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Abstract
Alcohol consumption causes cellular injury. Recent 
developments indicate that ethanol induces epigenetic 
alterations, particularly acetylation, methylation of 
histones, and hypo- and hypermethylation of DNA. This 
has opened up a new area of interest in ethanol research 
and is providing novel insight into actions of ethanol at 
the nucleosomal level in relation to gene expression and 
patho-physiological consequences. The epigenetic effects 
are mainly attributable to ethanol metabolic stress 
(Emess), generated by the oxidative and non-oxidative 
metabolism of ethanol, and dysregulation of methionine 
metabolism. Epigenetic changes are important in 
ethanol-induced hepatic steatosis, fibrosis, carcinoma 
and gastrointestinal injury. This editorial highlights these 
new advances and its future potential. 
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INTRODUCTION
Ethanol actions are diverse and fascinatingly complex. 
Chronic ethanol causes injury to almost all organ systems 
including liver and gastrointestine (GI)[1] and has serious 
medical and public health implications[2]. Alcohol increases 
the risk for hepatocellular carcinoma (HCC) and colon 

cancer. Although these effects of  ethanol are now widely 
known, our knowledge on the mechanisms of  actions of  
ethanol at the subcellular and molecular levels is poor. 
Therapeutic tools to control or reverse the ethanol-induced 
cellular damages, such as alcoholic liver injury, are also 
lacking. In addition to its direct actions, ethanol-induced 
effects are also mediated by oxidative [e.g. acetaldehyde, 
reactive oxygen species (ROS)] and non-oxidative [e.g. 
phosphatidylethanol (PEth), fatty acid ethyl ester (FAEE)] 
metabolites/products and impairment in the methylation 
process. It is the combination of  these metabolic stress 
pathways, termed as “ethanol metabolic stress” (Emess), 
which contributes to the epigenetic effects of  ethanol  
(Figure 1). 
    The question of  how a single cell can differentiate into 
many different cell types in a multicellular organism has 
long led to the hypothesis that additional information that 
regulates genomic functions must exist beyond the level 
of  the genetic code. This concept led to the introduction 
of  the term ‘epigenetics’ in the 1940’s, a term that has now 
evolved to mean heritable changes in gene expression that 
do not involve changes in DNA sequence[3-5]. Interestingly, 
these epigenetic changes are heritable and normally stably 
maintained. They are also reversible. The molecular basis 
of  epigenetics has largely focused on mechanisms such 
as DNA methylation and histone modification. In fact, 
emerging evidence indicates that both mechanisms act in 
concert to provide stable and heritable silencing. 

ETHANOL EFFECTS ON DNA METHYLATION 
IN RELATION TO HEPATOCELLULAR AND 
GASTROINTESTINAL INJURY  
DNA methylation specifically occurs at the C5 position 
of  cytosine residues that are associated with CpG 
dinucleotides. Eighty percent of  all CpG dinucleotides in 
the mammalian genome are methylated. The remaining 
unmethylated CpG residues are mostly located in the 
promoter regions of  constitutively active genes and are 
referred to as CpG islands. Methylation of  DNA is known 
to modulate transcriptional repression, genomic imprinting 
and modulation of  chromatin structure[4,5]. 
    Global hypomethylation involves mainly repetitive 
sequences but hypomethylation of  coding regions may 
also occur[6]. Hypermethylation of  normally unmethylated 
genes can result in silencing of  tumor suppressor genes. 
Stepwise distinct methylation events are likely to be the 
features of  the sequence from hepatitis to HCC and may 
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contribute to the process of  hepatic carcinogenesis[7,8]. 
Regional hypermethylation and global hypomethylation are 
also well recognized in gastrointestinal cancer[9-12]. 
    Only a few studies have addressed regional methylation 
of  DNA in relation to alcohol and cancer. Alcohol either 
alone or in combination with tobacco has been shown to 
be an important risk factor for oral cancer[13,14]. Promoter 
hypermethylation of  p16INK4a, p14ARF, RB1, p21Waf1, 
p27Kip1, PTEN, p73, O6-methyl guanine DNA methyl 
transferase (O6-MGMT), and GST-P genes has been 
examined in relation to smoking and alcohol use. Overall, 
gene methylation can be detectable in 46.9% of  samples 
and is closely correlated with tobacco use and/or alcohol 
consumption[15]. The relative risk of  alcohol consumption 
for the development of  esophageal cancer is also very 
high[16] and alcohol potentiates chemical carcinogenesis of  
the esophagus induced by nitrosomethylbenzylamine[17]. 
Alcohol consumption has also been shown to be a risk 
factor for head and neck cancers that usually originates 
from the aerodigestive tract. Interestingly, p15 promoter 
hypermethylation has been observed in the healthy 
individuals who are smokers and/or alcohol consumers[18], 
suggesting that hypermethylation plays a significant role 
in progression of  cancer. Although alcohol consumption 
is not a significant risk factor for gastric carcinoma 
compared to oral or esophageal cancer, both smoking 
and alcohol consumption are associated with a higher risk 
of  gastric cancer with hypermethylation of  the hMLH1 
gene promoter. Hypermethylation of  the hMLH1 gene 
promoter is inversely correlated with mutation of  the p53 
gene[19]. In a recent study, promoter hypermethylation of  
APC, p14 (ARF), p16 (INK4A), hMLH1, O6-MGMT, 
and RASSF1A was observed in colorectal cancer (CRC). 
For each of  the tested genes, the prevalence of  promoter 
hypermethylation is higher in CRCs derived from patients 
with low folate/high alcohol intake when compared with 
CRCs from patients with high folate/low alcohol intake[20]. 
    Although methylation changes have been described as 
stable for aging and carcinoma, recent studies have shown 
that epigenetic alterations are also dynamic as observed in 
inflammatory responses and tissue injury[21]. Altered DNA 
methylation occurs after alcohol consumption during 
initial periods of  alcohol abuse. Global hypomethylation 
of  DNA in liver after long term ethanol exposure has been 
reported[22] but hypermethylation of  DNA from peripheral 
blood cells after ethanol consumption has also been 
reported in human subjects with alcohol dependence[23]. 
Regional hypomethylation of  the c-myc gene occurs in 
liver after long term consumption of  alcohol[22]. Another 
study showed that chronic alcohol consumption produces 
global genomic DNA hypomethylation in the colonic 
mucosa[24].
    Four known or putative mammalian DNA methyl 
transferases have been identified thus far: DNMT1, 
DNMT2, DNMT3a and DNMT3b. In contrast to types 
1 and 3, the function of  type 2 DNMT remains less clear. 
Mammalian DNMT2 does not methylate CGs. Non-
CG cytosine methylation is also reported[25]. Increased 
expression of  DNA methyl transferases occurs in 
hepatocellular carcinoma[26] and gastrointestinal cancer 
but this increased expression is associated with both 

hypomethylation and hypermethylation of  DNA[27-29]. 
Decreased DNA methylation with a concomitant decrease 
in DNA methyl transferase activity after ethanol exposure 
of  pregnant rats has been reported in fetal tissues[30]. 
Decreased activity of  methyl transferase has been reported 
in peripheral blood cells from alcoholics but with a 
concomitant increase in DNA methylation[31]. This raises 
the possibility of  regional methylations in a gene specific 
manner. 

ETHANOL AND EPIGENETIC MODIFICATIONS 
IN HISTONE 
Chromatin is the entire DNA-protein complex packaged 
into chromosomes. It exists as a highly ordered structure 
and is composed of  repeated nucleosome subunits. Each 
nucleosome contains a core of  histone around which 
DNA is wrapped. Eukaryotes have five major classes 
of  histones: H1, H2A, H2B, H3, and H4. Histones 
were once thought as static, non-participating structural 
elements; and now considered integral and dynamic 
components in the machinery responsible for regulating 
gene transcription[32]. The core histones (e.g. H3) have 
a similar structure with a basic N-terminal domain, a 
globular domain and a C-terminal tail. Modifications of  
histones can occur by mechanisms involving acetylation, 
phosphorylation, methylation, ubiquitination, sumoylation 
and ADP-r ibosy la t ion , e t c . Some of  these post -
translational modifications affect packaging of  genes, 
increase accessibility of  transcription factors to DNA 
templates and initiate transcriptional processes[32,33]. Such 
modifications can serve as ‘co-activators’ (e.g. acetylation, 

Figure 1  A diagram depicting relationship among ethanol metabolic stress, 
epigenetics and tissue injury. Acet: acetaldehyde; ALD: alcoholic liver disease; 
DNMT: DNA methyl transferases; ER: endoplasmic reticulum; FAEE: fatty acyl 
ethyl esters; GSH: glutathione; HAT: histone acetyl transferases; HCV: hepatitis 
C virus; HDAC: histone deacetylase; HMT: histone methyl transferases; PEth: 
phosphatidylethanol; ROS: reactive oxygen species; SAM: S-adenosylmethionine. 
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methylation) or ‘co-repressors’ (e.g., deacetylation) or ‘gene 
silencers’ (e.g. methylation). In histone H3 from most 
species, the main acetylation sites include lysines 9, 14, 18 
and 23. A steady state balance between two key enzymes, 
histone acetyl transferase (HAT) and histone deacetylase 
(HDAC), is crucial in this process. Various HATs[34] and 
HDACs[35] have been identified (about 15 types of  HATs 
and 10 types of  HDACs). H3 acetylation at lysine 9 or 
at lysine 14 plays a role in chromatin assembly[32], gene 
expression[36,37] and apoptosis[38]. Histones, particularly H3 
and H4, are methylated at a number of  lysines (Lys) and 
arginine residues. The major sites of  lysine-methylation 
identified are: Lys4, Lys9, Lys27, Lys36, and Lys79 on 
H3 and Lys20 on H4. In addition, lysine residues can be 
methylated in the form of  mono-, di- or trimethylation and 
this differential methylation provides further functional 
diversity to each site of  Lys methylation[4,39]. Emerging 
evidence suggests that DNA and histone methylation 
likely have a cyclical and mutually reinforcing relationship, 
and both are required for stable and long-term epigenetic 
silencing[4,39,40]. Lysine 9 is also interesting in that this site 
can be either methylated (gene silencing) or acetylated 
(gene activation). Histone H3 can also be phosphorylated 
at ser-10 and ser-28 by cellular protein kinases[4,32,39]. The 
precise pattern of  histone modification has been suggested 
to mediate biologically diverse effects and proposed as 
the ‘histone code’ hypothesis[32]. The relationship among 
Emess, histone modification, DNA methylation and 
changes in the expression level of  genes is an emerging 
topic of  investigation. 

HISTONE ACETYLATION BY ETHANOL IN 
LIVER
Initial studies with primary cultures of  rat hepatocytes 
have established important characteristics of  ethanol-
induced histone acetylations. Ethanol causes a dose- and 
time-[41] dependent selective acetylation of  histone H3 
at Lys9 (H3AcK9). Other H3 lysine residues i.e. Lys14, 
Lys18 and Lys23 are not acetylated under these conditions. 
Trichostatin A, a reversible HDAC inhibitor, shows an 
increase in H3 acetylation. These increases in acetylation 
are not due to the increased expression of  H3 protein 
as their levels do not change. It is also not due to the 
simple physical effect of  ethanol since it requires more 
than 4 h of  ethanol exposure to elicit H3 acetylation. The 
acetylation is reversible when ethanol is withdrawn after 24 
h of  treatment.
    Ethanol causes activation of  p42/44 MAPK, p38 
MAPK and JNK in hepatocytes, while inhibition of  
p42/44 MAPK and JNK results in inhibition of  ethanol-
induced acetylation[42,43]. These results indicate that MAPK 
signaling plays a role in ethanol-induced epigenetic effects. 
    Ethanol acutely affects histone acetylation in vivo. 
Intragastric administration of  ethanol increases 2-3 fold 
compared to the level of  acetylated H3-Lys9 in the liver 
after 12 h, but has no effect on Lys14, Lys18 and Lys23. 
Further analysis indicates that the increased acetylation is 
tissue specific as it is noted in liver, lung and spleen but 
not in tissues from the brain, heart, kidney, muscle, vessels, 

stomach and intestine. Thus ethanol-induced histone H3 
acetylation appears to be organ specific[44]. In rat liver 
stellate cells, ethanol increases H3 Lys 9 acetylation[45] but 
its significance remains to be determined. 

EFFECTS OF ETHANOL ON HISTONE 
METHYLATION
Ethanol also affects histone H3 methylations in an 
interesting manner. The influence of  ethanol on histone 
H3 Lys9 and Lys4 methylations in primary cultures of  rat 
hepatocytes is determined using site specific antibodies. 
Western blot analysis using methylated forms of  Lys4 
and Lys9 histone H3 antibodies can show dramatically 
opposing changes in the methylated forms. The Lys9 
methylation decreases but Lys4 methylation increases in 
hepatocytes. These results indicate that, like H3 acetylation, 
histone methylation is also sensitive to ethanol. A longer 
incubation with ethanol for 72 h does not change this 
methylation, indicating that ethanol-induced methylation 
produces a longer effect than that observed for acetylation 
which declines after 24 h (Bhadra, U and Shukla SD, 
Unpublished). Thus modifications in H3 methylation are 
likely to be coupled to hyperacetylation and orchestrate the 
fine tuning of  the chromatin status in hepatocytes exposed 
to ethanol. 

ETHANOL-INDUCED HISTONE/CHROMATIN 
MODIFICATIONS AND TRANSCRIPTION
In he pa tocy t e s exposed to e thano l , ch romat in 
immunoprecipitation (CHIP) assays demonstrate the 
association of  the acetylated H3-Lys9 with the alcohol 
dehydrogenase I (ADH 1) DNA domain in the nuclear 
chromatin[43]. These data argue that ethanol-elicited 
epigenetic changes cause an increased association between 
acetylated H3 and specific genes, a process which favors 
transcription[43]. It should be noted that circular dichroism 
spectrophotometr y has shown al tered chromatin 
confirmation in alcoholic rat liver, and this relaxed state 
of  chromatin can promote transcription[46]. Thus ethanol 
modulates histone/chromatin to influence transcriptional 
activation. Further relevance of  such epigenetic changes to 
the expression of  genes involved in ethanol-induced tissue 
injury therefore merits investigation.

RAS AND p53 AS MOLECULAR SWITCHES 
IN ETHANOL-INDUCED EPIGENETIC EFFECTS
Although structural alterations in genes contributing to 
HCC are evident in transformed hepatocytes, initiation 
of  hepatocarcinogenesis takes place during the early 
stages of  liver insult and is associated with epigenetic 
alterations[7]. The progression of  cell injury to carcinoma 
occurs due to triggering of  ‘some’ molecular switches 
caused by a ‘second hit’, e.g. hepatitis C virus infection 
or other agents. Treatment of  hepatocytes with ethanol 
causes apoptosis whereas alcohol enhances hepatic DNA 
synthesis in embryonic or transformed hepatocytes, 
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through potentiation of  G-protein mediated ras/MAPK 
signaling. This underscores the importance of  normal 
versus embryonic or transformed hepatocytes contributing 
to the opposing effects of  ethanol[47]. 
    In this context, upregulation of  ras signaling[48,49] 
concomitant with down regulation of  p53-dependent 
apoptotic pathway[50-52] is seen in most cancers. Hyperme-
thylation of  apoptosis-related genes in ras transformed 
cells[53] and hypermethylation of  genes implicated in 
apoptosis in HCC associated with alcohol consumption, 
viral infection and aflatoxin contamination have been 
reported[54]. Additionally, ras itself  is subjected to 
epigenetic alteration by DNA methylation. 
    Hypomethylation of  ras has been demonstrated in gas-
tritis and gastric carcinoma[49]. Ethanol induces ras activa-
tion in gastric epithelial cells[55] and chronic alcoholic liver 
injury is associated with upregulation of  ras activity[56]. 
C-myc, which regulates both apoptosis and proliferation, 
is overexpressed in HCC and cooperates with ras in the 
development of  carcinoma[57]. Ethanol also causes an in-
creased expression of  c-myc, which is associated with hy-
pomethylation of  the c-myc gene[22]. 
    p53 is also a modulator of  histone acetylation and meth-
ylation[58,59]. Hyperacetylation of  H3K9 with concomitant 
loss of  dimethyl-H3K9 and increased methylation of  
H3K4 is seen with delayed suppression of  hepatic alpha 
fetoprotein (AFP, a marker of  embryonic phenotype) in 
p53-null mice[60]. There is loss of  p53 function by its hy-
permethylation in hepatocellular carcinoma[61] and p53 mu-
tation is common in gastrointestinal carcinoma[62]. Apop-
tosis in chronic alcoholic liver injury is associated with p53 
accumulation[63]. In support of  this, p53 null mice fed with 
ethanol exhibit suppression of  apoptosis and increased 
proliferation of  hepatocyets[64]. The preceding observa-
tions strongly indicate that ras and p53 as switch targets 
play a role in ethanol-induced epigenetic mechanisms. 

EMESS
Actions of  ethanol are unique in that, ethanol or its 
metabolites have their own effects and can also sensitize 
(or desensitize) responses to other agonists. This “double 
edge” effect combined with the metabolic features of  
ethanol renders its actions multifaceted. Ethanol is 
oxidatively metabolized by alcohol dehydrogenase (ADH) 
or Cyt p450 to acetaldehyde which is next metabolized 
by aldehyde dehydrogenase (ALDH) to acetate [65]. 
Phosphatidylethanol (PEth)[66] and fatty acid ethyl esters 
(FAEE)[67] are generated non-oxidatively from ethanol. 
Ethanol also causes generation of  the reactive oxygen 
species (ROS) and modulates superoxide dismutases 
(SOD). Oxidative stress also leads to endoplasmic 
reticulum (ER) stress resulting in amplification of  the 
injury[68]. It is a combination of  these metabolic stresses, 
including oxidative and non-oxidative, that causes injury to 
cells (Figure 1) and we term this as Emess.
    A function of  Emess is dysregulation of  methionine 
metabo l i sm lead ing to decreased genera t ion of  
S-adenosylmethionine (SAM)[22,69], a crucial methyl group 
donating step for DNA and histone methylations[70]. 
Ethanol feeding affects several enzymes involved in 

methionine metabolism including a decreased methionine 
synthetase act iv i ty and changes in hepat ic SAM, 
S-adenosyl-L-homocysteine (SAH), SAM/SAH ratio[70,71]. 
Dysregulation of  methionine metabolism is further 
induced by folate deficiency associated with alcohol 
abuse[72]. Disturbance in folate metabolism is also related to 
methylene tetrahydrofolate gene polymorphism[69]. Another 
part of  Emess is glutathione depletion[72]. Glutathione 
depletion causes both global and regional hypomethylation 
of  DNA[73,74]. SAM administration decreases alcoholic 
liver injury when given for preventive intervention[22,71]. 
Although SAM administration improves hepatic function, 
long term administration of  SAM may have deleterious 
effects because of  the accumulation of  homocysteine. 
Betaine supplementation not only maintains SAM levels 
but also prevents homocysteine accumulation and elevates 
glutathione levels resulting in amelioration of  ethanol-
induced hepatic injury[71]. Thus Emess-induced effects 
on glutathione and methionine levels have profound 
implications in epigenetic changes.

ACETALDEHYDE, DNA METHYLATION 
AND HISTONE ACETYLATION
One of  the mechanisms underlying DNA hypomethylation 
is the direct inhibitory effects of  acetaldehyde on enzymes 
implicated in DNA and histone methylations. Indeed 
acetaldehyde has been shown to inhibit both DNA methyl 
transferase[30] and methionine synthase[72,75].
    Ethanol metabolism is involved in histone acetylation 
since inhibitors of  alcohol dehydrogenase (4-methyl 
pyrazole) and aldehyde dehydrogenase (cyanamide) 
decrease ethanol-induced H3-Lys9 acetylation. This 
partial effect of  inhibitors may imply that part of  the 
ethanol effect on H3 acetylation, may also be independent 
of  its metabolism. Since cyanamide increases the levels 
of  acetaldehyde; and decreases acetylation of  histones, 
acetaldehyde adduct formation is unlikely to account 
for the observed increases in H3-Lys9 acetylation. 
Interestingly, treatment of  hepatocytes with ethanol 
metabolite acetate also elicits similar acetylation. Exposure 
of  hepatocytes to acetaldehyde (0.01-1.0 mmol/L) for 
24 h also increases H3AcK9. Antioxidant N-acetyl- 
L-cysteine (NAC, 10 mmol/L) decreases ethanol-induced 
H3 acetylation by about 50% in rat hepatocytes, suggesting 
that ROS may play a role in the acetylation[41,43]. Ethanol 
thus causes characteristic changes in histone acetylation 
with sensitivity to ethanol metabolic/oxidative stress. 

FUTURE ISSUES IN RESEARCH ON 
ETHANOL AND EPIGENETICS 
Acute and chronic effects of  ethanol on DNA methylation 
and regional hypermethylation or hypomethylation have 
yet to be established. Likewise, the effects of  ethanol on 
promoter methylation of  repetitive sequences as well as key 
genes that are implicated in survival and regeneration of  
liver remain to be explored. A comprehensive investigation 
into the molecular steps involved in ethanol-induced 
epigenetic changes and inter-relationships (cross-talks) 
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among epigenetic modifications, i.e. DNA methylations, 
histone methylations, is warranted. It will be interesting 
to examine the specificity of  the effect of  ethanol on 
individual DNA methyl transferases and histone methyl 
transferases. The effect of  ethanol on histone acetyl 
transferases[43] or on protein kinases involved in histone 
phosphorylation[76] has to be ascertained. In parallel, the 
role of  demethylases or deacetylases also needs to be 
assessed. In therapeutic strategies, drugs which modify the 
enzymes involved in these pathways can be predicted to 
alter ethanol-induced tissue damage and should constitute 
an important goal for future investigations. Additional 
measures, other than SAM or betaine, to suppress Emess 
and replenish hepatic glutathione by other agents (e.g. 
vitamin E, folic acid) should be considered. It must be 
mentioned here that ethanol-induced epigenetic changes 
are not limited to liver and GI. Evidence from other 
systems, e.g. fetal alcohol syndrome[30], neuronal NMDA 
receptor[77], synuclein[78], brain[79] and HERP gene[80] 
further emphasizes the importance and potential role of  
epigenetic changes in alcohol-induced disorders in diverse 
systems. 
    Finally, it can be postulated that, as far as ethanol 
actions are concerned, the ‘epigenetic’ effects of  ethanol 
may be more crucial than its effects on classical ‘genetic 
alterations’ like DNA deletions or mutations. This remains 
to be proven. Obviously, epigenetics is set to occupy the 
center stage of  alcoholism research in the next decade. 
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