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INTRODUCTION
Inflammatory bowel diseases such as Crohn’s disease (CD) 
and ulcerative colitis (UC) are multifactorial disorders 
characterized by chronic inflammation of  the intestinal 
epithelium. In addition to the genetic predisposition[1], the 
intestinal microflora seems to be involved in triggering 
inflammation, as observed in several animal models, where 
colitis was not induced in germ-free animals[2-4]. It has 
been suggested, that breakdown of  tolerance towards the 
intestinal bacterial flora and dysfunction of  regulatory 
T-cells are implicated in the development of  chronic 
intestinal inflammation[5-8].

One of  the central transcription factors mediating 
inflammatory responses is nuclear factor κB. Upon 
activation, through a wide range of  stimuli such as TNF-α, 
IL-1β, or LPS, NF-κB translocates to the nucleus[9,10], 
where it regulates the transcription of  a series of  genes 
involved in acute responses to injury and in chronic 
intestinal inflammation including the genes for IL-1β, 
TNF-α, IL-6, IL-8, IL-12, Cox-2, ICAM-1, vascular 
endothelial growth factor-1, T-cell receptor-α, and major 
histocompatibility complex class II molecules[11,12]. LPS 
activates NF-κB through toll-like receptor 4 (TLR4)[13]. 
The events preceding the actual binding of  LPS to TLR4 
involve LPS-binding protein (LBP) and the intermediate 
receptor CD14[14,15]. LBP conveys LPS to CD14, which 
then promotes binding of  LPS to the LPS receptor 
complex composed of  TLR4 and MD-2, a co-receptor 
essential for LPS signalling via TLR4[16]. On monocytes 
and macrophages CD14 was shown to be membrane-
bound by a glycosylphophoinositol anchor[17]. Stimulation 
of  endothelial and epithelial cells with LPS requires the 
second form of  CD14, i.e. soluble CD14 (sCD14)[18].

There is increasing evidence that in chronic intestinal 
inflammation expression of  TLR4 and CD14 on IECs 
is abnormal. Under normal conditions, TLR4 and CD14 
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Abstract
AIM: Different strains of bifidobacteria were analysed 
for their effects on HT-29 intestinal epithelial cells (IECs) 
in in vitro  models both of the non-inflamed and inflamed 
intestinal epithelium.

METHODS: A reporter gene system in HT-29 cells was 
used to measure levels of NF-κB activation after chal-
lenge with bifidobacteria or after bacterial pre-treatment 
following LPS challenge. IL-8 protein and pro-inflam-
matory gene expression was investigated using normal 
HT-29 cells.

RESULTS: None of the bifidobacteria tested induced 
activation of nuclear factor κB (NF-κB) indicating that 
bifidobacteria themselves do not induce inflammatory 
events in IECs. However, six out of eight bifidobacteria 
tested inhibited lipopolysaccharide- (LPS-) induced NF-
κB activation in a dose- and strain-dependent manner. In 
contrast, NF-κB activation in response to challenge with 
tumor necrosis factor-α (TNF-α) was affected by none 
of the tested bifidobacteria, indicating that the inhibitory 
effect of bifidobacteria is specific for LPS-induced inflam-
mation in IECs. As shown with two of the six inhibition-
positive bifidobacteria, LPS-induced inhibition of NF-
κB activation was accompanied by a dose-dependent 
decrease of interleukin 8 (IL-8) secretion and by lower 
mRNA levels for IL-8, TNF-α, cyclooxygenase 2 (Cox-2), 
and intercellular adhesion molecule 1 (ICAM-1).

CONCLUSION: Some strains of bifidobacteria are ef-
fective in inhibiting LPS-induced inflammation and thus 
might be appropriate candidates for probiotic interven-
tion in chronic intestinal inflammation.
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are expressed in IECs at very low levels in vivo[19,20] and 
are confined to undifferentiated cells of  the crypts, which 
are not exposed to the overwhelming quantity of  luminal 
antigens[21]. By contrast, expression of  TLR4 and CD14 
is significantly increased in IECs of  both, animal models 
of  colitis[22,23] and IBD patients[19]. A possible explanation 
for this increased expression could come from genetic 
studies. Higher frequencies of  the Asp299Gly allele in 
the extracellular domain of  TLR4 and the T allele and 
TT genotype at position -159 in the gene for CD14 have 
been positively associated with CD and UC[24-27]. Abnormal 
LPS signalling through increased levels of  TLR4 and 
CD14 in IECs could contribute to the sustained mucosal 
inflammation in IBD.

Bifidobacteria are Gram-positive, anaerobic micro-
organisms that inhabit mainly the colon of  healthy 
infants and adults. In breast-fed infants, soon after birth, 
up to 90% of  all bacteria in faecal samples detected by 
fluorescence in situ hybridisation are bifidobacteria[28] 
and they still make up 3%-5% of  the adult microflora[29]. 
Thus, bifidobacteria undoubtedly constitute one of  the 
predominant species of  the human colonic microflora[30]. 
The analysis and annotation of  the genome sequence of  B. 
longum NCC2705 illustrated the close relationship of  this 
bacterium with its human host[31]. Several beneficial health 
effects have been claimed to be related to the presence of  
bifidobacteria in the colon[32-41]. Based on these properties, 
bifidobacteria have become increasingly interesting for 
probiotic use, both in pharmaceutical application and 
dairy products[42]. One of  these applications is their use in 
probiotic intervention in chronic intestinal inflammation. 
Probiotics containing bifidobacteria have been shown to 
be effective in reducing the severity of  inflammation in 
several rodent models and patients with IBD[38,43-47]. 

In this study, the effects of  a selection of  bifidobacteria 
on IECs were investigated using an in vitro approach 
mimicking the situation of  increased responsiveness of  
IECs to LPS. In this model, the antagonistic potential 
of  several bifidobacteria on LPS-induced inflammatory 
responses in IECs was shown to be mediated by blocking 
NF-κB activation. This suggests that several Bifidobacterium 
strains, especially of  B. bifidum, might be good candidates 
for probiotic intervention in IBD.

MATERIALS AND METHODS
Bacterial strains, cell lines and culture conditions
All bacterial strains used are shown in Table 1. For 
experiments, bacteria were cultured for 16 h at 37℃ 
(bifidobacteria: de Man-Rogosa Sharpe medium with 0.5 g/
L cysteine, anaerobic; E. coli: brain heart infusion medium, 
aerobic; all media BD Difco, Basel, Switzerland). HT-29 
cells were maintained at 50% CO2 in DMEM (4.5 g/L 
glucose; Amimed, Basel, Switzerland) supplemented with 
100 mL/L fetal calf  serum (FCS; Amimed), 10 mL/L non-
essential amino acids (NEAA, Sigma, Basel, Switzerland), 
10 mL/L penicillin-streptomycin solution (pen-strep, 
Sigma). HT-29 clone 34 cells were obtained by stable 
transfection of  the HT-29 cell line with the pNF-κB-
SEAP-NPT plasmid[48]. This plasmid harbours the reporter 
gene for secreted alkaline phosphatase (SEAP). It contains 

the κB4 enhancer element fused to a TATA-like promoter 
region from the Herpes simplex virus thymidine kinase 
promoter, which permits the expression of  the reporter 
gene following activation of  the NF-κB signalling pathway. 
The SEAP coding sequence is followed by the SV40 late 
polyadenylation signal to ensure proper and efficient 
processing of  the SEAP transcript in eukaryotic cells. The 
vector backbone also contains a pUC origin of  replication 
and an ampicillin resistance gene for propagation and 
selection in E. coli. In addition, it contains the neomycin 
phosphotransferase gene for the dominant selection 
marker of  geneticin resistance in eukaryotic cells. After 
amplification in E. coli TG1, the plasmid was transfected 
into HT-29 cells using lipofectamine (Invitrogen, Basel, 
Switzerland) as described by Moon et al [48], and the 
stable clone 34, showing good kinetics of  reporter gene 
activation using recombinant human TNF-α (10 μg/L, 
R&D Systems, Oxon, England) as a stimulus, was used for 
reporter gene assays. HT-29 clone 34 cells were cultured 
in DMEM with 100 mL/L FCS, 10 mL/L NEAA, and 
geneticin (0.5 g/L; Invitrogen). For experiments, both 
HT-29 and HT-29 clone 34 cells were seeded at 2 × 105 
cells/mL in 12-well format cell culture plates (Falcon®, 
Milian, Geneva, Switzerland) and cultured in the respective 
medium until they reached 90%-100% confluence. At this 
stage, approximately 1 × 106 cells/well were counted.

LPS and TNF-α challenge of IEC lines
HT-29 or HT-29 clone 34 cells were grown as described 
above. At 90%-100% confluence, cells were washed and 
the medium was changed to 0.9 mL of  DMEM with 
100 mL/L FCS, 10 mL/L NEAA, 50 mmol/L Hepes 
(Invirogen), and penicillin G (100 kU/L; Fluka). Bacteria 
were grown as described above and added at the indicated 
multiplicity of  infection (moi) in 0.1 mL of  cell culture 
medium. In some experiments, cells were pre-incubated 
for 1 h with bacteria and subsequently stimulated with 
TNF-α (10 μg/L) or LPS (10 μg/L, serotype B55:O5; 
Sigma). Where indicated, a challenge was performed in 
the presence of  50 mL/L of  human milk (HM). Milk was 

Table 1  Bacterial strains used in this study

Strain or 
oligonucleotides

Relevant characteristics Source or      
PCR product

E. coli
        TG1 Cloning host DSMZ1

        D2241 Non-pathogenic intestinal isolate, control NCC2

Bifidobacterium
        NCC362 B. lactis, type strain NCC2

        NCC2705 B. longum, type strain NCC2

        NCC251 B. adolescentis, type strain NCC2

        NCC189 B. bifidum NCC2

        S16 B. bifidum, intestinal isolate from a breast-fed 
infant

[57]

        S17 B. bifidum, intestinal isolate from a breast-fed 
infant

[57]

        E18 B. infantis/longum, intestinal isolate from an 
adult

[57]

        MB226 B. breve, type strain D. Matteuzzi

1 DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen;  
2  NCC: Nestlé Culture Collection.
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sampled from different mothers (d 20 of  lactation) and 
pooled. The pool of  HM used for this study contained 
26 mg/L of  sCD14 (determined by ELISA; P. Serrant, 
personal communication). After 16 h of  incubation, 
supernatants were collected by centrifugation and used 
for quantification of  SEAP or IL-8. Viability of  the 
eukaryotic cells was continuously checked by microscopic 
examination of  trypan blue (Sigma) exclusion and was > 
95% in all experiments.

Detection of SEAP and IL-8 protein
Phosphatase act iv i ty of  SEAP was quant if ied by 
bioluminescence using the PhosphaLight™ kit (Tropix, 
MA, USA). Bioluminescence was measured as relative 
light units (RLU) in a TECAN SPECTRAFluor Plus 
spectrometer with an integration time of  100 milliseconds 
and gain set to 100. Data were analysed using the XFlour 
software version 4.40. RLU varied between experiments 
due to the nature of  the assay. Where more than one 
experiment was used to present figures and for statistical 
analysis, correction for these day to day variations was 
performed by normalizing data to set 100 RLU units for 
the positive control (LPS + HM). In one experiment, levels 
of  NF-κB activation were similar for 10 μg/L of  TNF-α 
and 10 μg/L of  LPS in combination with HM.

Secreted IL-8 protein was quantified by ELISA using 
the IL-8 Eli-pair kit (Diaclone, CT, USA). Absorbance 
was measured in a Dynex MRX microplate reader (Dynex 
Technologies, Worthing, England) at 450 nm.

Real-time PCR
For real-time PCR, RNA of  HT-29 cells was isolated 
after bacterial pre-treatment and 4 h of  LPS challenge 
in the presence of  5% (v/v) HM using the NucleoSpin®  
RNAII kit (Macherey-Nagel, Düren, Germany). RNA 
was quantified using Ribogreen® RNA quantification kit 
(Molecular Probes, Basel, Switzerland). Quality of  RNA 
was verified using Agilent RNA 6000 Nano Assays and 
the 2100 Bioanalyzer (Agilent Technologies, CA, USA) 
with corresponding software (version A.01.16). 1 μg 
of  total RNA was transcribed to cDNA using TaqMan 
Reverse Transcription Reagents. Real time reactions were 
set up using 5 μL TaqMan® 2 x PCR Master Mix, 0.5 μL 
of  TaqMan® assays-on-demand primer/probe mixture 
(glyceraldehyde-3 phosphate dehydrogenase (GAPDH): 
Hs99999905_mL; IL-8: Hs00174103_mL; TNF-α : 
Hs00174128_mL; COX-2: Hs00153133_mL; ICAM-1: 
Hs00164932_mL; all reagents were purchased from 
Applied Biosystems) and 4.5 μL H2O containing cDNA 
corresponding to 10-20 ng RNA, depending on the target 
gene. Real-time PCR was performed in an ABI Prism 
7900HT Sequence Detection System (Applied Biosystems) 
and analysed with the SDS software package version 2.1. 
Results of  the different RNA samples were normalised for 
RNA quantity using the gene for GAPDH.

RESULTS
Bifidobacteria do not induce NF-κB-dependent reporter 
gene activity in HT-29 clone 34 cells
To study the effect of  bifidobacteria on inflammatory 

events in IECs, i.e. on NF-κB activation, a reporter 
gene assay in HT-29 clone 34 cells was used. Cells were 
incubated with bacteria (moi = 100) for 16 h. Subsequently, 
activity of  the NF-κB-driven reporter protein SEAP was 
measured in culture supernatants (Figure 1). While non-
pathogenic E. coli D2241 induced significant reporter 
gene activity, all bifidobacteria tested failed to induce 
any activation of  NF-κB above background levels. The 
same cell-based assay was used to investigate the effect 
of  bifidobacteria on LPS-induced inflammation in IECs. 
HT-29 clone 34 cells were challenged with LPS for 16 
h and subsequently SEAP activity was measured in the 
culture supernatants (Table 2). Only a 2.5-fold induction 
of  NF-κB activation by LPS alone compared to un-
stimulated cells was observed. To mimic the situation in 
the intestinal epithelium of  IBD patients where expression 
of  CD14 is increased, 50 mL/L of  HM, containing 
sCD14, were added to the assay. Addition of  HM led 
to a 50-fold increase in LPS-induced NF-κB activation, 
whereas HM alone did not result in activation of  NF-
κB. Also, in the presence of  HM none of  the tested 
bifidobacteria induced NF-κB-dependent reporter gene 
activity above background levels while stimulation with E. 
coli D2241 was enhanced about 200-fold (data not shown), 
further supporting the results indicating that bifidobacteria 
do not induce inflammatory events in IECs.
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Figure 1  Quantification of NF-κB-driven SEAP activity in the supernatants of 
HT-29 clone 34 cells challenged with different bacterial strains at moi = 100 for 16 
h. Results are shown as RLU and are mean ± standard deviation (SD) of triplicate 
measurements of one representative of three independent experiments. neg: 
negative control, no bacteria.

Table 2  Quantification of NF-κB-driven SEAP activity in the 
supernatants of HT-29 clone 34 cells

Treatment RLU ± SD 1

None (untreated control)     2 ± 1
HM     2 ± 1
LPS     5 ± 1
LPS + HM 100 ± 6

1 Values are mean ± SD of at least 3 independent experiments for each 
condition performed in triplicate. For each individual experiment 
luminescence measurements were normalized to give 100 RLU for 
stimulation with LPS + HM. 
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Strain- and dose-dependent inhibition of LPS-induced NF-
κB activation by bifidobacteria
Several reports suggest anti-inflammatory effects of  
probiotics containing bifidobacteria[38,44,49]. Therefore, 
all bifidobacteria used in this study were assessed for 
their potential inhibitory effect on LPS-induced NF-
κB activation at different bacterial doses. At a moi of  1, 
none of  the bifidobacteria tested had an effect on NFκB-
dependent reporter gene activity (data not shown). As 
shown in Figure 2, at a moi = 10, however, pre-treatment 
with B. lactis NCC362 and B. bifidum NCC189, S16, and 
S17 significantly decreased NF-κB-dependent reporter 
gene activity to 47%-71% of  the positive control. When 
the bacterial dose for pre-treatment was further increased 
to 100 bacteria per cell (moi = 100), the inhibitory effect of  
B. bifidum NCC189 and that of  B. bifidum S17 was almost 
complete (5% of  positive control), while that of  B. lactis 
NCC362, B. longum NCC2705, B. adolescentis NCC251 and 
B. bifidum S16 was intermediate (20%-52% of  positive 
control). In contrast, B. longum/infantis E18 and B. breve 
MB226 had no or only very slight inhibitory effect on 
SEAP activation at either moi. To assess whether physical 
presence of  bifidobacteria was required for their inhibitory 
effect, further experiments were carried out using cell 
culture medium pre-treated for 16 h with bifidobacteria 
followed by the removal of  bifidobacterial cells using filter 
sterilization. Use of  this conditioned medium did not 
result in any inhibition of  LPS-induced NF-κB activation 
in HT-29 clone 34 cells (data not shown). These results 
show that six out of  eight bifidobacteria tested significantly 
inhibited LPS-induced NF-κB activation in IECs and that 
this inhibitory capacity of  bifidobacteria is strain- and 
dose-dependent. Furthermore, presence of  bifidobacterial 
cells during LPS challenge is required for their anti-
inflammatory effects indicating that this inhibition is not 
due to secreted compounds. To prove that decreased 
activity of  the reporter protein was not a consequence of  
apoptosis due to high bacterial doses in combination with 
LPS, viability of  the cells was confirmed by trypan blue 
exclusion. Microscopic examination of  cells pre-treated 

with two representative strains (B. longum NCC2705 and 
B. bifidum S17), challenged with LPS + HM showed that 
viability was > 95% in all experiments demonstrating 
that inhibition of  LPS-induced reporter gene activity by 
bifidobacteria is not due to cell death (Figure 3).

Inhibition of LPS-induced inflammatory events by B. 
bifidum S17 and B. longum NCC2705
To further investigate the effect of  bifidobacteria on 
inflammatory events following NF-κB activation, IL-8 
secretion and mRNA level of  the genes encoding IL-8, 
TNF-α, COX-2, and ICAM-1 were monitored in normal 
HT-29 cells after bacterial pre-treatment with B. bifidum 
S17 and B. longum NCC2705 and a subsequent LPS 
challenge. Pre-incubation with B. bifidum S17 reduced IL-8 
secretion of  the IECs to about 20% of  the positive control 
already at a moi = 10 and was able to completely inhibit 
IL-8 secretion at 100 bacteria per cell (Table 3). Effective 
inhibition with B. longum NCC2705 was only observed at a 
moi = 100. Thus, the dose-response of  the IECs for IL-8 
secretion was similar to that observed for NF-κB-driven 
SEAP reporter gene activity. 

The effect of  pre-treatment of  HT-29 cells with 
bifidobacteria on mRNA levels for genes known to be 
regulated by NF-κB was investigated by real-time PCR. 
Pre-treatment with B. longum NCC2705 and B. bifidum S17 
at a moi = 100 severely inhibited transcriptional activation 
of  the genes for IL-8, TNF-α, COX-2, and ICAM-1 in 
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Figure 2  Dose- and strain-dependent inhibition of LPS-induced NF-κB activation 
by different bifidobacteria. SEAP activity was quantified in the supernatants of 
HT-29 clone 34 cells pre-incubated with different bifidobacteria at moi = 10 (dark 
grey bars) or moi = 100 (light grey bars) and subsequently stimulated with LPS + 
HM for 16 h. Cells treated with medium only served as negative control (neg; white 
bar) and positive controls (pos; black bar) were cells challenged with LPS + HM 
without bacterial pre-treatment. Results are means ± standard error of the mean 
(SEM) of three independent experiments performed in triplicate. RLU of indicidual 
experiments were normalised to give 100 RLU for the positive control.
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Figure 3  Microscopic examination of cellular viability. Trypan blue exclusion was 
monitored in HT-29 clone 34 cells challenged with LPS + HM for 16 after pre-
incubation with bifidobacteria (B. longum NCC2705 or B. bifidum S17; moi = 100). 
Positive control (pos) was cells incubated with LPS + HM without bacterial pre-
treatment. As a control for trypan blue staining cells were incubated for 16 h in cell 
culture medium at pH 4 (dead).

Table 3  IL-8 protein in the supernatants of HT-29 cells (mean 
± SD, n  = 3) 

Treatment IL-8 [μg/L] 1

moi  = 10 moi  = 100

None (untreated control)   2 ± 1
LPS+HM 36 ± 3
NCC2705/LPS+HM 1 30 ± 2 7 ± 3
S17/LPS+HM 1   7 ± 2 2 ± 0

1 Pre-incubation with B. longum NCC2705 or B. bifidum S17 at moi = 10 or 100 
was followed by stimulation with LPS + HM for 16 h.
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HT-29 cells challenged with LPS in the presence of  HM 
(Table 4). Again, B. bifidum S17 was more effective than 
B. longum NCC2705. Taken together, these results indicate 
that selected strains of  bifidobacteria are able to inhibit 
LPS-induced inflammatory events in IECs.

TNF-α-induced NF-κB activation is not inhibited by 
bifidobacteria
NF-κB is activated through a wide range of  stimuli other 
than LPS (see introduction). Therefore, it was interesting 
to test whether a similar inhibition of  bifidobacteria 
could be observed for a pro-inflammatory stimulus other 
than LPS, such as TNF-α. At moi = 100, none of  the 
tested bifidobacteria had any inhibitory effect on NF-κB-
dependent reporter gene activity when 10 μg/L TNF-α 
was used to challenge HT-29 clone 34 cells (Figure 4). 
Further experiments were performed using a lower dose 
of  TNF-α (1 μg/L) as stimulus and different doses 
of  bacteria (moi = 10 and 100). In none of  the tested 
conditions, an inhibitory effect of  bifidobacteria on 
TNF-α induced NF-κB activation was observed (data not 
shown). These results suggest that the inhibitory capacity 
of  bifidobacteria is specific for LPS-induced NF-κB 
activation in IECs.

DISCUSSION
Previous studies have shown that the intestinal microflora 
is implicated in the pathogenesis of  IBD[2-4]. Increased 
express ion of  CD14 and TLR4 in IECs [19] might 
contribute to the sustained inflammation in the epithelium 
of  patients of  IBD. On the other hand, for several 
probiotic formulations, effects on inflammation in cultured 
IEC lines and in mouse models of  chronic intestinal 
inflammation have been reported, yet there is a significant 
lack in our understanding of  the molecular mechanisms by 
which probiotics downmodulate intestinal inflammation. 
Most studies on anti-inflammatory effects of  probiotics 
were performed using mixtures of  different probiotic 
strains, mainly lactobacilli and bifidobacteria[50]. For HT-29 
and T84 cells, it was shown that incubation of  these cells 
with VSL#3, a formulation containing eight different 
strains including 3 strains of  bifidobacteria, resulted in 
decreased secretion of  IL-8 in response to challenge with 

non-pathogenic E. coli or pathogenic Salmonella dublin[51]. 
In the IL-10 knock-out model of  colitis, introduction of  
VSL#3 in the diet had an inhibitory effect on basal and 
LPS-stimulated TNF-α secretion in biopsies obtained 
from the colonic mucosa[44]. In the same mouse model, 
feeding a diet containing B. infantis 35624 was superior 
to L. salivarius UCC118 in effectively reducing the total 
gastrointestinal inflammatory score[38]. Finally, VSL#3 has 
been successfully used in the treatment of  some IBDs[43,45].

Here, the effects of  bifidobacteria on IECs were 
investigated with particular emphasis on LPS-induced 
inflammation. To our knowledge this represents the first 
attempt to characterize anti-inflammatory effects of  whole 
cells of  a single bifidobacterial strain. None of  the tested 
bifidobacteria induced activation of  NF-κB in HT-29 
clone 34 cells, whereas a challenge with E. coli D2241 
resulted in significant induction of  NF-κB driven reporter 
gene activity in this cell line. Challenge of  HT-29 clone 34 
cells with LPS alone resulted in only a 2.5-fold induction 
of  NF-κB-dependent reporter gene activity above 
background levels. This is consistent with results from 
other groups, which showed that colonic epithelial cells 
are poorly responsive to LPS[20]. However, using HM as a 
source of  sCD14[52], the NF-κB response of  HT-29 IECs 
to LPS was dramatically increased. This result supports 
previous studies showing increased responsiveness of  
HT-29 cells to LPS in the presence of  HM[52-54]. This 
increased responsiveness of  HT-29 cells to LPS in the 
presence of  milk could be blocked by an anti-CD14 
antibody[52]. 

NF-κB-dependent reporter gene activation by LPS in 
the presence of  milk could be inhibited by pre-incubation 
with bifidobacteria in a strain- and dose-dependent 
manner, with the three B. bifidum strains (NCC189, S16, 
and S17) being most effective. To achieve this inhibitory 
effect, the presence of  bifidobacterial cells was required, 
as filter-sterilized cell culture medium pre-treated with 
bifidobacteria did not show any inhibition of  LPS-
induced NF-κB activation. This indicates that the anti-

Table 4  Real-time quantification of mRNA levels of several 
genes in HT-29 cells

Treatment Relative mRNA level 1 ± SD of gene for

IL-8 TNF-α COX-2 ICAM-1

LPS+HM (positive 
control)

40.6  ±  17.4 37.4  ±  12.6 5.9  ±  1.7 28.0  ±  10.7

B. longum NCC2705/
LPS+HM 2

11.4  ±  1.1 a 12.7  ±  1.8 a 2.5  ±  1.6 12.2  ±  9.2

B. bifidum S17/
LPS+HM 2

  3.5  ±  2.6 a   2.9  ±  2.4 a  1.4  ±  0.6 a    2.0  ±  0.8  a

1 Results are mRNA levels relative to the negative control (no bacteria, no 
LPS) and are mean ± standard deviation (SD) of three independent pools 
of RNA for each condition. 2 Pre-incubation with B. longum NCC2705 or B. 
bifidum S17 at moi = 100 was followed by stimulation with LPS + HM for 4 h. 
a P < 0.05 vs positive control; Student’s t-test.
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pre-incubated with different bifidobacteria and subsequent stimulation with TNF-α 
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experiments. 
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inflammatory compound is not actively secreted by 
bifidobacteria or released from lysed cells. Furthermore, 
incubation of  HT-29 cells with B. longum NCC2705 
and B. bifidum S17 prior to LPS challenge reduced IL-8 
secretion and had a significant inhibitory effect on mRNA 
levels of  the TNF-α, IL-8, ICAM-1, and COX-2 genes, 
all of  which have been shown to be regulated by NF-
κB[9]. In a similar study, VSL#3 inhibited NF-κB reporter 
gene activity and MCP-1 secretion after a challenge with 
TNF-α, in conditionally immortalised mouse colon cells[49]. 
In the presented experiments, none of  the tested strains of  
bifidobacteria inhibited NF-κB activation in response to 
TNF-α. These results suggest that bifidobacteria interfere 
with pro-inflammatory signals upstream of  the pathway of  
NF-κB activation common for LPS and TNF-α.

Lipoteichoic acids (LTA) of  two lactobacilli strains 
were able to inhibit IL-8 secretion in response to 
LPS in HT-29 cells[54]. In a recent study, it was shown 
that the composition of  LTA have an impact on the 
immunogenicity and anti-inflammatory capacity of  
L. plantarum [55]. Of  note, a mutant lacking D-alanine 
substitutions to the back bone of  LTA showed dramatically 
improved anti-inflammatory properties compared to the 
wild type. The mechanism by which bifidobacteria exert 
their inhibitory effect remains to be elucidated. One study 
investigating DNA from the VSL#3 mixture showed that 
the bifidobacterial strains’ DNA was effective in limiting 
epithelial pro-inflammatory responses in IL-10-deficient 
mice and in HT-29 cells challenged with TNF-α. However, 
the pro-inflammatory response to LPS in HT-29 cells 
was not inhibited by the probiotic DNA[56]. This rules 
out, to a certain degree, that the effects observed in the 
presented experiments stem from DNA leaking from 
lysed bifidobacteria. Furthermore, it suggests that the 
mechanisms by which whole cells of  bifidobacteria inhibit 
inflammatory responses are distinct from those described 
for their DNA.  

Although anti-inflammatory activity of  probiotics 
has been reported previously, to our knowledge, this 
is the first report on a specific inhibitory effect of  
bifidobacteria on LPS-induced inflammatory events 
in IECs, suggesting a role for bifidobacteria in down-
modulation of  pro-inflammatory cytokines[57]. Blocking 
of  LPS-induced NF-κB activation by bifidobacteria could, 
at least in part, explain their positive effects on chronic 
intestinal inflammation in vivo through prevention of  
further amplification of  the pro-inflammatory signal after 
exposure to LPS. Our results suggest that the capacity to 
inhibit LPS-induced NF-κB activation is strain-dependent. 
Especial ly, the strains of  B. bi f idum are promising 
candidates for probiotic intervention in inflammatory 
disorders of  the gastrointestinal tract.
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