
covered with epithelial cells called enterocytes which are 
responsible for the terminal digestion and absorption 
of  nutrients. These cells have a limited lifespan before 
being replaced by cells derived from the crypt region[1]. 
There is also evidence of  apoptosis within the crypt, 
presumably in response to excess cellular proliferation, 
cytotoxicity or genomic damage[2]. Surviving cells undergo 
apical migration, limited cell replication, commitment and 
differentiation[1]. The process of  differentiation is gradual, 
characterised by the accumulation of  cell-specific products 
in the upper crypt region and attaining the mature 
phenotype in the lower to middle-villus region. Recent 
evidence indicates that heme is important in intestinal 
development as well as maintaining the mucosal barrier 
and protecting the body from invasion and the damaging 
consequences of  ingested xenobiotics. However, heme 
in the colon may irritate the mucosa and derange the 
normal rates of  proliferation/exfoliation, circumstances 
that raise the probability of  colon cancer. Heme is also 
an important source of  body iron and how it is absorbed 
by the enterocyte is considered in this article, as well 
as the role heme plays in intestinal motility. It needs to 
be recognised that an in depth focus on each of  these 
components is outside the scope of  this review, rather it is 
our intention to provide the general reader with evidence 
and interpretations supporting the markedly varied 
involvement of  heme in intestinal function.
 
Heme biosynthesis and heme oxy-
genase (HO) (EC 1.14.99.3) 
Heme biosynthesis
Heme biosynthesis involves 8 enzymes, four localised 
to the cytoplasm and the others in the mitochondrial 
matrix[3-5] and is regulated by the first enzyme in its 
synthesis aminoleuvilinic acid synthase[6] (Figure 1A). 
Heme biosynthesis also requires iron, which in the 
intestinal crypt is derived from the plasma by the activity 
of  the transferrin receptor operating in collaboration 
with the hemochromatosis protein (HFE)[7] (Figure 1B). 
Although heme synthesis is highest in the crypt epithelium 
it continues along the length of  the crypt-villus axis. 
As the cells leave the crypt region iron appears to be 
acquired from the diet since dietary iron deficiency reduces 
the heme content of  villus enterocytes, and in villus 
cells transferrin receptor has 25% the activity of  crypt 
epithelium[8,9] (Figure 1B).
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Abstract
The gastrointestinal tract is lined by a simple epithelium 
that undergoes constant renewal involving cell division, 
differentiation and cell death. In addition, the epithelial 
lining separates the hostile processes of digestion and 
absorption that occur in the intestinal lumen from the 
aseptic environment of the internal milieu by defensive 
mechanisms that protect the epithelium from being 
breached. Central to these defensive processes is the 
synthesis of heme and its catabolism by heme oxygenase 
(HO). Dietary heme is also an important source of iron 
for the body which is taken up intact by the enterocyte. 
This review describes the recent literature on the 
diverse properties of heme/HO in the intestine tract. 
The roles of heme/HO in the regulation of the cell cycle/
apoptosis, detoxification of xenobiotics, oxidative stress, 
inflammation, development of colon cancer, heme-
iron absorption and intestinal motility are specifically 
examined.
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Introduction
The lumen of  the intestine mucosa is predominately 
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Function of HO 
HO catalyses the mixed function oxidation of  heme 
using cytochrome P-450, NAPDH and molecular 
oxygen[10-12]. HO functions in the oxidative cleavage of  
heme specifically at the α-methane bridge, resulting in the 
formation of  biliverdin IXα which is rapidly reduced to 
bilirubin IXα by soluble biliverdin reductase (BVR). Since 
tissue BVR activity is 30-50 times greater than HO activity, 
this suggests that it is unlikely to limit heme breakdown, 
and that the rate limiting component is HO[12]. Recently, 
the crystal structure of  HO in complex with heme and 
biliverdin-iron has been solved[13]. HO binds heme and 
oxygen between two helical folds with the proximal fold 
binding heme while the distal helix contains an oxygen 
binding site[13]. 

Isoforms of HO 
HO is expressed as two isoforms designated HO-1[14] 
and HO-2[14,15] which are products of  different genes[14]. 
HO-1 shares substantial homology with HO-2[15]. The 
molecular mass of  HO-1 is 32 kD, while HO-2 is 36 
kD. HO-1 expression is induced by numerous factors, 
including oxidative stress, inflammation, cytokines, nitric 
oxide, prostaglandins, an elevated level of  substrate[16], iron 
deficiency[17], metals including Cd, Co, Cr, Cu, Fe, Hg, Ni, 
Pd, Pt, Sn, Zn[3,16,18,19], hyperoxia[20] and UV light[21]. The 
induction of  HO-1 by hyperthermia has led to use of  an 
alternate name, heat shock protein 32 (HSP-32)[22]. Unlike 

the inducible expression of  HO-1, HO-2 expression is 
relatively constant.

HO and re-utilization of heme
HO-1 is mainly involved in the reutilization of  heme-
iron from hemoglobin and the expulsion of  iron from 
tissue stores as evidenced by HO-1 knockout mice which 
develop anaemia because of  progressive tissue iron 
retention particularly within macrophages[23]. A previous 
study shows that less than 50% of  endogenous hepatic 

heme degradation in rats is accounted for by HO-1 activity 
as evidenced by the generation of  CO from heme[24]. 
Therefore there appear two separate fates for catabolized 
heme-iron. Firstly a HO-1 dependent pathway, where iron 
from heme passes efficiently from the macrophage to the 
plasma, probably by the iron transporter ferroportin[25], 
and secondly, a HO-1 independent pathway which results 
in retention of  the freed iron. 

HO and oxidative stress
HO-1 functions to diminish cellular oxidative stress 
because HO-1 reduces the levels of  the pro-oxidant heme 
and produces the antioxidant bilirubin[26]. Supporting this, 
humans deficient in HO-1[27] and individuals with impaired 
transcription due to a microsatellite polymorphism in 
the HO-1 promoter region[28,29] present with a phenotype 
similar to HO-1 knockout mice[30]. Interestingly, HO-2 
is unable to compensate for the loss of  HO-1, probably 

Figure 1  A: The heme biosynthetic pathway. Mitochondrial and cytosolic locations of the eight enzymes are shown circled and coloured. Commencing synthesis is 
ALAS on the inner mitochondrial membrane of the first intermediate as well as subsequent intermediates. Heme synthesis is regulated by heme at the level of ALAS via 
feedback repression. It has been suggested that frataxin may donate ferrous iron to protoporphyrin in the formation of heme; B: In the intestinal crypts the uptake of plasma 
transferrin-iron occurs by the transferrin receptor (TfR). In iron deficiency HFE complexes with TfR1 and to a much lesser extent with iron loading. (1) TfR binds to plasma 
diferric transferrin. (2) TfR is internalised by receptor mediated endocytosis. (3) In the cytoplasm a v-H+ATPase fuses with the endosome and acidifies it to release the 
iron from transferrin. Following ferrireduction Fe(II) is transported to the cytoplasm by a metal transporter. (4) possibly divalent metal transporter 1 (DMT1). The iron is 
then transported into the mitochondria where it is incorporated into heme. The mitochondria are also a major producer of iron sulphur clusters. (5) The transferrin receptor 
- apotransferrin complex then return to the cell membrane where at the neutral pH, apotransferrin dissociates. Heme, heme oxygenase and BVR may regulate gene 
transcription during enterocyte differentiation. FLVCR functions to export excess heme. 
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because its expression is restricted to a select group 
of  cells or it is unable to be induced to the levels of  
activity required to produce the effects seen with HO-1 
expression[27-30]. HO-1 and intestinal oxidative stress is 
discussed in a later section.

Intestinal heme biosynthesis and 
heme oxygenase

Heme biosynthesis
The synthesis of  heme and heme-containing proteins 
is crucial for intestinal function. These hemoproteins 
include electron carrying proteins such as cytochrome 
(CYP) P450 (see section on detoxification), mitochondrial 
localised cytochromes, the ferrireductase Dcytb[31], catalase 
and peroxidases which catalyse the reaction of  hydrogen 
peroxide (H2O2) to water and oxygen (see section on 
oxidative stress). In addition to biosynthesis, heme can 
also be acquired by the enterocyte via intestinal absorption. 
This will be discussed in detail below with respect to the 
intestine.

HO gene expression 
In the human intestinal cell lines CaCo-2 and HT-29, 
internalisation of  heme increased HO-1 expression, 
indicating that the heme responsive element in the 
promoter region of  the HO-1 gene was accessible 
and functional[32,33]. Duodenal HO-1 expression is also 
increased in iron deficiency[17] and by conditions that lead 
to oxidative stress including heavy metals and inflammation 
(see below with respect to the intestine). Up-regulation 
of  HO-1 gene expression via the estrogen receptor β[34], 
octreotide, a somatostatin analogue[35] and glutamine[36] 
has been established. HO-2 expression is constitutive 
and mainly confined to the enteric nervous system and 
interstitial cells of  Cajal, although it is possible that HO-2 
is expressed by enterocytes[37]. This will be addressed later 
in this review.

Heme turnover along the crypt-villus axis 
Heme turnover is the balance between heme synthesis and 
its destruction by heme oxygenase. It is subject to variation 
along the crypt-villus length, being highest in the crypt 
and least at the villus tip[38]. Thus the crypt region has 
the highest activity of  both heme biosynthesis and heme 
oxygenase activity. As the cells migrate the rate of  heme 
synthesis decreases but destruction decreases to a lesser 
extent, therefore total heme content is highest at the villus 
enterocytes compared with crypt epithelium. 

HO-1 and intestinal cell proliferation and differentiation in 
the crypts
Cell turnover and differentiation is a function of  crypt 
epithelium. Similar to that seen in the crypt epithelium, 
HO-1 activity is highest in undifferentiated intestinal 
epithelial Caco-2 cells[39]. This suggests that HO-1 and 
cell proliferation/apoptosis may be linked[40]. Supporting 
this, inhibiting HO-1 activity reduced cell proliferation 
and increased cell death[40,41]. Conversely, in the human 
intestinal cell line HT-29 cells induction of  HO-1 activity 
reduced expression of  the pro-apoptotic gene caspase-3 

and inhibited apoptosis. This supports the idea that 
HO-1 activity is anti-apoptotic[42]. It is possible that HO-1 
mediates these effects indirectly on gene transcription via 
the activity of  BVR (Figure 2).

HO/BVR in intestinal cell signalling
BVR (EC 1.3.1.24) must undergo auto-phosphorylation in 
order to convert biliverdin to bilirubin[43]. This property of  
phosphorylation/dephophorylation during the conversion 
of  biliverdin to bilirubin is similar to that seen with 
signalling kinases. Recent evidence indicates that BVR 
functions as a serine/threonine kinase that operates in the 
insulin receptor/MAPK pathways[44] and a transcription 
factor with a bZip domain involved in ATF-2/CREB and 
HO-1 regulation[45]. These additional roles suggest that 
BVR may have a broader function in regulating cellular 
activity[46]. Since BVR immunoreactivity is seen in nuclei of  
epithelium lining the GI tract, this suggests a possible role 
in the regulation of  gene transcription[47].

HO-1 acts as a guardian of the genome during differen-
tiation
It is possible that HO-1 may modulate proliferation by 
scavenging and/or preventing the formation of  reactive 
oxygen metabolites (ROM) and reactive nitrogenous 
metabolites (RNM), since ROM inhibit Caco-2 cell 
proliferation[48] and stimulate apoptosis[49]. This is 
particularly relevant to the intestinal crypt region where 
proliferation exists and the levels of  antioxidant detoxifying 
enzymes such as superoxide dismutase, glutathione 
peroxidase, glutathione reductase and catalase are low[50]. If  
this is true then HO-1 level in the crypt region may act in 
defence against oxidative stress to limit mutation of  DNA. 
HO-1 may therefore be one guardian of  the genome, 
limiting mutations of  DNA and promoting deletion of  
aberrant cells (Figure 2). 

Differentiation is likely to result in elimination of cellular 
heme 
As discussed previously the production of  heme for 
enzymes, electron transport and as substrate for activity 
of  HO1 and BVR is likely to be finely balanced since 
excess heme leads to oxidative stress and subsequent cell 
damage. Therefore as differentiation concludes heme 
production must fall. This may be achieved through 
reduced heme biosynthesis, increased HO-1 activity or 
increased heme export. With respect to heme export, a 
human heme exporter with homology to Feline leukaemia 
virus, subgroup C receptor (FLVCR) has recently been 
identified which has a clear function in erythropoiesis 
at the CFU-E stage of  development[51]. Impairment of  
FLVCR leads to the loss of  CFU-E cells and impairs 
erythroid differentiation by inducing apoptosis. FLVCR 
is also expressed by Caco-2 cells, suggesting that it may 
be involved in intestinal differentiation by reducing the 
cellular heme concentration as the cell differentiates[51]. 
This would reduce the oxidative burden on the stem/
progenitor cell and potentially limit genomic damage[52]. 
Supporting the existence of  the FLVCR in the intestine, 
Caco-2 cells internalised heme by an active transport 
process and transcytosed it from apical to basal surfaces[53]. 
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The converse was also true. Exposing the membranes to 
trypsin selectively increased the rate of  uptake across the 
apical membrane only. Taken together these results raise 
the possibility that heme can be actively secreted from the 
cell in either direction possibly involving FLVCR (Figure 2). 

HO activity along the length of the intestinal tract 
correlates with heme-iron absorption
HO activity is highest in the duodenum and lowest in the 
terminal ileum[54-56]. This pattern of  HO activity appears 
to correlate with the uptake of  ingested xenobiotics and 
heme-iron absorption along the length of  the intestinal 
tract (see below). In fact, treating rats with phenobarbital 
increased microsomal P450 enzyme act iv i ty, and 
absorption of  iron from hemoglobin[57]. Conversely, when 
an inhibitor of  intestinal HO activity was given, intestinal 
heme-iron absorption decreased[58] (see below). 

HO and CYP450 activities in xenobiotic metabolism 
The intestine makes an important contribution to the 
detoxification of  many ingested xenobiotics (food 
additives, industrial chemicals, pesticides, plant toxins 
and pharmaceutical agents)[59-61]. The heme containing 
P450 enzymes in particular the CYP3A superfamily are 
an integral component of  xenobiotic detoxification. P450 
levels are highest in the proximal duodenum, falling to 
lowest levels at the ileum[62,63]. This correlates with the 
gradient of  exposure to ingested xenobiotics. The highest 
activity of  the P450 enzymes studied to date is the villus 
region[64-67]. Interestingly, ingested xenobiotics induce 
greater CYP activity in the crypt epithelium compared with 

villus enterocytes[66]. Since the crypt cells do not absorb 
nutrients, this suggests that they passively absorb the 
drug or that the drug is actively absorbed by enterocytes 
and then taken up from the plasma by crypt cells. This 
interpretation is consistent with highest levels of  heme 
biosynthesis in crypt epithelium. 

Detoxification involves three phases, firstly the 
CYP450s and its mixed function oxidases adds a reac-
tive group to the xenobiotic, secondly the molecule 
is made water soluble by conjugation to glucuronic 
acid, sulphates, glutathione or amino acids by UDP-
glucuronosltransferases [UGT], sulfotransferases [SULT] 
or glutathione S-transferases [GST], respectively, thirdly 
the metabolite is excreted from the enterocyte into the 
lumen by a transporter such as the ATP binding cassette 
transporters (ABC), P-glycoprotein[59,62,63]. This “first pass” 
detoxification of  xenobiotics is most active in the upper 
villus where absorption of  nutrients and xenobiotics are 
greatest[64-67].

To perform optimal detoxification the enterocyte must 
express appropriate levels of  CYP450 and this is in part 
determined by heme turnover. Therefore for the enterocyte 
to express appropriate CYP450, adequate absorption 
of  iron from the diet is required for heme synthesis 
along with conditions that limit HO-1 expression[68-70]. 
If  HO-1 activity is induced, for example by ingestion of  
environmental contaminants such as cadmium, organotins 
and heavy metals increased destruction of  CYP will take 
place and first pass detoxification will be compromised. 
Similarly, iron deficiency reduces the ability to synthesise 
heme and therefore detoxify xenobiotics[64,65,71]. This may 
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Figure 2  A: Epithelium of the crypt region is active in cell proliferation and differentiation. Heme production is required for the synthesis of heme containing enzymes. 
In these cells there are also high levels of heme oxygenase activity suggesting that heme breakdown is required for the production of bilirubin and carbon monoxide to 
maintain appropriate proliferation, differentiation and apoptosis. If the oxygen tension of the cell should increase or production of heme exceeds use, as would be seen as 
differentiation proceeds, then excess heme may be exported via FLVCR to limit oxidative stress. Increased oxidative stress may also be buffered by the antioxidant bilirubin; 
B: In the presence of increased oxidative stress caused by excess heme production, impaired FLVCR transport or increased oxygen tension, heme increases to levels that 
are genotoxic and the cell is predisposed to pro-apototic gene expression placing the cell into a death programme. Normal intestinal growth and differentiation would be 
impaired.
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Glutamine increases HO-1 expression
Glutamine is a major source of  energy for the enterocyte 
and has been shown to promote intestinal growth and 
maintain intestinal integrity particularly when the intestine 
is heat stressed and starved[36,87-91]. Glutamine stimulates 
intestinal proliferation and acts synergistically with 
epidermal growth factor to induce the mitogen-activated 
protein kinases and Jun nuclear receptor kinases. These in 
turn phosphorylate nuclear transcription factors such as 
AP-1 which activate transcription of  target genes involved 
in cell proliferation and repair, including HO-1[36,88]. 
Recently it was shown that glutamine stimulation of  HO-1 
expression was protective against endotoxic shock of  the 
lower intestine[90].

The inflammatory response and the role of HO-1
The epithelium lining the gastrointestinal tract presents 
a “mucosal barrier” to the migration of  pathogens into 
the lamina propria that reside within the lumen of  the 
gastrointestinal tract. In addition to the epithelium which is 
selectively permeable to nutrient absorption, the mucosal 
barrier comprises tight junctions that prevent migration 
of  pathogens between cells. Breaching the mucosal barrier 
elicits an inflammatory response which first involves 
the innate immune system. Toll like receptors (TLR) 
expressed on the basolateral surface of  enterocytes and 
the cell membrane of  macrophages are activated[92] and 
these in turn activate intracellular signalling pathways that 
induce NF-κB dependent transcription of  genes involved 
in the pro-inflammatory response such as cytokines, 
chemokines, immune receptors, nitric oxide synthase, 
prostaglandins and cell surface adhesion molecules[93-95]. 
The pro-inflammatory mediators initially function to 
increase blood flow and edema. Concomitant with this, 
endothelial cell membranes express cell adhesion receptors 
including ICAM-1 that enable white blood cells to adhere 
and extravasate[34]. The further release of  pro-inf lammatory 
chemokines (CINC-1, -3) may lead to hemostasis and organ 
failure[34]. 

Inflammation is known to induce HO-1 gene expre-
ssion and in turn its activity. The bilirubin and CO 
produced are thought to have restorative effects on 
impaired tissue function, in the case of  bilirubin it is a 
potent anti-oxidant[26,96-98]. There was increased oxidized 
bilirubin in the urine of  patients following invasive surgery, 
supporting the idea that bilirubin acts as an antioxidant to 
scavenge reactive oxygen species[97]. 

The second metabolite of  HO-1 activity, CO has 
been shown to relax vascular smooth muscle by binding 
to the heme moiety of  soluble guanyl cyclase (sGC). 
Activation of  sGC increases blood flow to the site of  
intestinal injury[99,100], inhibits platelet aggregation[101], 
reduces microvascular fibrin accumulation[102] and 
restricts leukostasis in postcapillary venules[93,103]. Reduced 
leukostasis by CO is thought to occur via inhibition of  
the expression of  the adhesion molecules, P-, E- selectins, 
and ICAM although some contribution by bilirubin is also 
thought responsible for the leukostasis[104-106]. CO exerted 
additional cytoprotection by inhibiting components of  the 
pro-inflammatory pathway including TNF-α, IL-1β, IL-2, 

therefore predispose an individual to cancer and ulceration 
of  the colon[72] (Figure 3).

HO and hyperbilirubinaemia 
Several metalloporphyrins are competitive inhibitors of  
HO-1 activity because they have the capacity to interact 
with the heme binding site in HO-1, but are unable 
to activate the enzyme. This leads to a loss of  heme 
degradation[73-76]. This strategy has been used in the 
correction of  human neonatal hyperbilirubinemia[77-79]. 
Treatment with tin-protoporphyrin/mesoporphyrin, two 
structurally related heme analogues are effective in lowering 
serum bilirubin levels in many animals by competitively 
inhibiting HO[73-79]. In addition, the use of  short interfering 
RNAs targeting HO-1 mRNA expression has also been 
proposed to treat hyperbilirubinemia[80]. Although there is 
a recognised loss of  endogenous heme through the bile 
during metalloporphyrin administration[81-83] that has been 
linked to an iron deficient state[84], the iron deficiency has 
been shown to be readily reversible.

In the enterocyte, bilirubin is conjugated to glucuronic 
acid by bilirubin glucuronyl-transferase and excreted into 
the intestinal lumen[85], or passed into the plasma where 
it non-covalently binds albumin and is transported to 
the liver, conjugated and excreted into the bile. However, 
early in perinatal life the luminal activity of  secreted 
lysosomal-derived glucuronidase is high suggesting that 
enterocyte and biliary excreted conjugated-bilirubin can be 
deconjugated within the intestinal lumen enabling bilirubin 
to be reabsorbed via the enterohepatic circulation[86]. This 
would contribute to neonatal hyperbilirubinemia. 

Figure 3  Left: Xenobiotics in the diet enter the enterocyte via facilitated 
diffusion or a specific transport process. Appropriate P450 expression on smooth 
endoplasmic reticulum (SER) enables first pass metabolism including phase I, and 
phase II metabolizing enzymes. Phase III multi drug resistance transporters (MDR) 
transport the conjugated-xenobiotic compound to the lumen or blood stream 
where increased hydrophilicity impairs re-entry into the enterocyte and leads to 
its elimination from the body directly. De novo synthesis of P450 occurs in the 
enterocytes and is dependent on appropriate levels of dietary iron. Right: In the 
presence of oxidative stress caused by high dietary intake of metals or compounds 
that induce heme oxygenase 1 (HO-1), heme containing P450 are broken down 
leading to increased entry of xenobiotics to the body. Dietary iron deficiency leads 
to reduced P450 activity and reduced detoxification capabilities.
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IL-6, interferon-γ and cyclo-oxygenase, while stimulating 
the anti-inflammatory cytokine IL-10[42,107-114] (Figure 4). 

The third metabolite resulting from HO-1 activity is 
Fe(II). If  this reaches the labile iron pool it will induce 
oxidative stress by participating in Fenton and Haber Weiss 
driven reactions and this would exacerbate inflammation. 
However, this is avoided by sequestration by ferritin[21].

Endothelial nitric oxide synthase (eNOS) maintains 
mucosal integrity 
Nitric oxide synthase (NOS) is a heme-containing enzyme 
that converts L-arginine to nitric oxide (NO) and citrulline. 
Similar to CO, NO binds the heme moiety of  guanylate 
cyclase to produce vascular smooth muscle relaxation. 
Under normal circumstances eNOS/NO is important in 
maintaining mucosal integrity by modulating intestinal 
blood supply. NO at low concentrations stimulates mucous 
production, electrolye secretion and decreases pro-
inflammatory responses of  mast cells, neutrophils, platelets 
and endothelial cells[115-117] (Figure 4A). 

Induction of nitric oxide synthase (iNOS) damages 
mucosal integrity 
During inflammation cytokines activate NF-κB dependent 
gene expression of  iNOS by intestinal epithelial cells, 
neutrophils and macrophages. This leads to production 

of  NO[116-118] at considerably higher levels than by eNOS 
activity. At this concentration NO reacts with superoxide 
anions to form the cytotoxic reactive nitrogen metabolite, 
peroxynitrite[119-123]. Although peroxynitrite destroys micro 
organisms, it also reversibly inhibits heme containing 
proteins including cytochrome C, catalase, cytochrome 
P-450 and cytoskeletal proteins[120,122]. It was suggested 
that inhibition of  iNOS during endotoxin-induced gut 
mucosal dysfunction was beneficial because mitochondrial 
oxidative metabolism was unimpaired[119]. This leads to 
maintenance of  mucosal barrier integrity that resists 
bacterial translocation[124] (Figure 4B). 

Collectively, these findings indicate that at low 
concentrations NO maintains mucosal integrity, but at high 
concentrations NO induces reactive nitrogen metabolites 
which impair intestinal function.

The role of HO-1 versus iNOS in intestinal inflammation 
During intestinal inflammation HO-1 mRNA expression 
increases in response to the activity of  NO[125]. It is likely 
that this is due to increased transcription and stabilization 
of  existing transcripts[125]. In addition, induction of  HO-1 
in a human intestinal cell line resulted in the degradation 
of  cytokine-induced NOS. This reduced the production of  
NO and therefore peroxynitrite[124]. Heme was also shown 
to reduce the NOS mRNA[124]. The inhibition of  NOS 

Figure 4  A: The intestinal mucosal barrier is maintained by a series of lateral membrane specialisations near the apical pole of the epithelial cell. It comprises tight 
junctions, adhesion belts, desmosomes and gap junctions that prevent the movement of pathogens across the epithelial monolayer. Constitutive expression and activities 
of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) is important for maintaining adequate blood flow, anti-inflammatory, anti-thromobotic (-) and anti-
apoptotic effects on endothelium, neutrophils, platelets, and enterocytes, respectively. HO-1 activity produces the antioxidant bilirubin to limit oxidative damage; B: The loss 
of mucosal integrity results in the translocation of pathogens and establishment of an inflammatory response by the following series of events. (1) Initiation of synthesis of 
proteases by bacteria erode tight junction complexes between epithelial cells. (2) Binding of bacterial motifs activates toll like receptors, initiating the NF-kB pathway. (3) 
Increased expression of pro-inflammatory cytokines, chemokines and endothelial cell surface adhesion molecules. (4) Leukocytes extravasate and increased permeability 
of capillaries increases fluid accumulation (5) Phagocytic cells produce myeloperoxidase which combines with peroxide to form hypochlorous acid that damages pathogen 
and host systems alike. (6) Peroxide produced by enterocytes in combination with ferrous iron can produce superoxide anions that damage lipids, DNA and proteins. (7) NO 
is produced at high concentrations that combines with peroxide to form the pro-oxidant peroxynitrite. (8) Platelets also bind to the endothelial surface to induce hemostasis. (9) 
Presentation of antigens by dendritic cells via major histocompatibility class 1 to cytotoxic T-cells leads to antibody presentation and destruction of infected epithelial cells. 
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activity by HO-1 was lost when tin protoporphyrin was 
given, indicating the direct effect of  HO-1 in regulating 
NOS activity[126]. These findings are consistent with a role 
for HO-1 in limiting the deleterious effects of  excessive 
iNOS by directly inhibiting its transcription, degrading 
existing NOS and scavenging excess ROM/RNM with 
bilirubin. 

Nutrition and mechanism of heme-
iron absorption
In western civilisations, 40% of  the average non-vegetarian 
person’s total body iron is derived from heme products. 
However, iron from these substances only constitutes 15% 
of  ingested iron[127,128], suggesting that heme-iron is more 
efficiently absorbed than non-heme iron. This observation 
also explains why vegetarians are more prone to iron 
deficiency than meat eaters. Despite the importance of  
the contribution of  heme to body iron stores, how it is 
absorbed is still poorly understood. 

Mechanism of Heme-Iron Absorption 
It is generally recognised that in omnivorous animals, 
heme is not transferred into the blood as an intact 
metalloporphyrin, instead absorption of  iron from 
heme involves three steps (1) Uptake of  luminal 
meta l loporphyr in [Fe(II)-protoporphyr in-IX] by 
the enterocyte (2) catabolism within the enterocyte, 
combining of  pools of  ingested iron from non-heme 
and heme sources and (3) release of  elemental iron to the 
bloodstream by the enterocyte[129-133]. A large number of  
proteins are thought to be involved in the mechanism of  
heme iron absorption and these are tabulated along with 
their sites of  expression and function (Table 1). Most 
of  these proteins will be discussed individually in the 
following sections and is also summarised in Figure 5. 

Worthington and co-workers used immunofluorescent 
methods to show that the uptake of  a heme analog was 
temperature and time dependent, could be inhibited by 
heme competition and augmented by inhibitors of  heme 
synthesis[134]. It is likely that Worthington and co-workers 
identified a heme transport process by Caco-2 cells that 
may be a transporter and/or possibly a heme receptor. 

Heme uptake by a heme transporter 
Heme is taken into the enterocyte intact as evidenced by 
the recovery of  59Fe-heme from the small intestinal mucosa 
following the gavage of  radiolabelled hemoglobin[130-133]. 
This process is energy dependent indicating an active 
process[135]. The finding that absorption of  iron from 
hemiglobin and hemoglobin were equivalent suggests that 
uptake of  heme is independent of  the redox state of  the 
heme-iron[136,137]. Alternatively there is an oxidoreductive 
mechanism on the cell surface that is capable of  converting 
the iron redox state before internalization.

A microvillus membrane transporter that imports 
heme from the lumen into enterocytes of  mice was 
recently characterised[138]. This protein was expressed in the 
duodenum but not the ileum, consistent with expression 
at the site of  highest heme-iron absorption. Heme carrier 

protein 1 (HCP1) encodes a protein with strong homology 
to bacterial tetracycline-resistance proteins, which are 
characterised as having 12 transmembrane domains and 
are members of  the major facilitator superfamily[138]. 
Functional characterisation of  HCP1 using Xenopus 
oocytes revealed selectivity for the transport of  heme but 
not tetracycline or non-heme iron. In vitro studies involving 
HCP1 siRNA and in vivo studies blocking HCP1 activity by 
antibodies indicated that the uptake of  heme fell. HCP1 
also required energy but the source of  energy is presently 
unknown. Collectively, these findings indicate the first 
functional characterisation of  a heme specific transporter.

Interestingly, during conditions known to increase 
non-heme iron absorption such as hypotransferranemia 
and iron deficiency, HCP1 mRNA expression remained 
constant although it was increased by hypoxia. Similarly, the 
extent of  HCP1 protein expression remained constant with 
respect to the iron content of  the enterocyte, although the 
protein translocated from the microvillus membrane to the 
basal cytoplasm during iron loading. The lack of  increased 
expression of  HCP1 by iron deficiency may in part explain 
the limited ability to increase heme-iron absorption. It 
may also indicate that HCP1 needs additional modulating 
proteins in order to regulate heme-iron absorption  
(Figure 5). 

Heme uptake by a heme receptor 
Previous studies have reported a 50% increase in heme 
binding to microvillus membrane preparations during 
iron deficiency, raising the possibility of  a brush border 
localised heme receptor[139-142]. This is based on the 
measurements of  binding [14C]-heme to semi-purified 
brush border preparations[139-142]. Subsequent solubilisation 
of  the brush border microvillus membranes identified 

Table 1  Proteins involved in intestinal heme-iron absorption 
along with their function, location and whether they are 
regulated by iron

Protein Function Location Regulation by Fe

Heme receptor Receptor for heme ? Inversely

HCP1 Transporter of heme AM -> BC Constant

FLVCR Heme exporter ? Unknown

Ferritin Iron storage C Directly

DMT1 Fe(II) importer AM+Lys Inversely

Ferroportin Fe(II) exporter BL AM Inversely

Hephaestin Ferroxidase + ? SN, BL Constant

HO 1 Degradation of heme C Inversely

HO 2 Degradation of heme SMC, EN Constant

HFE Regulator TW Inversely

TfR1 Tf:Fe endocytosis BL, SN Constant

Transferrin Endosomal iron transport C Inverse

DMT1 = divalent metal transporter 1; HO = heme oxygenase; HCP1 = heme 
carrier protein 1; FLVCR = Feline leukaemia virus, subgroup C receptor; 
HFE = hemochromatosis protein; TfR1 = transferrin receptor 1; AM = apical 
membrane; BL = basolateral membrane; SN = supranuclear; LM = lateral 
membrane; Lys = Lysosomes; TW = terminal web; C = cytoplasm; BC = basal 
cytoplasm; SMC = smooth muscle cells, EN = enteric nerves; ? = putative;  
Tf:Fe = transferrin iron.
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the size of  the heme binding substances, one with a 
molecular mass of  about 250 kDa the other about 60 
kDa. Displacement of  the [14C]-heme by unlabelled heme 
was seen with the 250 kDa complex, but not the about 60 
kDa complex[139-141], suggesting the larger peak represented 
a heme receptor complex, while the smaller peak was 
thought to be polymerised heme[140]. Based on the capacity 
of  the large complex to be saturated with heme and 
having an Ka of  10-6 to 10-7 mol/L this suggests that it is a 
relatively high affinity heme receptor.

In addition to the identification of  a putative heme 
receptor in the intestine, others have identified a heme 
binding protein that is distinct from the hemopexin 
receptor[143] with similar binding characteristics to the 
intestinal heme receptor. Since the heme binding protein 
and HCP1 have molecular weights of  about 250 kDa and 
about 50 kDa, respectively, it is unlikely they are the same 
protein, unless HCP1 forms part of  a larger complex. The 
finding that erythroleukaemic cells internalise heme coated 
latex beads[144,145] and that trypsin treatment eliminates 
heme binding[146,147] supports the existence of  a heme 
receptor-mediated, endocytotic pathway. It therefore 
appears that there are at least two defined pathways 
involved in the uptake of  heme into the enterocyte, one 
involving HCP1[138] and the other a receptor-mediated 
endocytotic process[139-142,144-147]. Despite considerable 
characterisation of  the heme receptor almost thirty years 
ago there has been little progress made since (Figure 5).

Intracellular processing of heme
Morphological studies show that following ingestion 
of  a heme-rich meal by rodents, heme was first seen 
along the microvillus membrane, then in tubulovesicular 
structures of  the apical cytoplasm and finally in secondary 
lysosomes[148,149]. Based on time course studies, DAB 
(3,3-Diaminobenzidine tetrahyhydrochide) disappeared 
from lysosomes sug gest ing that heme was e i ther 
transported from these structures or that it was degraded 
within them. In either case heme degradation involves HO 
activity but whether this is HO-1 or HO-2 is presently 
unknown.

Alcohol and heme-iron absorption 
In rats treated with alcohol there was increased absorption 
of  iron from heme as well as the entire hemoglobin 
complex where it was transported to the liver as a 
haptogobin-hemoglobin complex[150,151]. Thus, absorption 
of  iron from hemoglobin also appears to contribute 
to the iron over loading caused by excessive alcohol 
consumption.

Limitations in iron absorption from heme 
The intracellular sites where restrictions to the absorption 
of  iron from heme occur have been studied in dogs 
given radiolabelled hemoglobin and then measuring 
the progression of  radioactivity through mucosal 
compartments[133]. The most likely sites where the rate of  
iron absorption was limited appears to be at the stage of  
heme breakdown and/or the release of  iron from the cell. 
This might involve the steps where HO operates, where 
iron is released out of  an intracellular compartment, or 
from the cell (see below).

Other proteins possibly involved in the transport of Fe(II) 
from heme 
In view of  the likely convergence of  iron derived from 
sources of  non-heme and heme iron what is known for 
non-heme iron is described.

Divalent Metal Transporter 1 (DMT1) 
The Microcytic mouse (mk) and anaemic Belgrade  
rat (b) have an autosomal recessive inherited, hypochromic, 
microcytic anaemia associated with a well-characterised 
defect in the transferrin cycle in erythroid cells[152], as 
well as a defective intestinal non heme-iron transport 
that is manifest at the site of  uptake at the microvillus 
membrane[153]. The similar phenotypes are explained by 
an identical mutation in DMT1 at G185R[154,155]. Deletion 
of  DMT1 also resulted in loss of  iron transport by the 
intestine but not the liver or placenta[156]. The finding that 
heme is broken down intracellularly and a portion of  
DMT1 is found inside the enterocyte could suggest that 
DMT1 is involved in heme-iron absorption. There is an 
absolute requirement for DMT1 in the uptake of  iron by 
the intestine[156], suggesting that intestinal absorption of  
iron from heme also requires DMT1 but this remains to be 
determined (Figure 5). 

Figure 5  Six steps in the uptake of heme by intestinal enterocytes. Heme taken up 
by heme carrier protein (HCP1) is internalised and broken down in the cytoplasm 
by HO-1 (1), by a HO-1 independent enzyme(s) (2), some is released intact 
back into the lumen (3) or plasma by FLVCR (4). Heme may also bind to a heme 
receptor and with HCP1 be internalised by receptor mediated endocytosis. The 
heme may be released to the cytoplasm by HCP1 (5), or the heme may be broken 
down in the lysosome and the released iron transported to the cytoplasm by the  
divalent metal transporter (DMT1) (6). The iron released from heme passes to 
the basal cytoplasm and is transported across the basal membrane by ferroportin 
in the ferrous state, oxidized to ferric-iron by hephaestin and transported in the 
plasma by transferrin.
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Hemochromatosis protein (HFE) 
Intestinal expressed HFE is recognised to regulate iron 
absorption via the uptake of  transferrin bound iron by 
crypt cells. The finding that HFE is expressed along the 
terminal web of  enterocytes during iron deficiency where 
it co-localised with DMT1, raises the possibility that HFE 
may function directly in iron absorption and this may 
include heme-iron[157]. This is also supported by the finding 
that HFE expression is inversely proportional to iron 
absorption[157]. If  this is the case then HFE is positioned 
to interact with HCP1, the putative heme receptor and 
DMT1. Whether DMT1 and HFE work intracellularly 
(such as in lysosomes) at levels that cannot be detected by 
immunofluorescent microscopy remains to be determined.

Ferroportin 
Basolateral transpor t of  non-heme iron involves 
ferroportin/Ireg-1/MTP-1/SLC40A1, most often referred 
to as ferroportin[25]. This is based on the study showing 
that over-expression of  ferroportin in macrophages during 
erythrophagocytosis increased release of  non-heme iron, 
but not heme[158]. This observation is likely to apply to the 
enterocyte but this needs to be determined. Also selective 
deletion of  ferroportin in mice resulted in non-heme 
iron accumulation within enterocytes[159] which provides 
support for the hypothesis that ferroportin functions with 
non-heme iron (Figure 5). 

Mammalian iron-ATPase
Baranano and co-workers have identified a microsomal 
membrane Fe(Ⅱ) transporter from the spleen which 
presumably represents an iron transporter expressed 
by macrophages. It is induced by heme, and depends 

on hydrolysable triphosphate, magnesium and tempera-
ture[160]. It is proposed that following heme catabolism 
by macrophages, Fe(Ⅱ) is shunted into the lumen 
of  the endoplasmic reticulum. Others have found a 
similar transporter in liver microsomes[161]. Whether 
this transporter functions in enterocytes remains to be 
determined. 

Heme and colon carcinogenesis 
Although heme-iron is more bio-available than non-
heme iron it has limited ability to be absorbed. Therefore, 
unabsorbed heme reaches the colon. Luminal heme is 
also derived from the blood via extravasation and from 
desquamation. Previous studies have shown that heme 
irritates the epithelium of  the colon as evidenced by 
mild diarrhoea[162,163]. It was shown that feeding heme 
but not non-heme iron to rats results in significant 
increased proliferation of  colonic mucosa[162]. In addition, 
the incidence of  aberrant atypical foci (ATF) and 
mucin-depleted foci (MDF)[164] increased as the heme 
content of  the diet increased suggesting that heme is 
carcinogenic[164,165]. In fact, it was demonstrated that 
heme was genotoxic in the human colon tumour cell line 
HT29[166]. 

It has been shown that a heme breakdown product 
rather than heme or iron per se was responsible for the 
inflammation and ATF formation[162,163]. In the colon some 
heme breakdown products are produced by the presence 
of  colonic bacteria[167], and it has been suggested the heme 
is converted to a cytotoxic factor, although it has not been 
fully characterised[162,163]. Gene microarray analysis of  365 
genes expressed by the colon revealed that feeding heme 

Figure 6  A: In the colon excess heme is metabolised into a lipid soluble heme metabolite possibly by commensal bacteria. Heme itself is also genotoxic. This results in the 
formation of aberrant atypical foci, that are mucin deficient (ATF, MDF). Apoptosis is inhibited which could lead to increased survival of mutant cells; B: In the presence of 
calcium or chlorophyll heme precipitates into biological inactive compounds which inhibit the heme factor or binds the heme factor rendering it inert, respectively leading to 
normal colon growth.
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down-regulated mucosal pentraxin 30-fold[168,169]. Since 
pentraxin is involved in the recognition and clearance 
of  dying cells, a process that is normally ongoing in the 
intestinal tract, downregulation of  this gene by heme 
infers that apoptosis of  colonic mucosal cells may be 
inhibited. If  this is true then it might explain the increased 
carcinogenic potential if  cells with mutated genomes 
cannot be eliminated[168]. In support of  this, De Vogel et. 
al., showed that heme supplementation decreased colonic 
exfoliation[170] (Figure 6). 

The cytotoxic affect of  heme on the colon was lost 
when the diet was supplemented with green vegetables[170]. 
It was hypothesised that chlorophyll in green vegetables 
inhibited the formation of  the heme factor by competing 
for solubilisation with heme in the large intestine. 
Alternatively, chlorophyll and heme could form a complex 
that blocks the site of  covalent modification of  the heme 
and reduces the formation of  the heme factor[170]. Calcium 
was also shown to protect against the effects of  heme on 
colonic proliferation and normalising pentraxin expression, 
presumably because calcium precipitates heme, thereby 
preventing the formation of  the soluble heme induced 
cytotoxic factor[169,171,172]. This conclusion is consistent 
with the inhibitory effect that calcium has on heme 
bioavailability for its absorption in the small intestine[171] 
(Figure 6A and B).

Heme and HO-2 in intestinal motility
Peristaltic contractions are controlled by stellate shaped 
non-neuronal interstitial cells of  Cajal (ICC) situated 
within the myenteric plexus (ICC-MY)[173-177]. Clusters of  
spindle shaped bipolar ICC found throughout the circular 
and longitudinal muscle layers (ICC-DMP) generate 
pacemaker potentials spontaneously but these are modified 
by neural input[177]. Adjacent to the submucosa and within 
the circular muscle layer ICC also appear to synapse with 
nerves (ICC-IM)[174-177]. Loss of  ICC leads to markedly 
impaired neurotransmission and typical gastrointestinal 
motor patterns indicating their importance in co-
ordinating neural modulation of  intestinal motility. In the 
small intestine ICC-MY appear important for pacemaker 
ICC but in other regions of  the bowel this is regulated by 
ICC-IM.

The network is connected to the smooth muscle 
syncytium via either gap junctions or peg in socket 
junctions. These membrane specialisations provide a means 
of  conducting pacemaker currents to intestinal smooth 
muscle[174-177]. It is thought that pacemaker potentials 
originate from unitary potentials caused by the release of  
calcium from mitochondrial stores[177,178] which in turn 
cause a rise in membrane potential generated by opening 
of  Ca2+ permeable channels. The plateau component 
observed in pacemaker potentials is generated by opening 
Ca2+ activated Cl- channels[179]. Repolarisation involves 
removal of  cytosolic Ca2+ to stores and K+ transport via 
activated K+ channels[179]. The frequency of  these events 
establishes the pacemaker potential of  a particular region 
of  the intestine. Muscle contraction will occur providing 
the membrane potential is capable of  activating L-type 

Ca2+ channels and depolarising the cell[180]. The resulting 
increase in cytosolic Ca2+ levels is coupled to contraction. 
Contraction is limited by activation of  large-conductance 
Ca2+-activated K+ channels and L-type Ca2+ inactivation[180].

It has been shown that HO-2 but not HO-1 is present 
in all classes of  ICC (-MY, -IM & -DMP), although HO-2 
expression was greater in ICC-MY than in ICC-IM. 
Enteric neurons also express HO-2[180-192]. In the gastric 
fundus and in particular mucosal epithelial cells, neurons 
of  the submucosal and myenteric plexus and ICC co-
express HO-2 and BVR indicating that these cells have the 
capacity to generate bilirubin[47]. Since ICC have numerous 
mitochondria it is hypothesised they produce heme to 
serve as substrate for HO-2 activity and the CO produced 
may regulate membrane potential and in turn affect 
intestinal contraction[186]. In the genetic absence of  ICC 
and in HO-2 knockout mice the membrane potential of  
intestinal smooth muscle is depolarised compared with wild 
type controls[174,185,188]. Studies have shown that the HO-2 
mediated hyperpolarisation is probably due to the effect of  
CO on activation of  K+ currents in smooth muscle[181,184], 
and that exogenous CO given to HO-2 knockout mice 
hyperpolarises the resting membrane potential [191]. 
Supporting this, the membrane is more hyperpolarised 
near the submucosa and these cells have higher HO-2 
activity and CO production than cells near the myenteric 
plexus where the membrane is more depolarised[191]. Taken 
together it suggests that CO produced from ENS and 
ICC function in maintaining membrane potential and 
the gradient that exists along the longitudinal and across 
the circular musculature[184,191]. It would be expected that 
increased CO production would result in a greater level of  
smooth muscle relaxation because the membrane potential 
is further away from threshold. The mechanism by which 
CO reduces the resting membrane potential is unclear[188].

Conclusions
Within the intestine heme serves important roles in energy 
production, in enzymes involved in detoxification, in 
the generation of  the second messenger gases NO and 
CO and the antioxidant bilirubin. The products of  heme 
breakdown namely CO and bilirubin restrict oxidative 
stress, inflammation, and regulate the cell cycle and 
differentiation in the crypt region. Excess heme may also 
promote the development towards colon cancer. Dietary 
heme is an important source of  iron for the body and the 
absorption of  iron from heme differs from non-heme. 
The molecular mechanism operating in the early phases of  
absorption appears to involve a transporter although there 
is evidence of  a receptor mediated process and numerous 
other proteins may function in heme-iron as in non-heme 
iron absorption. The ability of  HO to perform these 
varied functions within the enterocyte probably depends 
on different compartments within the cell which are 
differentially accessed by heme and HO. Future studies will 
determine how heme-iron is absorbed and the mechanisms 
by which HO regulates the cell cycle and differentiation, 
limits the inflammatory process.
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