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Abstract
Numerous cellular and molecular events have been de-
scribed in development of gastric cancer. In this article, 
we overviewed roles of Helicobacter pylori (H pylori) in-
fection on some of the important events in gastric car-
cinogenesis and discussed whether these cellular and 
molecular events are reversible after cure of the infec-
tion. There are several bacterial components affecting 
gastric epithelial kinetics and promotion of gastric carci-
nogenesis. The bacterium also increases risks of genetic 
instability and mutations due to NO and other reactive 
oxygen species. Epigenetic silencing of tumor suppressor 
genes such as RUNX3 may alter the frequency of phe-
notype change of gastric glands to those with intestinal 
metaplasia. Host factors such as increased expression 
of growth factors, cytokines and COX-2 have been also 
reported in non-cancerous tissue in H pylori -positive sub-
jects. It is noteworthy that most of the above phenome-
na are reversed after the cure of the infection. However, 
some of them including overexpression of COX-2 con-
tinue to exist and may increase risks for carcinogenesis in 
metaplastic or dysplastic mucosa even after successful 
H pylori  eradication. Thus, H  pylori eradication may not 
completely abolish the risk for gastric carcinogenesis. Ef-
ficiency of the cure of the infection in suppressing gastric 
cancer depends on the timing and the target population, 
and warrant further investigation.
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INTRODUCTION

Gastric cancer is one of  the most common neoplasmas 
worldwide, accounting for over 870 000 new cases and over 
650 000 deaths annually[1]. Mortality from gastric cancer 
is the second most in death from malignancies, following 
to lung cancer. With exceptions in countries that have 
developed screening programs for early diagnoses, most 
patients reach treatment with cancers already in advanced 
stages[2]. Since surgery can be palliative, and gastric cancers 
are largely resistant to chemotherapy and radiotherapy, 
advanced gastric cancer has a poor prognosis. Therefore 
gastric cancer still remains a major clinical challenge and a 
great public health concern.
    Extensive epidemiologic studies have shown that Heli-
cobacter pylori (H pylori) infection is a major risk factor for 
developing gastric cancer and its precursor lesions[3]. The 
bacterium affects more than 50% of  the world popultion[4]. 
The risk of  patients with H pylori infection developing gas-
tric cancer is in the order of  two- to six-fold according to 
most retrospective case-control and prospective epidemio-
logic studies[5]. Furthermore, some of  the trials eradica-
ting H pylori have shown that cure of  the infection reduces 
development of  gastric cancer in high risk populations[6-8]. 
Thus, a hope is emerging and growing that cure of  the H pylori
infection may reduce incidence of  gastric cancer. 
     The goal of  this review is to clarify whether eradication 
H pylori results in eradication of  gastric cancer. To accom-
plish this, we will discuss what types of  cellular and mo-
lecular events occur in the H pylori-infected gastric mucosa; 
what bacterial factors are involved in the process of  gastric 
carcinogenesis; and what host factors are able or unable to 
be reversed after the cure of  the infection. 
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CELLULAR BASIS OF H PYLORI-RELATED 

GASTRIC CARCINOGENESIS
Histopathologic alterations 
Chronic infection with H pylori causes active inflammation 
of  gastric mucosa in majority of  the population, although 
it is mostly asymptomatic. The bacterium also alters physi-
ologic and histological behaviors of  gastric mucosa, in-
cluding hypochlorhydria, hyperchlorhydria, and changes 
in mucosal population of  gastric epithelial cells that are 
specifically differentiated. In the hypochlorhydric popula-
tion, hypergastrinemia occurs, while parietal cells do not 
respond to gastrin to produce acid, probably due to corpus 
inflammation. Apoptotic loss of  superficial epithelial cells 
in the process of  differentiation and migration in gastric 
glands increases[9], while proliferation of  neck cells also 
increases possibly by some sort of  compensation and by 
transactivation of  growth stimuli in gastric mucosa[10]. In  
corpus mucosa, parietal cell population is also diminished 
in a long term, which is associated with alteration in popu-
lation of  other types of  cells in each gland. Together with 
lowered density of  glands partly due to inflammatory 
and edematous changes in subepithelial tissues, the above 
changes are known as gastric mucosal atrophy or atrophic 
gastritis. In addition, epithelial clones with incomplete and 
complete intestinal phenotypes emerge in the long-term 
process. 
    Currently, origins of  the epithelial clones for the intes-
tinal metaplasia have not yet been clearly determined. It is 
likely that epithelial clones for incomplete and complete 
intestinal metaplasia are developed from gastric epithelial 
cells by an activation of  a series of  genes including cdx-1/
cdx-2[11-16]. In addition, bone marrow-derived adult so-
matic stem cells are involved in the regeneration of  gastric 
glands, and may be another source of  epithelial population[17]. 
Although our own study suggest that bone marrow-de-
rived epithelial cells do not harbor permanently in a gastric 
gland, gastric adenocarcinomas are recently reported to be 
bone marrow-derived[18]. Stem cells in gastric glands locate 
neck region, whereas those in intestinal glands reside bot-
tom region, a location completely different from the neck. 
Transdifferentiation of  gastric gland cells to metaplastic 
cells remains an important question in gastric carcinogenesis. 

Bacterial and/or host factors affecting the histologic 
alterations
Several pathogenic factors of  H pylori have been de-
monstrated to be involved in the above alterations in 
gastric mucosa and the following development of  gastric 
diseases. 
     Ammonia (NH3), produced by H pylori urease, has been 
shown to cause acute gastric injury[19] in rats in vivo and to 
accelerate gastric epithelial cell death in vitro[19-21]. Chronic 
administration of  NH3, whose concentration is compa-
rable to that found in H pylori-infected patients, increases 
epithelial cell replication and epithelial cell turnover, as-
sociated with accelerated epithelial cell death, cell exfolia-
tion, preferential loss of  parietal cells and gastric mucosal 
atrophy[22, 23]. The damaging effects of  NH3 on gastric 
mucosa are pH-dependent, while sodium hydroxide at the 
same pH does not cause significant mucosal injury[19]. Am-

monia dissolves readily in water where it forms, and is in  
equilibrium with, ammonium ions (NH4

+). With decreases 
in pH, NH4

+ predominates, but increases in pH may 
materially increase levels of  non-ionized NH3

[19]. On the 
other hand, per os administration with ammonium chloride 
(NH4Cl) results in intragastric NH4

+, and does not induce 
significant mucosal atrophy. Rather, NH4Cl is reported to 
stimulate antral mucosa to increase gastrin release[24], which 
possibly induces gastric mucosal hypertrophy[25]. There-
fore, not only H pylori but also gastric acid secretion of  the 
host is an important determinant of  gastric cell kinetics. 
    NH3 also increases incidence and size of  gastric adeno-
carcinomas in rats pretreated with N-methyl-N’-nitro-N-
nitrosoguanidine (MNNG)[26, 27]. Prior administration of  
NH3 followed by MNNG does not increase incidence of  
gastric adenocarcinomas in rats, indicating that NH3 may 
act as a promoter in the chemically-induced gastric car-
cinogenesis. Immunohistochemical analysis using bromo 
deoxy-uridine (BrdU) demonstrates that NH3 increases 
cell replication in gastric tumors as well as non-cancerous 
tissues surrounding the tumors. Thus, NH3 and the con-
sequent host epithelial responses play important roles not 
only in increased cell proliferation in untransformed gas-
tric mucosa but also in promotion of  gastric cancer.
   The other virulence factors including CagA and other 
cag pathogenicity island (PAI) proteins, VacA and adhe-
sions have been considered to be involved in wide diver-
sity of  H pylori-related diseases. For an example, strains 
containing the cag PAI have been reported to trigger sig-
naling cascades in gastric epithelial cells, resulting in NF-
κB activation and other cellular responses. Furthermore, 
CagA, which can be injected into the host cells, is able to 
be phosphorylated in the host, and to alter epithelial mor-
phology probably through signaling pathway similar to 
that of  HGF/c-met[28-31]. Roles of  phosphorylated CagA 
protein in gastric epithelium are under extensive inves-
tigation and reviewed elsewhere[32]. Since it is related to 
gastric inflammation, cag PAI may stimulate　indirectly 
excessive production of  reactive oxygen species, including 
nitric oxide, and lead to programmed cell death. Indeed,  
studies show conflicting results for an association between 
cag PAI and apoptosis[33, 34]. 
   VacA reportedly induces gastric epithelial cell apopto-
sis[35, 36]. It is found that VacA also induces apoptosis of  m- 
arophages and suppresses T-cell responses[37-40]. Shibayama 
et al[41] showed that γ-glutamyl transpeptidase induces 
apoptosis. Furthermore, several apoptotic mediators such 
as TNF-α, FAS-ligand, TRAILs and their receptors are 
reported to be upregulated[42-44]. Thus, proapoptotic fac-
tors from either the bacterium or the host appear to be 
involved in altered cell kinetics as well as disturbed immu-
nologic surveillance in gastric mucosa. Once certain clones 
acquire the resistance from apoptotic or immunologic sur-
veillance, they begin to grow to form clusters of  neoplastic 
phenotypes. 

MOLECULAR ALTERATIONS OF H PYLORI-
RELATED GASTRIC CARCINOGENESIS
Events promoting gastric carcinogenesis
Gastric cancer is divided into two histologic entities: ‘in-
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testinal-type’ and ‘diffuse-type’. These two types differ in 
epidemiology and clinical outcome. Molecular profiles are 
also distinct between these phenotypes[45-47], and actually 
consist of  wide variety of  alterations including mutations, 
loss of  heterozygosity (LOH), and epigenetic changes of  
expression of  unmutated genes(Table 1). It is not surpris-
ing that numerous reviews have been published regarding 
this topic[45-52], considering the size of  population with gas-
tric cancers or with H pylori infection. In diffuse-type gas-
tric adenocarcinomas, DNA-repair errors, p16 suppression 
and cyclin E amplification occur frequently in early stages. 
In early stages of  intestinal-type gastric adenocarcinomas, 
inactivation of  APC due to LOH or mutation and non-
functioning p53 frequently occur. Events due to changes 
in tumor microenvironments, i.e., overexpression or trans-
activation of  growth factors such as EGF-family growth 
factors (TGFα, EGF, HB-EGF, etc), insulin-like growth 
factors (IGF-1 and IGF-2), transforming growth factor-β, 
cytokines, and gastrin, also play important roles in pheno-
typic change in gastric epithelial cells [53, 54]. For an example, 
elevated gastrin may transactivate HB-EGF and its recep-
tors, resulting in upregulation of  mitogen-inducible cyclo-
oxygenase (COX-2) and its products (prostaglandin E2, 
etc)[55, 56]. 
     Recently, COX-2[57-71] attracts attention of  many oncol-
ogists and gastroenterologists. In fact, some epidemiologic 
studies have shown that a long-term NSAID-use results in 
significant reduction of  incidence and mortality of  diges-
tive cancers including not only colon but also stomach[72, 73]. 
We have shown that the COX-2 overexpression alters cell 
kinetics, suppresses programmed cell death, induces inva-
sive phenotypes, supports tumor angiogenesis and influ-
ences cell adhesion to endothelial cells[54, 70, 71, 74-79]. H pylori 
infection induces gastric COX-2 upregulation[71, 80-86], and 
cure of  the infection reduces the COX-2 expression[70]. 
However, in mucosa with intestinal metaplasia, COX-2 is 
overexpressed even after the cure of the infection (Figure 1)[70]. 
Procarcinogenic effects of  COX-2 on stomach could be 
only partially reversed by successful H pylori eradication. 
Similar findings were also observed in the case of  expres-
sion of  nitrotyrosine, a product of  nitric oxide (NO), in 
precancerous gastric mucosa. Expression of  nitrotyrosine 
is elevated in gastric mucosa in patients with H pylori gas-
tritis, which is reversible after successful H pylori eradica-
tion. However, in gastric mucosa with intestinal metaplasia, 
nitrotyrosine continue to be overexpressed even after the 
cure of  the H pylori infection, suggesting that NO and 
other reactive nitrogen species is highly produced in meta-
plastic lesions[70]. 

Mismatch repair deficiency
Microsatellite instability (MSI) is defined as the presence 
of  replication errors in simple repetitive microsatellite 
sequences due to mismatch repair (MMR) deficiency[48]. 
It is classified as high-frequency (MSI-H), low-frequency 
(MSI-L) or stable (MSS)[87]. MSI has been recognized as 
one of  the earliest changes in carcinogenesis and results 
in genomic instability. MSI is detected not only in gastric 
cancer but also in intestinal metaplasia from subjects both 
with and without gastric cancer[88], suggesting that MSI can 
be an early event in gastric carcinogenesis[89-91]. Further-

Figure 1  Expression of COX-2, nitrotyrosine and Ki-67 immunoreactivity in hu-
man gastric mucosa with intestinal metaplasia after cure of the H pylori infection. 
A: COX-2 immunostaining; B: nitrotyrosine immunostaining; C: Ki-67 immunos-
taining. The overexpression of COX-2 and nitrotyrosine, adduct of nitric oxide, are 
reported in gastric mucosa with H pylori infection[66, 68, 70, 71]. In these photographs, 
metaplastic gland with goblet cells (in the left side of each photograph) and non-
metaplastic gastric glands (in the right side) are shown. COX-2 and nitrotyrosine 
immunoreactivities continue to exist in gastric mucosa with intestinal metaplasia 
after the successful H pylori eradication with PPI-triple therapy. 
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to MSI[100-102]. In particular, Park et al[100] recently reported 
an immunohistochemical study demonstrating that DNA 
MMR protein expression (hMLH1 and hMSH2) decreases 
in patients with H pylori infection. Cure of  the infection re-
sulted in significant increases in the percentage of  hMLH1 
(76.60 ± 20.27, 84.82 ± 12.73, P = 0.01) and hMSH2 
(82.36 ± 12.86, 88.11 ± 9.27, P < 0.05) positive epithelial 
cells[100], suggesting that the effects of  H pylori on MSI are  
reversible at least in a part. On the other hand, MSI results 
in frame-shift mutations of  hMSH3 and hMSH6, and loss 
of  hMSH1 and hMSH2 functions, which may lead gastric 

more, hypermethylation of  CpG islands in the promoter 
region of  the hMLH1 gene is associated with decreased 
hMLH1 protein, and often occurs in gastric cancer cases 
with MSI-H, indicating that epigenetic inactivation of  
hMLH1 may underlie MSI[92]. MSI in gastric cancer is as-
sociated with antral tumors, intestinal-type differentiation, 
and a better prognosis. Cancer cases with MSI exhibit mu-
tations in BAX, hMSH3, hMSH6, E2F-4, TGF-β receptor 
II, and IGF-R II, which have simple tandem repeat se-
quences within their coding regions[93-99]. H pylori infection 
and following gastric mucosal alteration are closely related 

Table 1 Molecular alteration in the process of gastric carcinogenesis

Molecules           Major alterations        Comments                Category
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p53 Mutation, LOH Reported in diffuse-type and intestinal-type adenocarcinomas, as well as some
precancerous lesions. 

Tumor suppressor

APC Mutation, LOH Reported in diffuse-type and intestinal-type adenocarcinomas, as well as some 
precancerous lesions. 

Tumor suppressor

DCC LOH Reported in intestinal-type adenocarcinomas. Related to cell adhesion Tumor suppressor
CDH1 Mutation Reported in diffuse-type adenocarcinomas. Tumor suppressor
β-catenin Mutation Reported in intestinal-type adenocarcinomas. Tumor suppressor

Fhit LOH or deletion 
at chr. 3p14.2

Reported in diffuse-type and, in less frequency, intestinal-type adenocarcinomas, 
as well as some precancerous lesions. 

Tumor suppressor

RUNX3 Hypermethylation Related to TGF-β/SMAD signaling. Tumor suppressor

K-ras Mutation Reported in intestinal-type adenocarcinomas. An element in signal transduction 
regulating cell proliferation, etc..

Oncogene

bcl-2 LOH Reported in intestinal-type adenocarcinomas. Anti-apoptotic factor. Oncogene

c-met Amplification Reported in diffuse-type and intestinal-type adenocarcinomas. The HGF receptor /
tyrosine-kinase. Upregulation without mutation is also reported after mucosal injury.

Oncogene / 
Growth stimulus

c-erbB2 Amplification Reported in intestinal-type adenocarcinomas. One of receptor-tyrosine kinases for 
EGF-family proteins. 

Oncogene / 
Growth stimulus

Cyclin E Amplification Reported in diffuse-type and intestinal type adenocarciomas. Cell cycle regulator
K-sam Amplification Reported in diffuse-type adenocarcinomas. One of bFGF receptor family proteins, 

FGFR2. 
Oncogene

Mismatch repair 
(MMR) genes 

Silencing due to
hypermethylation

Reported in diffuse-type and intestinal-type adenocarcinomas, as well 
as some precancerous lesions. A possible source of mutations of other 
genes involving gastric carcinogenesis. 

Determinants of 
microsatelite 
instability (MSI)

MMR genes Mutation Reported in diffuse-type and intestinal-type adenocarcinomas. There are conflicting 
data suggesting that mucosa with intestinal metaplasia is prone to and resistant to MSI.

Determinants of MSI

EGFR Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas. Growth stimulus
EGF Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas. Growth stimulus
TGF-α Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas, as well as some 

precancerous lesions. Another EGF-family protein.
Growth stimulus

VEGF Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas. Angiogenic factor
iNOS Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas, as well as some 

precancerous lesions and mucosa with H. pylori.
Enzyme

COX-2 Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas, as well as some 
precancerous lesions and mucosa with H. pylori. Cytokines and growth factors are 
possible inducer of COX-2. 

Enzyme

ODC Overexpression Reported earlier in gastritis. Enzyme

Telomerase Activated Enlongs telomere and prevents cell senescence. Enzyme
CDXs Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas, as well as 

precancerous lesions. Is involved in intestinal metaplasia.
Transcription factor

Ets1 Overexpression A transcription factor involving angiogenesis. Transcription factor
NF-κB Overexpression A transcription factor regulating expression of proinflammatory cytokines, 

chemokines, iNOS and COX-2.
Transcription factor

Sp-1 Overexpression Reported in diffuse-type and intestinal-type adenocarcinomas. Transcription factor

SC-1 Overexpression Reported in diffuse-type adenocarcinomas. Apoptosis receptor
Fas/CD95 Overexpression Reported in diffuse-type adenocarcinomas. Apoptosis receptor

E-cadherin Mutation Reported in diffuse-type and intestinal-type adenocarcinomas. Cell adhesion

CD44 Splicing variant Reported in diffuse-type and intestinal-type adenocarcinomas. Cell adhesion
Gastrin Elevation in serum Elevation of amidated gastrin is reported. Transactivates EGF-family proteins.  Gut hormone



epithelial cells to further genetic instability that cannot 
be reverted by H pylori eradication. Therefore, the precise 
mechanism for H pylori-induced suppression on MMR pro-
tein has not yet been clarified and one of  the important 
topics in H pylori-related gastric carcinogenesis. 

Oncogenes
Certain EGF-like growth factors and their receptors are 
activated by membrane-type proteases called ADAMs 
(a disintegrin and metalloproteinase) following the sti-
mulation including gastrin[56], endothelin and IL-8 that 
have G-protein coupled receptors[103]. IL-1β is also known 
to transactivate  EGF-receptor via pathways dependent 
and independent of  IL-8[103]. 
   In addition, certain growth factors, their receptors 
and components of  intracellular signaling have muta-
tions or amplifications activating cell growth, inhibiting 
programmed cell death, and altering cell phenotypes. 
These oncogenes include HGF receptor (c-met), c-erbB2 

(HER-2/neu), c-erbB3, K-sam, ras, c-myc and others, and 
have been reported to be mutated, amplified, or overex-
pressed in the process of  gastric carcinogenesis[47, 52]. Once 
these oncogenes are mutated, it would be hardly possible 
for H pylori eradication to suppress oncogenes. 

Tumor suppressor genes
Various tumor suppressor genes have been reported to 
be inactivated and involved in gastric carcinogenesis. For  
example, inactivation of  p53 and p16 has been shown in 
both diffuse- and intestinal-type gastric cancers[52,104,105]. 
On the other hand, mutation of  adenomatous polypo-
sis coli (APC) gene occurs more often in intestinal-type 
gastric cancer. Another important tumor suppressor 
gene in intestinal-type gastric cancer is runt-related gene 
3 (RUNX3) coding a subunit of  polyomavirus enhancer 
binding protein 2[106-110], since expression of  RUNX3 
is greatly reduced in intestinal metaplasias in human  
stomachs[111] and Runx3-/- mouse gastric epithelial cells 
have a potential to differentiate into Cdx-2 positive in-
testinal type cells[112]. The product of  the gene appears to 
interact with smad 2/3, which mediates TGF-β signaling 
pathway, and induces p21WAF1/Cip1 expression. 
     Inactivation of  these tumor suppressor genes includes, 
inactivating mutations, LOH, and epigenetic silencing. For 
example, hot spot mutations on CpG islands in p53 have 
been reported not only in gastric cancers at early stages 
but also in non-cancerous tissues with intestinal metaplas-
ia [104, 105, 113-118]. In stomach, mutated p53 proteins are largely 
non-functioning and accumulate in the cells. Interestingly, 
p53 mutation frequently include G:C→A:T transition 
(Table 2, Figure 1)[119, 120], and NO is an important mutagen 
causing this type of  mutation[120-122]. On the other hand, 
silencing of  RUNX3 by promoter hypermethylation is 
frequently found in gastric cancers and in intestinal meta-
plasia. Although the silencing of  tumor suppressor genes 
due to mutation may not be reversed, the epigenetic si-
lencing may be reversed in methylation and demethylation 
processes. At present, there is no evidence indicating H 
pylori per se increases aberrant hypermethylation of  tumor 
suppressor genes[123]: rather, Epstein-Barr virus-related 
gastric cancer is associated with a high frequency of  DNA 

Table 2 "p53" mutation in gastric cancers of early stages and precancerous gastric lesions. In gastric cancers of early stages and precancerous 
gastric lesions, LOH and splicing are merely reported. Abbreviations for mutation: Del: deletion; Ins: insertion; F/S: frame shift. Abbreviations 
for lesion: EGC: early gastric cancer; AD: adenoma, CA/AD: carcinoma in adenoma; D: dysplasia; IM: intestinal metaplasia; N: mucosa 
without dysplasia, IM or carcinoma. Data are collected from references 104, 105, 113-118. (Modified from Tsuji et al [119, 120])

Yokozaki 1992   1     2 1 1 1                    EGC
Tohdo 1993   5     3      1               AD or CA/AD
Uchino 1993 12 10   2  1                    EGC
Correa 1994   8   4    3    1                   D, IM, or N
Hongyo 1995   9 10     1 1 2                  Cancer at stage I
Sakurai 1995   7   4                         AD, CA/AD or EGC
Tamura 1995   1   1                         AD
Tamura 1995   4   3 2                        EGC
Ranzani 1995 18 13 1   1 1 1 2                  EGC
Summary   45 3   8 3 2 3 4 4 1 
(%)   62 4 11 4 3 4 5 5 1 

First Year Case G:C→A:T G:C→T:A A:T→G:C A:T→C:G A:T→T:A G or C Del Ins F/S        Lesions 
author 

Figure 2  Location of point mutations of p53 in gastric cancers and premalignant 
lesions of the stomach. Horizontal lines mean codons of p53 gene. Thick and thin 
vertical lines respectively mean 5 and 1 mutations of the corresponding codon. 
Gray numbers indicate location of mutated codon followed by number of mutated 
cases in parentheses. As shown in this figure, codons 175, 213, 245, and 248 
are preferably mutated in early stages of gastric cancer. Data are collected from 
references 104, 105, 113-118.
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hypermethylation, suggesting that viral oncogenesis might 
involve DNA hypermethylation with inactivation of  tu-
mor suppressor genes[124]. However, male gender, intestinal 
metaplasia and chronic inflammation with monocytic infil-
tration are strongly associated with increased methylation 
in non-cancerous gastric mucosa[123], and H pylori infection 
is one of  the major causes of  gastric inflammation. Thus, 
it remains an important question whether cure of  the 
infection reduces the epigenetic alterations in tumor sup-
pressor genes in non-transformed gastric epithelia. 

Telomere and/or telomerase
Activation of  telomerase that prevents shortening of  telo-
meres during cell division may play an important role in 
immortalizing cells[47, 125-127]. In brief, telomeres cover the 
ends of  chromosomes and are important in maintaining 
chromosomal integrity. In intestinal metaplasia, shortening 
of  telomeres[52] as well as telomerase activation[127, 128] are 
observed, suggesting an important role in development of  
gastric cancer with intestinal type. Interestingly, it has been 
reported that H pylori infection reactivates telomerase[129, 130], 
and that cure of  the infection appears to reduce telomerase 
activity[130]. Since clinical studies using human subjects may 
suffer from sampling errors, it remains an open question 
whether H pylori eradication reverses telomerase activation. 

HOST GENETICS OF H PYLORI-RELATED 

GASTRIC CARCINOGENESIS

Genetic predisposition affecting inflammation and acidity 
of stomach
Genetic predisposition plays an important role in de-
veloping gastric cancer. The most widely reported are 
IL1B and NAT1 polymorphisms[131-138]. The association 
of  IL1B polymorphism and gastric carcinogenesis was 
hypothetically explained by El-Omar et al[134] to be a strong 
acid-inhibiting and proinflammatory capacity of  the gene 
product. Indeed, gastric acid secretion is known to be 
suppressed by IL-1β, which is mediated by nitric oxide[139]. 
These genetic factors may have strong association with 
H pylori infection, since the bacterium induces production 
of  interleukins, inflammation, and elevates intragastric pH, 
which may result in increase of  xenobiotic products. On 
the other hand, IL-1β and IL-8 were recently reported to 
transactivate EGF-receptor via ADAM-10 activation[103]. 
IL-1β is also known to up-regulate COX-2 in gastric 
epithelium[140]. Therefore, the reason for the association 
of  IL1B polymorphisms and the risk for gastric cancer 
remains an open question and may require further inves-
tigation.

Genetic predisposition possibly independent of acidity of 
stomach
Another example of  the genetic predisposition is families 
of  hereditary nonpolyposis colorectal cancer (HNPCC) 
kindred of  which have an excess of  gastric carcinoma; 
complete intestinal metaplasia and chronic atrophic 
gastritis restricted to the antrum[141-143]. Interestingly, 
HNPCC patients frequently have a mutation in one of  

two DNA mismatch repair genes, hMSH2 or hMLH1, 
and demonstrate MSI-H. As mentioned earlier, H pylori 
has an ability to decrease MMR activity. Several genetic 
predispositions in MSI may share the same mutations to 
those found in H pylori-induced carcinogenesis. In these 
cases, the bacterial infection has a potent impact on gastric 
carcinogenesis, since it could lower the MMR activity more 
than the hereditary predisposition alone. 
    Hereditary gastric cancer due to germline mutation of  
the E-cadherin has been reported[144], which is a risk factor 
possibly independent of  H pylori infection. 

DOES H PYLORI ERADICATION ERADI-
CATE GASTRIC CANCER? 
Unlike the typical adenoma-carcinoma sequence of  colon, 
development of  gastric cancer appears to be a complex 
process. Due to the complexity of  molecular events of  
gastric carcinogenesis, factors discussed here do not 
cover every aspect of  gastric carcinogenesis. Rather, we 
tried to overview some of  the possible factors initiating, 
promoting and supporting the development of  gastric 
cancer. By doing so, we discussed what types of  risks exists 
in H pylori positive subjects and what extent of  these risks 
could be withdrawn after the cure of  the infection.
   Certain bacterial factors affect gastric epithelial cells 
directly to support establishment and development of 
metaplastic or dysplastic clones. Successful H pylori eradi-
cation withdraws these bacterial factors and therefore 
lowers the promotional effects on tumor development. 
The bacterium also increases genetic instability and ri-
sks of  mutation. Some host factors such as NO and 
other reactive oxygen species are induced by H pylori and 
increase risks of  mutation. Although cure of  the infection 
may reduce these risks leading to epithelial mutagenesis, it 
does not abolish the risk completely. Particularly, in gastric 
mucosa with intestinal metaplasia and other phenotypically 
altered tissues, increases in MSI and NO synthesis, as well 
as COX-2 overexpression are unaltered after the cure 
of  the H pylori infection. Thus, H pylori eradication is an 
effective strategy in reducing the risk of  gastric cancer; 
however, it is not efficient enough to eradicate gastric 
cancer. Prevention of  the infection, H pylori immunization, 
H pylori eradication in the youth, selection of  the high risk 
population, and alternative chemopreventive measures may 
be essential for optimal management of  malignancy of  the 
stomach.
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