolytic action of
cathepsin D may provide some protection against apoptosis
[39]. Thanks that it participates in the process of neo-plastic
growth and metastasis. Moreover, until now an endogenous
cathepsin D inhibitor has not been found, the reason why it
can work in each condition is still unknown.

Cysteine proteases
The second step in proteolytic cascade may be linked with
different lysosomal cysteine proteases, including cathepsins
B, L, H, C, S, F, K, O, V, W and X[44]. The promotion role
of these cathepsins is connected with their proteolytic effects
on basement membrane and interstitial stroma[45]. In normal
cells, these cathepsins are regulated at every level of their
biosynthesis including transcription, post-transcriptional
processing, translation, post-translational processing and
trafficking, thus maintaining their normal function in cell
metabolism. In tumor cells, misregulation of cathepsins at
one or more of these levels results in increased mRNA and
protein expression, increased activity and altered intracellular
distribution[45]. Among the lysosomal cysteine proteases,
cathepsin B has been the most extensively investigated due to
its important role in cancer progression[45-48].

Increased expression together with enhanced secretion
and cell surface association of cathepsin B is found in
different types of tumor cells, especially in their more
malignant variants[25,49,50]. Studies have revealed that enhanced
production and release of this cathepsin in tumor cells lead
to tumor cell growth, invasion and metastasis[51,52].

It has been found that cathepsin B mRNA, protein level
and activity in tumors and cancer cell lines, especially with
high metastatic potential, are increased[48]. Over-expression of
cathepsin B mRNA has been reported in several human tumors
including tumors of brain, colon, prostate and thyroid[52-55].
However, increased expression of cathepsin B, in pre-
malignant lesions, suggests that this enzyme may play a role

in the transformation of  pre-malignant lesions to malignant
tumors[56]. Moreover, it has been found that cathepsin B
expression often increases specifically at the invasive edge
of tumor cells[53], because granules containing cathepsin B,
in normal tissues, are localized perinuclear while during
tumor progression they move to the inner basal surface of
plasma membrane[57]. The redistribution of cathepsin B to
the basal membrane in cancer cells occurs coincidently with
degradation of the underlying basement membrane. It is
very important for degradation of the surrounding ECM
in tumor progression, because tumor cell invasion involves
local proteolysis.

Although, a few studies indicate a correlation between
cathepsin B mRNA over-expression and tumor invasion,
numerous studies have been focused on cathepsin B
expression at the level of protein and activity. Cathepsin B
protein and activity levels have been found to be higher in
many human tumors including tumors of  breast, cervix
and ovary, colon, stomach, glioma, lung and thyroid[48,58,59].

Cathepsin B like other cathepsins is synthesized as a
proenzyme and activated in prelysosomal acidic vesicles prior
to its delivery to lysosomes. Procathepsin B can be activated
by cathepsin D, elastase and cathepsins G, uPA or tPA[6].
Mature cathepsin B is localized in lysosomal and participates
in intracellular proteolysis. However, in cancer cells
significant increase of cathepsin B in cytosol has been
observed[60,61]. Increased secretion of  proenzymes, as well
as, mature enzymes by human colorectal carcinoma cell
lines and hepatomas and human liver, colorectal and lung
cancers have been reported[62-64]. Moreover, secretion of
procathepsin B can occur from cells that do not exhibit an
increase in mRNA levels, indicating that this secretion is
probably due to altered intracellular trafficking and
distribution of this enzyme[65]. Another indication that tumor
cells secrete cathepsin B is the increased serum level of
cathepsin B in patients with hepatocellular carcinoma,
prostate cancer and melanoma[66-68]. In addition, cathepsin
B has also been found in other body fluids surrounding
tumors, such as bronchoalveolar lavage fluid of lung cancer
patients or cerebrospinal fluid from patients with leptomeningeal
metastasis[69,70].

Cathepsin B can affect extra-cellular connective matrix
directly causing its proteolytic degradation or indirectly via
activation or amplification of other ECM-degrading
proteases. This cathepsin may act on the contact regions of
tumor cells and basement membrane or interstitial stroma.
These places are often acidified by tumor cells, that are
conducive to activation of  secreted precursors to active forms
that degrade the protein components of basement membranes
and the interstitial connective matrix including laminin,
fibronectin, elastin, and various types of collagen[71,72]. Digestion
of fibronectin by cathepsin B results in exposure of the
CS-1 sequence, which is within the alternatively spliced type
III connecting segment (IIICS) of fibronectin and recognized
by the integrin receptor, 41

[73]. In this way, cathepsin B
may not only be involved in extra-cellular degradation but
may also be linked to cellular signal transduction events.

Cathepsin B indirectly enhances proteolysis by activating
the urokinase-type pro-plasminogen which can subsequently
activate the plasmin-metalloproteinases proteolytic



pathway[74,75].  Moreover, cathepsin B may change the
balance between metalloproteinases and their inhibitors and
directly activates some of the MMPs - interstitial procollagenase
(proMMPs-3) and prostromelysin-1 (proMMPs-2)[76,77],
directly cleaves and inactivates some of the MMP inhibitors
TIMP-1 and TIMP-2[78]. In such a way, cathepsin B assists
tumor cells in their detachment from ECMs and metastasis.
Moreover, during proteolytic breakdown of ECMs, some
ECM-bound growth factors such as bFGF, EGF, TGF-,
IGF-I and VEGF may be liberated and become bioavailable
for growth modulation of receptor-partner expressing tumor
and stroma cells[79,80].

It has been proved that another cysteine protease,
cathepsin L, has similar proteolytic properties and action in
tumor progression to cathepsin B[81]. The highest level of
cathepsin L is seen in most of  the tumors and transformed
cell lines possessing the highest malignancy[82]. The cathepsin
L gene may be activated by a variety of growth factors and
activated oncogenes[83]. It has also been shown that
procathepsin L possesses proteolytic activity and can act
like a growth factor or a progression factor on cell proliferation
and is involved in differentiation processes[83,84]. Moreover,
procathepsin L degrades both fibronectin and laminin while
cathepsin L degrades types I and IV collagens, fibronectin
and laminin.

Other cysteine proteases like cathepsins H and K participate
in carcinogenesis. Cathepsin H is easily distinguished from
other  endosomal cysteine proteases by its unique
aminopeptidase activity[85]. There is growing evidence that
the expression of cathepsin H increases in disease states
including breast carcinoma, melanoma, glioma, and lung,
colorectal, prostate and other carcinomas[11,60,86-90]. In contrast
to cathepsins B and L, it seems that the over-expression of
cathepsin H does not strongly correlate with the malignancy
of  tumors or transformed cells[82]. Significant increase in serum
of patients with metastatic melanoma and significant decrease
in head and neck tumor tissues have been observed[91]. The
role of cathepsin H in tumor progressions is not well
understood. A possible function of cathepsin H in tumor
progression is its ability to degrade fibrinogen and fibronectin,
suggesting that along with other proteases, cathepsin H may
be involved in the destruction of ECM components leading
to cancer proliferation, migration and metastasis[92]. Cathepsin
K has a strong collagenolytic and elastinolytic activity and
may effectively degrade ECMs[93,94]. The expression of
cathepsin K is enhanced at mRNA level and even at protein
level in breast, lung and prostate cancers[95,96]. The activity of
lysosomal cysteine proteinases is controlled by inhibitors
existing in tissues, blood plasma and other body fluids, e.g.,
cystatins, stefins, kininogen and 2-macroglobulin[87,97,98].

Proteolytic activities of cathepsins B and L are inhibited
by cystatin family including secretory cystatins C, E/M, F
and stefins A and B[99-102]. The strongest inhibitory effect on
cysteine proteases demonstrates that cystatin C also inhibits
activity of cathepsins K and H[87,103]. Distribution of
particular inhibitors in organism is different. Stefins A and
B exist mainly in tissues whereas cystatin C and kininogen
in blood plasma and other body fluids[99]. The activity and
concentration of these inhibitors are changed in many
pathological conditions including cancer[104]. A decrease of

cystatin concentration results in the increase of cysteine
cathepsin activity and enhancement of pathological process.
It has been demonstrated that cystatins can restrain tumor
cell invasion and metastasis[105]. In some regions of tumor
cells, with mild acidic pH, the activity of secreted cathepsin
B may also be inhibited by cysteine[106]. However, in the
regions of tumor cells, where the pH is neutral or slightly
alkaline, the secreted active cathepsins may undergo
irreversible inactivation[107-109]. In the presence of acidic
glycosaminoglycans the process of pH-induced inactivation
of cathepsins can be significantly slowed down[108,110].

SERINE PROTEASES

During the past decades, the important role of ECM, in
indirect digestion, has been attributed to plasminogen
activator system, which is composed of pro-activators,
plasminogen, their cell surface receptors and activation
inhibitors and antiplasmins. There are two types of
plasminogen activators: the urokinase-type (uPA) and the
tissue type (tPA). These activators are coded by two different
genes[111]. However, they are quite similar in structure. Both
are capable of catalyzing the conversion of inactive
zymogen plasminogen to active proteinase plasmin. There
is evidence that the primary role of  tPA is to generate plasmin
for thrombolysis, while it is the uPA that generates plasmin
in events involving degradation of ECM. In consequence
uPA participates in cancer invasion and metastasis[112]. uPA
is released from cells as a zymogen form of  pro-uPA, which
is converted to active form by plasmin, present in trace
quantities in ECM. Elastase and cathepsin B are also pro-
urokinase activators[7]. UPAR, a surface receptor, binds to
pro-uPA with high affinity[113]. Coincident binding of  pro-
uPA and plasminogen to uPAR and free lysine groups, on
cell surfaces strongly enhance plasminogen activation[114].
This situation facilitates pro-uPA by plasmin and activation
of plasminogen by urokinase. Because plasmin is produced
in the second reaction, the activation behaves like a closed
cycle reaction. Two inhibitors control plasminogen activation.
There are two main inhibitors of  plasminogen activators, PAI-
I and PAI-2, while plasmin is inhibited by 2-antiplasmin[115].
These inhibitors belong to the serpin super-family. The other
serpins, proteinase nexin-1 (PN-1) and protein C inhibitor
can also inhibit uPA and tPA at physiologically relevant rates,
though they are not specific for plasminogen activators and
react more slowly with these proteases than PAI-1 and
PAI-2[116,117]. Active plasmin can degrade most ECM proteins
such as fibronectin, vitronectin and fibrin, a notable
exception being native collagens[118]. It can also indirectly
promote matrix degradation through activation of some
but not all pro-metalloproteinases[77]. Plasmin probably has
functions unregulated in matrix degradation, e.g., activation
of  proforms of  cytokines and growth factors such as pro-
TGF- [119]. In addition, activation of proteolysis by
plasminogen activator system has been reported in several
human malignancies and is believed to contribute to tumor
cell mobility and invasion[120,121].

METALLOPROTEINASES

Metalloproteinases (MMPs) are a family of secreted or
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transmembrane proteins that are capable of digesting ECM
and basement membrane components under physiological
conditions. Based on their structure and substrate specificity,
they can be classified into different groups of closely- related
members. Collagenases degrade fibrillar collagen; gelatinases
are particularly potent in degradation of nonfibrillar and
denatured collagen (gelatin), stromelysins prefer proteoglycans
and glycoproteins as substrates, membrane-type MMPs
(MT-MMPs) and others[122-124] (Table 1). They share a catalytic
domain with the HEXGH motif  responsible for ligating
zinc, which is essential for catalytic function[75]. In contrast
to soluble MMPs, MT-MMPs possess a transmembrane
domain at their COOH terminus, resulting in cell surface
localization[125]. MMPs are also characterized by a distinctive
PRCGVPD sequence in the prodomain that is responsible
for maintaining latency in the zymogens. MMP family
members differ from each other in structure by the presence
or absence of additional domains that contribute to activities,
such as substrate specificity, inhibitor binding, matrix binding
and cell-surface localization[126].

MMPs are generally produced by cells at very low levels.
However, when either physiological or pathological
circumstances require remodeling of ECM, increased
expression levels of the enzymes can be induced[127]. The
activity of MMPs is tightly regulated by the action of
activators or proenzymes and inhibitors. Transcriptional
regulation of MMP genes is mediated by an AP-1 regulatory
element in their proximal promote region[128]. MMP gene
transcription is induced by a variety of extracellular stimuli,

such as cytokines (IL-4 and IL-10), growth factors such as
TGF-, bFGF, and TGF- and cell-cell or cell-matrix
interactions[129-135]. Binding of these stimulatory ligands to
their receptors triggers a cascade of  intracellular reactions
that are mediated through at least three different classes of
mitogen-activated protein kinases: extra-cellular signal-
regulated kinase (ERK), stress-activated protein kinase/Jun
N-terminal kinases (SAPK/JNKs) and p38[136,137]. Activation
of these kinases culminates in the activation of a nuclear
AP-1 transcription factor, which binds to the AP-1 cis
element and activates the transcription of the corresponding
MMP gene[138]. Next to the AP-1 element, other transcription
factors such as ETS are involved in the regulation of MMP
gene expression during tumor cell invasion[137]. Expression
of ETS-1 has been demonstrated in stromal fibroblasts
adjacent to invading tumor cells and in endothelial cells
during tumor vascularization[139]. In general, the ERK1/2
cascade is activated by mitogenic signals, resulting in
phosphorylation of various substrates including Elk-1 and
subsequent activation of c-fos transcription. SAPK/JNKs
and p38 are activated by cytokines (THF, IL-1) and cellular
oxidative stress resulting in phosphorylation of c-Jun and
ATF-2, which then induce c-jun transcription[140,141].
Constitutively active mutants of  Raf-1 and MEK1 transform
fibroblasts in vitro and in vivo, activation of the ERK1/2 pathway
has been observed in renal and breast carcinomas[142,143].
However, blocking the pathway ERK and ERK 2, by a
specific chemical inhibitor PD98059, inhibits the expression
of MMP-1 and MMP-2 by SCC cells, and their invasion

Table 1  Proteases participating in degradation of ECM components

Protease family Protease       Protease function   Protease inhibitors

Aspartyl protease Cathepsin D       Degradation of ECM components

      Conversion of cysteine procathepsins into cathepsins

Cysteine Cathepsins B, L, H, K       Degradation of ECM components  Cystatins, stefins, kininogen

proteases       Conversion of pro-MMPs into MMPs

Serine proteases Plasmin       Degradation of ECM components   2-antiplasmin,

      Activation of uPA   2-macroglobulin

     Conversion of inactive elastase into elastase

Urokinase-type plasminogen activator (uPA)       Conversion of plasminogen into plasmin   PAI-1, 2, 3

Tissue-type plasminogen activator (tPA)       Conversion of plasminogen into plasmin

Neutrophil serine Elastase       Degradation of ECM components   2-antiplasmin

proteases Cathepsin G   2-macroglobulin

  secretory leukoprotease inhibitor

Matrix metalloproteinases       Degradation of collagens and other ECM proteins   TIMP-1, 2, 3, 4

      Activation another pro-MMPs into MMPs   2-macroglobulin

      Degradation of collagens: I, II, III, VII, X and

Collagenases [MMP-1, 8, 13]       gelatins

      Degradation of proteoglycans, laminin, gelatins,

Stromelysins [MMP-3, 10]       collagens III, IV, V, IX, fibronectin, entactin, SPARC,

      collagenases-1

      Degradation of gelatins, collagens: I, IV, V, VII, X,

Gelatinases [MMP-2, 9]       fibronectin, elastin, procollagenase-3

      Degradation of collagen I, II, III, gelatins, aggrecan,

      fibronectin, laminin, vitronectin, MMP-2,13, tenascin,

Membrane-type [MMP-14, 15, 16, 17, 24, 25]       nidogen

      Degradation of proteoglycans, laminin, fibronectin,

      gelatins, collagens IV, elastin, entactin, tenascin, 1

Others [MMP-7, 11, 12, 19, 20, 23]       -antiproteinase, amelogenin
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in vitro[122]. MMP expression has been shown in a variety of
tumor types including carcinomas of lung, colon, breast
and pancreas[3,144-148,149]. In addition, the plasma and urine
levels of MMPs are elevated in patients with cancer
compared with healthy subjects[150]. MMPs in tumor tissues
are produced not only by malignant tumors but also by stromal
fibroblasts and inflammatory cells[112]. These cells may produce
cytokines and proteins that induce the production of MMPs
by surrounding cells, creating extracellular networks of MMP
secretion and activation[151-153]. Furthermore, analyses of
cellular components derived from primary tumor tissues
or their corresponding lymph node metastases demonstrated
that expression of MMPs is increased in the metastatic
tissue, indicating that MMP expression is a component of
the metastatic process[148]. In addition, there is clinical evidence
that over-production of these molecules confers a poor
prognosis in patients with a variety of malignancies[154,155].

At the protein level, biological activity of MMPs is
determined by the action of  activators of  proenzymes and
inhibitors. In general, MMPs are secreted in latent forms
(as proenzymes) and require specific proteolytic activation[75].
Most MMPs are activated in the extra-cellular space, with
the exception of MMP-11 and MT1-MMP, which are
activated prior to secretion of intra-cellularly by furin-like
proteases[156]. This activation step serves as a regulatory
element. MMP activity is further regulated by MMP
inhibitors (TIMPs) and expression of molecules, which
present the active enzyme on the cell surface[157,158]. However,
most MMPs are converted into active forms in a specific
multistep activation process that is known as the “cysteine
switch”. A conserved unpaired cysteine residue in the
prodomain forms a coordinate bond with zinc ion at the
active site. Cleavage of the prodomain results in opening
of the active site by disruption of the zinc–cysteine bond
and is followed by loss of  the amino-terminal prodomain[104].
For most MMPs, proteolytic activation is initiated in the
extracellular space by serine proteases such as plasmin and
urokinase plasminogen activator, neutrophil elastase or by
other members of the MMP family members, especially
MMP-2 and MMP-13 by MT1-MMP cleavage of the
proenzymes[104,127,156]. Activation of MMPs can also be
induced by non-proteolytic compounds such as thiol
compounds including oxidized glutathione and hypochlorous
acid[75,162]. Therefore, MT-MMP expression is another
regulating factor for MMP activation[124,138]. However, little
is known about the activation induced by other factors
including other MMPs, cytokines, trypsin, serine proteases,
reactive oxygen species, hypoxia, c-erbB ligands, and
leukocyte elastase[159-164]. Some activated MMPs can further
activate other proMMPs. MMPs containing a furin-like
recognition domain (RXKR) in their propeptides (MMP-11,
MMP23 and MT-MMPs) are activated intracellularly in
the trans-Golgi network by a group of calcium-dependent
transmembrane serine proteases (furin/PACE/kex-2)[124,165,166].
Proteolytically active MMPs may be localized on the cell
surface by binding to membrane molecules, which leads to
a more direct ECM degradation. Furthermore, functionally
active MMP-2 can also bind to integrin v3 while
proteolytically active MMP-9 can associate with CD44[167-169].

Active MMPs are inhibited by various protease inhibitors

such as non-specific protease inhibitors (2-macroglobulin
and 1-antiprotease) and a family of specific tissue inhibitors,
(TIMPs)[127]. There are currently four members of the
TIMP family (TIMP-1, -2, -3, -4) that have common
inhibitory effect on MMPs. TIMPs share several structural
similarities between each other such as the N-terminal MMP
binding site, 12 cysteine residues within the conserved
domain which form disulfide bonds[170,171]. TIMPs are found
to be involved in connective tissue turnover and remodeling.
They bind to MMPs by forming non-covalent complexes,
resulting in MMP inhibition[160]. TIMPs bind to either
proMMPs or active MMPs, thereby inhibiting the autocatalytic
capacity of active proteases. TIMP-1 and TIMP-2 regulate
activation of proMMP-9 and proMMP-2, respectively[160].
TIMP-1 inhibits the activity of most MMPs, with the
exception of MT1-MMP and MMP-2. TIMP-2 also inhibits
the activity of most MMPs, except for MMp-9. TIMP-3
inhibits the activity of MMP-1, -2, -3, -9 and -13 and human
TIMP-4 inhibit the activity of MMP-2, -9, -7[172-175]. It is
clear that balance between active MMPs and TIMPs appears
to be critical for MMP activity and for ECM degradation.

The role of the MMP family in tumor development is
further complicated by the balance of these proteins in
relation to TIMPs. TIMPs have various antioncogenic
functions and the expression of TIMPs has been associated
with less aggressive tumor behavior and favorable prognosis
in patients with cancer[176]. For example, the exposure of
mouse fibroblasts to TIMP-1 and -2 in vitro could inhibit
oncogenic transformation by oncogenic viruses, whereas
administration of recombinant TIMP-1 to mice injected
with B16F10 melanoma cells could reduce the number of
pulmonary metastases[177]. Furthermore, transgenic mice
overexpressing TIMPs display resistance to intravenously
injected malignant cells. Conversely, exposure of mouse
fibroblasts to TIMP-1 antisense oligonucleotides could result
in the formation of  metastatic tumors in nude mice given
injection of malignant cells[178]. Of interest, over-expression
of TIMP-3 induces apoptosis in various types of malignant
cells, suggesting that TIMPs may play a role in tumor cell
death[176]. Thus, the role of TIMPs in vivo is complex, and
the expectation that malignant tumors increase MMP
expression accompanied with decreased TIMP expression
is probably too simplistic[179-182].

SPECIFIC NEUTROPHIL PROTEASES

Apart from the above proteolytic systems participating in
enhanced degradation of  interstitial matrix observed during
cancer development, neutrophil proteases may also take
part in it[183,184]. It has been shown that in particular chronic
inflammation neutrophils may create an environment that
supports tumor promotion[185,186]. In such a situation
proteases of accumulated neutrophils may be significant
factors for ECM degradation. Neutrophil granules contain
a large family of over 20 enzymes such as metalloproteinases,
collagenase, gelatinase and elastase and cathepsin G, but
has the greatest potential to act as a mediator of tissue
destruction[187,188]. However, the ECM is protected from
degradation by the major plasma protease inhibitors and
there is a critical balance between the enzymes and their
inhibitors[189]. 1-antiprotease, 2-macroglobulin and

1256          ISSN 1007-9327    CN 14-1219/ R      World J Gastroenterol       March 7, 2005   Volume 11   Number 9



secretory leukoprotease inhibitors are the main plasma
protease inhibitors that effectively regulate extracellular
neutrophil elastase and cathepsin G[189,190]. However,
proteolytic-antiproteolytic balance directly depends on
reactive oxygen species (ROS) generated by activated
neutrophils[191]. It is known that inflammatory process and
different carcinogens stimulate phagocytic cells including
neutrophils, monocytes and macrophages, which undergo a
respiratory burst to generate both superoxide anion and
hydrogen peroxide[192]. The source of superoxide generation
in these cells is a membrane-bound NADPH oxidase that
remains dormant until activated by a complex cascade of
signal transduction[193,194]. The combined activities of NADPH
oxidase and myeloperoxidase in phagocytes leads to the
production of hypochlorous acid, one of the strongest
physiological oxidants[195]. In addition, it has been documented
that the generation of superoxide anion, hydroxyl radical,
hydrogen peroxide, singlet oxygen and hypochlorous acid is
enhanced in cancer cells[196-198]. Moreover, many exogenous
chemicals can be activated to radical intermediates, which
can serve as electrophiles or participate in redox cycling
processes of reactive oxygen generation. In addition, both
exogenous and endogenous agents can interact with various
cellular receptors, such as the Ah receptor and protein kinase
C leading to increased oxidation in cells[199]. In such a case
ROS may disturb cellular metabolism and directly or
indirectly influence proteolytic-antiproteolytic balance of
cancer tissue.

It is known that ROS may indirectly act as a second
messenger. Some cytokines (TNF, IL-1) and growth factors
(bFGF, VEGF) are capable of producing ROS in target
cells and the produced ROS further participate in mediating
the effects of cytokines and growth factors[185,196,200,201]. ROS
may also serve as common signaling molecules regulating
the activity of transcription factors, NF-B and AP-1, in
response to cytokines and other stimuli[202-203]. Oxidants can
also stimulate transcription of other transcription factor
genes such as c-jun, c-fos and c-myc in various cell types[204-206].
The regulation of gene expression by these factors will
ultimately lead to a series of cellular changes such as
proliferation, growth suppression, differentiation, senescence
and apoptosis. These transcription factors are involved either
directly in the induction of the expression of MMP genes
(by binding to enhancer regions in these genes) or indirectly
in modulating the expression of proteins which ultimately
affects proteinase release[126]. ROS may also regulate cellular
components other than transcription factors.

The most important factor for proteolytic-antiproteolytic
balance is that ROS influences protease activation and
activity and distribution of enzymes and their inhibitors. It
has been shown that ROS can activate procollagenase[207,208].
However, changes in activity and distribution of enzymes
and their inhibitors are connected with direct oxidative
modification of cell components.

Effects of ROS on cell components
Reactive oxygen species as chemically reactive molecules
can modify most cell components such as lipids, nucleic
acids, carbohydrates and proteins[209]. The residues of amino
acids occurring in proteins are less vulnerable to action of

ROS than that of free amino acids. Most amino acids present
in proteins undergo oxidative transformation to radicals,
but aromatic and sulfhydryl groups containing amino acids
are the most susceptible[210,211]. Susceptibility of amino acid
residues to ROS also depends on their position in the
polypeptide chain. Unstable amino acid radicals are formed at
the first stage of  ROS action and then undergo transformation
yielding stable products. Other amino acid residues of
proteins can also undergo oxidative transformation under
formation of  peroxides that are mainly generated by the
aliphatic amino acid radicals[212,213]. Alteration in the primary
structure of proteins brings about changes in the secondary
and tertiary structures and results in denaturation, aggregation
or fragmentation of protein molecules[214] (Figure 2). The
protein structure modification mainly depends on the kind
and concentration of acting ROS[215].

Figure 2  Effects of ROS on proteins.

In addition, ROS can react with membrane phospholipids
forming hydroperoxides and reactive small-molecule
aldehydes[216] with a longer lifetime. Thus, these aldehydes
can be considered as the secondary lipid peroxidation
transmitters[217].

A marked increase of malondialdehyde and 4-
hydroxynonenal concentrations[218,219] has been found in
cancer cells. It is proved that 4-hydroxynonenal can react
with sulfhydryl groups of cysteine present in polypeptide
chains and with lysine, histidine, as well as other amino acid
residues of proteins[217,220]. In this way, covalent lipid-
membrane protein bonds are formed[221]. Lipid radicals
formed by peroxidation can also react with each other
forming lipid-lipid covalent bonds[221]. These reactions
provoke changes in membrane structure, uncovering
phosphatidylserine on its surface and modify membrane
permeability[222].

An important factor preventing lipids from peroxidation
is -tocopherol[223], which reduces polyunsaturated fatty acid
radicals and acts as a chain reaction terminator[224]. In
addition, physicochemical action of -tocopherol on
biological membranes has a stabilizing effect and protects
them from liberation and activation of endogenic
phospholipases, which accelerate lipid peroxidation by
hydrolyzing the lipid membrane PUFA[225]. Free fatty acids
destabilize the membranes and undergo oxidation more
readily than their esterified forms present in the membrane.
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-Tocopherol can form more stable protective complexes
with free PUFA. Stability of  such complexes increases with
the number of  unsaturated bonds of  PUFA[226]. -
Tocopherol stabilizes PUFA-rich membranes by decreasing
their permeability to small ions and small molecules[225].
However, decreased -tocopherol content in cancer tissues
makes the biological membrane protection against
destructive ROS action impossible[227].

The non-enzymatic mechanisms protecting cells against
lipid peroxidation are completed by two GSH-dependent
enzymatic systems[228]. -Tocopherol is involved in the first
system, in which a GSH-dependent -tocopherol radical
reduction to -tocopherol takes place[229]. The second system
probably consists of glutathione transferase coupled with
glutathione peroxidase and reduces toxic lipid hydroperoxides
to less reactive alcohols[230]. Antioxidant action of these
mechanisms during cancer development may be questionable
because of different data about GSH content in cancer
cells[184].

A consequence of the above-discussed changes is
increased fluidity of cell and lysosomal membranes. This
observation is supported by transfer of  lysosome enzymes
to cytosol[11]. Action of ROS on cell organelle membrane
components can provoke changes in function of Na+/H+

exchangers[231] possibly resulting in acidosis of the cell content,
which favors the action of lysosomal proteases. These
processes can bring about activation of proteolytic processes
in cytosol.

The literature data concerning other experimental models
confirm that ROS reactions with proteins and lipids of
lysosome membranes are possible[211] and indicate that
oxidation reactions catalyzed by iron ion are probable in
lysosomes[232]. Lysosomes are particularly vulnerable to
oxidation stress because they contain an active oxidation
mediator, i.e., the iron ion. The iron ion is present in
lysosomes due to endocytosis of various metalloproteins
like ferritin and cytochrome and their degradation in
organelles[233]. Hydrogen peroxide is formed as a result of
oxidation and activation of inflammatory cells[234]. If not
decomposed by catalase or peroxidase, it diffuses through
the membranes to the lysosomes and takes part in
intralysosome reactions catalyzed by iron ion. Hydroxyl
radical is formed in such reactions and chain oxidation
processes are initiated, resulting in increased permeability
of the lysosome membrane or even fragmentation and
liberation of the lysosome content to cytosol including
proteolytic enzymes[235,236].

Oxidative modification of biologically active proteins
results in changes in their activity[237]. In most cases, it results
in their inactivation, particularly if the oxidative modification
occurs with amino acid residues, which are essential for a
specific biological activity. It was documented that cysteine
proteases, in particular, are susceptible to oxidative
modification[238]. On the other hand, participation of ROS
is needed for some proteins to fulfill their biological function.
It particularly applies to metalloproteinases, which are also
activated by ROS[239].

Perturbation of proteolytic-antiproteolytic balance by ROS
Physicochemical and biological properties of proteins may

be changed during cancer development. ROS generated,
during this process, can directly react with proteins including
enzymatic proteins and provoke their modification[240], which
can result in activity changes of enzymatic proteins including
proteases and their inhibitors.

In physiological conditions, equilibrium between proteases
and their inhibitors exists in the organism. Cancer development
is followed by a temporary decrease in activity of proteolytic
enzymes in cancer cells with simultaneous increase in activity
of proteases and decrease in activity of inhibitors in blood
serum[219,241-244]. The changes mainly occur both in the
enzymes containing seryl groups in their active center
(cathepsin G and elastase) and in the serine protease
inhibitors like 2-macroglobuline and 1-antiprotease. As
the changes are temporary, it can be supposed that post-
translational protein modification only occurs and its
biosynthesis remains unchanged while the activity of de
novo synthesized enzymes is unmodified. The modifications
induced by ROS are involved in direct chemical reactions
with proteases and their inhibitors. Inactivation of
biologically active proteins can also be caused by their
reaction with lipid peroxidation products. In the case of
cathepsin B, it is the effects of thiol-ether type adduct
formation by sulfhydryl groups of  the active center of  the
enzyme and 4-hydroxynonenal[238].

Modifications of the proteolytic enzyme structure and
their inhibitors, caused by ROS, result in a shift of proteolytic-
antiproteolytic equilibrium (Figure 3). However, the
equilibrium perturbation enhances formation of  ROS. It is
considered that activation of ROS-producing granulocytes
and macrophages is controlled by serine protease inhibitors[245].
decrease activity of  which is observed in cancer cases[184,241-243].
Active NAD(P)H oxidase synthesized as proenzyme is
necessary for ROS formation in granulocytes[191]. The
activation is induced by serine protease. However, activity
of this protease group is changed in the case of cancer[184,244].
In such a case, production of inhibitors of active NAD(P)
H oxidase is inhibited by these enzymes and ROS production
is indirectly controlled by them. Formation of  superoxide
anions by granulocytes is inhibited by 1-proteinase inhibitor
and 1-antichymotrypsin[191,245,246]. Activity of granulocyte
elastase is inhibited by hydrogen peroxide. It is suggested
that another mechanism may underline the control of
oxidative activation of granulocytes by inhibitors[247].

Figure 3   Effect  of reactive oxygen species on proteolytic–
antiproteolytic balance.
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It was documented that the activity of main plasma
protease inhibitors such as 1-antiproteinase and 2-
macroglobulin are decreased in carcinogenesis[219,241-243].
These inhibitors as well as plasminogen activation inhibitor
(PAI-1) and leukocyte protease inhibitor (SLPI) contain
methionine in their inhibition center and are most susceptible
to inactivation by oxidants[248,249]. Unlike them, the inhibitors
containing residues of other amino acids in their inhibition
center (antithrombin III, PAI-2, PAI-3) are relatively
unsusceptible to oxidative inactivation[250,251]. 1-antiproteinase
and PAI-1 are particularly susceptible to the action of
oxidants. The 1-antiproteinase molecule contains eight
methionyl residues[252]. The methionine molecule occupying
the position 358 is situated in the inhibition center[253]. The
action of oxidants causes oxidative modification of two
methionyl residues out of eight including residues of the
inhibition center[250,253].  Oxidants acting on the 1-
antiproteinase molecule neither modify the radicals of other
amino acids nor provoke molecule fragmentation[254]. The
oxidant that probably inactivates 1-antiproteinase in in vivo
conditions is chlorate (I) (ClO-) formed in myeloperoxidase-
H2O2-Cl-[255]. Hydrogen peroxide generated in cancer cells
can also oxidize methionine of the 1-antiproteinase
molecule.

1-antiproteinase being a polyvalent inhibitor also inhibits
the activity of  leukocyte cathepsin G and elastase forming
inactive and stable complexes of 1:1 stechiometry[253,256]. In
this way, it prevents possible damage to tissues caused by
those proteases[191]. Activity of these enzymes is manifested
if the mentioned inhibitor is inactivated[257]. Cathepsin G
and elastase exhibit substrate specificity and can degrade
elastin, collagen, proteoglycans, as well as, the complement
immunoglobulin, fibrinogen, basic proteins, and other
proteins. Cathepsin G is particularly aggressive in its action
on proteins as it degrades them not only directly but also by
activating procollagenases[258].

It has been suggested that increased activity of  proteases
in blood serum in cases of cancer, particularly the activity
of cathepsin G and elastase, is due to increased transport
from cells and reduced inactivation of inhibitors whose
activity is decreased[184]. Existing protease-inhibitor inter-
dependence can also suggest inactivation of  inhibitors by
proteases. 1-antiproteinase is known to be inactivated by
sulfhydryl proteases and metalloproteinases that are also
activated by ROS[259,260]. Such an action is evidenced for
granulocyte collagenase[259,260],  endothel ium vessel
stromelysine and collagenase[259,261]. These proteases split the
peptide bond of Phe352 with Leu353, which are present in
the 1-antiproteinase loop exposed to the exterior molecule
in which the inhibition center is present. Split-out 1-
antiproteinase peptide fragments are found in synovial fluid
of patients with rheumatic arthritis[262], indicating that 1-
antiproteinase can be inactivated both by oxidative modification
and by proteolytic degradation[262,263]. Such a situation can
occur particularly in the case of increased activity of proteases
and has been observed in cancer development.

Changes in the proteolytic-antiproteolytic system lead
to the shift of equilibrium in favor of proteases. Such a
situation can lead to destruction processes because
components of proteolytic-antiproteolytic system penetrate

from blood to extracellular space[264] and an uncontrolled
proteolysis can occur if activity of protease inhibitors is
lower and activity of proteases is higher as it occurs in
cancer development. It should be noted that proteolysis of
ECM proteins may also be enhanced by oxidative
modification of protein substrates and their increased
susceptibility to protease action.

FINAL REMARKS

In conclusion, oxidative stress observed in tumor development
may cause imbalance of proteolytic-antiproteolytic system
leading to enhanced proteolysis and destruction of ECM
proteins and metastasis.

The general principles of the mechanisms underlying
proteolytic degradation of the ECM in cancer are becoming
clear and the complexity of this process is revealed. Matrix
degradation appears to be important for both cancer
invasion and metastasis. It is accomplished by a cooperative
interaction between several proteases. Effective protease
action depends on many agents including inhibitors. The
ability of  TIMPs to inhibit tumor growth suggests that
MMPs are more important for cancer development than
normal physiological activities in adult host[127,265]. Thus,
development of more specific protease inhibitors may
represent tractable chemotherapeutics for human cancer.
As a result, many pharmaceutical companies have designed
novel drugs that variably block MMP activity. Gene delivery
of TIMPs into malignant cells may also be a potent way of
inhibiting the tumor invasion and in consequence prolonging
survival[266]. Furthermore, an effective way of  inhibiting
the expression of MMPS may be blocking of signaling
pathways mediating activation of MMP transcription.

Proteolytic-antiproteolytic balance also depends on the
influence of other endogenous and exogenous compounds
e.g., ROS, which is why the view on anti-cancer therapy
pays attention to the possibilities connected with this fact. It
has been mentioned above that cancer development
accompanies enhanced generation of ROS, which can react
with cell components and additionally influence proteolytic-
antiproteolytic balance in neoplastic and surrounding cells.
In this connection, approaches toward therapeutic
intervention against ROS damage include administration
of radical scavenger compounds, use of novel drugs that
increase cellular production of constitutive antioxidants or
pharmacological agents that modify the intracellular
transport of antioxidants. Strategies to modify the cellular
effects of ROS on cancer lead to novel approaches of
gene therapy in which the antioxidant proteins can be
expressed in specific tissues. Reducing tissue-damaging
effects of ROS may have a relevance to cancer patients by
ameliorating normal tissue damage[267].

The opposite point of view will be, prolonged accumulation
of ROS is beneficial to overcoming neoplastic changes
because they can kill cancer cells. Thus, inhibition of
superoxide dismutase responsible for ROS elimination may
provide a novel way in cancer therapy. Cancer cells are
more dependent on superoxide dismutase to eliminate the
toxic superoxide radicals and become more sensitive to
superoxide dismutase inhibitors. In such case it is possible
that inhibition of superoxide dismutase may preferentially
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kill malignant cells through a ROS-mediated mechanism.
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