
Hyperglycemia is central to the pathogenesis of  dia-
betic micro- and macrovascular complications[4]. There 
is increasing evidence that postprandial hyperglycemia is 
the major determinant of  “average” glycemic control, and 
represents an independent risk factor for macrovascular 
disease, even in people without diabetes[5]. While the rela-
tive importance of  individual determinants of  the blood 
glucose response to a meal remain to be clarified precisely, 
it is clear that upper gastrointestinal motility has a major 
impact that has generally been overlooked. Moreover, 
postprandial glycemic control in turn has a profound ef-
fect on the motor function of  the upper gut. Hence, blood 
glucose concentration is determined by, as well as a deter-
minant of, gastric and small intestinal motility[6]. 

The aims of  this review are to examine (1) evidence 
relating to the importance of  postprandial, as opposed 
to fasting, glycemia in the development and progression 
of  diabetic complications, (2) the contribution of  upper 
gastrointestinal function to postprandial blood glucose 
concentrations, (3) the impact of  variations in glycemia on 
gastric and small intestinal motility, and (4) the therapeutic 
strategies suggested by these insights. 

Impact of postprandial glycemia 
on complications of diabetes
The DCCT/EDIC and UKPDS trials established that the 
onset and progression of  microvascular, and probably mac-
rovascular complications of  diabetes, are related to “average” 
glycemic control, as assessed by glycated hemoglobin[4,7,8]. 
This provides a rationale for the widespread use of  intensive 
therapy directed at the normalisation of  glycemia. In the re-
cently reported DCCT/EDIC study, a period of  intensive, as 
opposed to conventional, therapy for a period of  6.5 years 
between 1983 and 1993 was shown to be associated with a 
reduction in the risk of  a subsequent cardiovascular event 
by 42%[4]. Glycated hemoglobin is potentially influenced by 
both fasting and postprandial blood glucose concentrations. 
However, given that the stomach empties ingested nutrients 
at a closely regulated overall rate of  2-3 kcal per minute[9,10] 

and humans ingest around 2500 kcal daily, it is clear that most 
individuals spend the majority of  each day in either the post-
prandial or post-absorptive phase with a limited duration of  
true “fasting” for perhaps three or four hours before break-
fast[11]. Hence, the traditional focus on the control of  “fasting” 
blood glucose in diabetes management appears inappropriate.

It is well established that postprandial hyperglycemia 
precedes elevation of  fasting blood glucose in the 
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Abstract
Recent evidence has highlighted the impact of glycemic 
control on the incidence and progression of diabetic 
micro- and macrovascular complications, and on 
cardiovascular risk in the non-diabetic population. 
Postprandial blood glucose concentrations make a 
major contribution to overall glycemic control, and are 
determined in part by upper gastrointestinal function. 
Conversely, poor glycemic control has an acute, 
reversible effect on gastrointestinal motility. Insights 
into the mechanisms by which the gut contributes to 
glycemia have given rise to a number of novel dietary 
and pharmacological strategies designed to lower 
postprandial blood glucose concentrations.
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INTRODUCTION
Diabetes and its long-term complications, which include car-
diovascular, renal, neurologic, and ophthalmic disease, rep-
resent a major cause of  morbidity and mortality throughout 
the world[1]. The prevalence of  both type 1 (insulin-depen-
dant) and type 2 (non insulin-dependant) diabetes is increas-
ing, the latter as a consequence of  obesity. In the US, 29 
million people and 14% of  adults have diabetes or impaired 
fasting glucose, of  whom about a third are undiagnosed[2]. 
Similar figures are evident throughout the developed world[3].
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evolution of  diabetes[12]. Furthermore, it appears to be 
the better predictor of  coronary artery[13] and cerebrovas-
cular [14] complications, and predicts al l-cause and 
cardiovascular mortality, even in the general population 
without known diabetes[15]. Blood glucose values at two 
hours during an oral glucose tolerance test are a better 
predictor of  mortality than fasting blood glucose[16], and 
reduction in cardiovascular risk in patients with type 2 
diabetes is associated with control of  postprandial, as 
opposed to fasting, glycemia[17]. For example, patients 
with impaired glucose tolerance who were treated with the 
α-glucosidase inhibitor acarbose, to reduce postprandial 
glycemia, experienced a reduction in cardiovascular risk 
of  about a third compared to placebo during a mean 
of  three years follow-up[18]. Postprandial blood glucose 
concentrations correlate well with glycated hemoglobin 
in the setting of  mild to moderate hyperglycemia[19], with 
fasting blood glucose only assuming greater importance at 
higher HbA1c values[20]. There is also evidence that therapy 
directed towards lowering postprandial blood glucose 
concentrations may have a greater impact on HbA1c than 
attention to fasting blood glucose[21].

Hyperglycemia potentially has diverse effects on blood 
vessels. In the short term, hyperglycemia is associated with 
activation of  protein kinase C, which affects endothelial 
permeability, cell adhesion, and proliferation in the vessel 
wall. Over the longer term, non-enzymatic glycosylation 
of  proteins results in atherosclerosis [22]. Elevated 
postprandial blood glucose concentrations are associated 
with an increase in plasma biochemical markers of  
oxidative stress[23,24]. However, to what degree hyperglycemia 
per se accounts for this effect, as opposed to concurrent 
elevations of  non-esterified fatty acids and triglycerides, 
remains to be elucidated[25].

Contribution of upper gastrointe-
stinal function to postprandial 
glycemia
Postprandial blood glucose levels are potentially affected 
by a number of  factors, including pre-prandial blood 
glucose concentration, food properties such as viscosity, 
fibre content, and quantity and type of  carbohydrate, 
gastric emptying, small intestinal delivery and absorption 
of  nutrients, insulin secretion, hepatic glucose metabolism, 
and peripheral insulin sensitivity[26]. The relative importance 
of  these factors is likely to vary with time after a meal, and 
between healthy subjects and patients with type 1 or type 
2 diabetes. While it is logical that the gastrointestinal tract, 
which controls the rate at which ingested carbohydrate 
is absorbed and releases peptides that stimulate insulin 
secretion, should have a major impact on postprandial 
glycemia, its role has frequently been overlooked and 
generally underestimated in the past. The rate of  gastric 
emptying is now established as a major contributor 
to variations in glycemia, while the influence of  small 
intestinal motor function represents a current research 
focus.

Gastric emptying
Gastric emptying accounts for at least 35% of  the variance 
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in the initial rise as well as the peak blood glucose levels 
after an oral glucose load in both healthy individuals[27] and 
patients with type 2 diabetes[28] (figure 1). Pharmacological 
slowing of  gastric emptying by morphine reduces the 
postprandial glycemic response to a mixed meal in type 
2 patients, whilst acceleration of  gastric emptying by 
erythromycin (a motilin agonist) increases postprandial 
blood glucose concentrations (figure 2). Here, differences 
in peak blood glucose values are more marked than those 
in the area under the blood glucose curve[29]. In type 1 
patients the glycemic response to a meal, and therefore 
the requirement for exogenous insulin, is also critically 
dependent on the rate of  gastric emptying. Here, when 
emptying is slower, the insulin requirement to achieve 
euglycemia is less[30]. 

In health, gastric emptying is modulated by feedback 
arising from the interaction of  nutrients with the small 
intestine, so that the overall rate of  gastric emptying is 
closely regulated at about 2-3 kcal per minute[9]. Infusion 
of  a caloric load directly into the small intestine slows 
gastric emptying by a mechanism that includes relaxation 
of  the gastric fundus, suppression of  antral motility, 
and stimulation of  phasic and tonic pressures in the 
pylorus[31,32]; the latter acts as a brake to gastric outflow. 
The length of  small intestine exposed to nutrient appears 
to be the primary determinant of  the magnitude of  the 
feedback response[33,34]. Both transection of  duodenal 
intramural nerves[35], and suppression of  the release of  
small intestinal peptides by the somatostatin agonist, 
octreotide[36], accelerate the emptying of  nutrient 
liquids, indicating the involvement of  both neural and 
humoral mechanisms in mediating feedback from the 
small intestine. Glucagon like peptide-1 (GLP-1), which 
suppresses antral and duodenal motility and stimulates 
pyloric contractions[37-39], probably represents one such 
humoral mediator, and the slowing of  gastric emptying by 
this peptide appears likely to be the major mechanism by 
which its administration improves postprandial glycemia 
in patients with type 2 diabetes[40]. While the contribution 
of  endogenous GLP-1 in regulating gastric emptying 
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Figure 1  Relationship between the blood glucose concentration 10 min after 
consuming 75 g glucose in 300 mL water, and the gastric half-emptying time (T50) 
in patients with type 2 diabetes (open squares, r = -0.67, P < 0.005) and healthy 
subjects (filled circles, r = -0.56, P < 0.05). Adapted from Jones et al 1996[28].
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remains to be clarified (i.e. the “physiological” as opposed 
to “pharmacological” action), a recent study using the 
GLP-1 antagonist, exendin (9-39) amide, confirmed that 
endogenous GLP-1 mediates the suppression of  antral 
motility and stimulation of  pyloric pressures induced by 
the presence of  glucose in the small intestine[38].

It has long been recognised that oral or enteral 
administration of  glucose results in a much greater insulin 
response than an equivalent intravenous glucose load[41-44], 
a phenomenon referred to as the “incretin” effect. The 
putative incretin peptides, GLP-1 and glucose-dependent 
insulinotropic polypeptide (GIP), are released from the 
small intestine in response to nutrients[45], apparently in a 
load-dependent fashion[46]. Therefore, the rate of  delivery 
of  carbohydrate from the stomach into the small intestine 
is likely to be critical in determining not only the rate 
of  glucose absorption, but also the incretin response. 
Although GIP is the more potent of  the two hormones 
in healthy individuals[47], the insulinotropic effect of  GIP 
appears to be markedly diminished in patients with type 2 
diabetes, while the insulin response to GLP-1 is retained[45]. 
This forms a rationale for the therapeutic use of  GLP-1 
and its analogs in the management of  type 2 diabetes (to 
be discussed). There is limited evidence that type 2 diabetes 
is associated with an impaired GLP-1 response to oral 
glucose[48], but to what degree delayed gastric emptying, 
which occurs frequently in type 2 patients[49], accounts for 
this decrease in GLP-1 has not been evaluated. 

In considering the potential impact of  gastric emptying 
on postprandial glycemia, the initial rate of  glucose entry 
into the small intestine (“early phase” of  gastric emptying) 
may be particularly important[50]. Type 2 diabetes is 
characterised by a reduced “early”, and frequently 
increased “late”, postprandial insulin response. Studies 
in rodents have established the importance of  “early” 
insulin release as a determinant of  postprandial glucose 
excursions, in that a small “early” increase in portal vein/ 
peripheral blood insulin is more effective than a larger, 
“later” increase at reducing blood glucose levels[51]. A 
recent study involving both healthy subjects and type 2 
patients, established that modest physiological variations in 
the initial rate of  small intestinal glucose entry have major 
effects on the subsequent glycemic, insulin and incretin 
responses (figure 3)[52]. Nevertheless, while initially rapid, 
and subsequently slower, duodenal glucose delivery can 
boost incretin and insulin responses when compared to 

constant delivery of  an identical glucose load, the overall 
glycemic excursion is, if  anything, greater[52], and certainly 
not improved[53]. This evidence adds to the rationale for the 
use of  dietary and pharmacological strategies designed to 
reduce postprandial glycemic excursions by slowing gastric 
emptying, rather than initially accelerating it. However, the 
“dose-response” relationship between duodenal glucose 
delivery and glycemia remains to be clearly determined.

Small intestinal glucose absorption 
The gut lumen is the site of  absorption of  glucose from 
the external environment into the body, as well as being 
the source of  the incretin peptides that drive much of  
the postprandial insulin response. Thus, it is logical that 
variations in small intestinal function should be a major 
determinant of  postprandial glycemia. Nevertheless, there 
is little information about the impact of  small intestinal 
motility and absorptive function on glycemia, at least in 
part because of  the technical demands in studying this 
region of  gastrointestinal tract[6,54]. 

The large surface area of  the small intestine is well 
suited to absorption of  water and solutes. Perfusion 
studies in healthy humans have established that the 
proximal jejunum has a maximal absorptive capacity 
for glucose of  approximately 0.5 g per minute per 30 
cm[55-57]. Small intestinal mucosal hypertrophy occurs in 
animal models of  diabetes, with concomitant increases in 
glucose absorption, but this is rapidly reversed by insulin 
treatment[58]. However, acute hyperglycemia does result 
in transient increases in intestinal glucose absorption 
in rodents[59-61]. The few studies performed in humans 
with type 1[62] “insulin-requiring”[63], or type 2[64] diabetes 
have not demonstrated increased small intestinal glucose 
absorption, other than one report of  increased absorption 
at high luminal glucose concentrations[65]. Attention 
was paid to maintaining euglycemia in at least one of  
these studies[63]. However, there is a recent report of  
increased expression of  monosaccharide transporters in 
humans with type 2 diabetes[66], the clinical significance 
of  which remains to be clarified. One human study failed 
to demonstrate an effect of  marked hyperglycemia 
(14 mmol/L) on jejunal glucose absorption in healthy 
subjects[63], although a relationship has been observed 
between more physiological postprandial blood glucose 
concentrations (less than 10 mmol/L) and the absorption 
of  the glucose analog, 3-O-methylglucose, in healthy 
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Figure 2  Effects of erythromycin (200 mg iv, filled circles) and morphine (8 mg iv, open squares) compared to placebo (open triangles) on (A) solid and (B) liquid gastric 
emptying and (C) blood glucose concentration in 9 patients with type 2 diabetes. aP < 0.05, bP < 0.01 vs placebo. Adapted from Gonlachanvit et al 2003[29].
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subjects and patients with type 1 diabetes[67]. Hence, 
the effect of  transient hyperglycemia on small intestinal 
glucose absorption remains uncertain.

Given that an upper limit exists for absorption of  
glucose across the small intestinal mucosa, it is logical 
that patterns of  intestinal motility which serve to spread 
luminal glucose over a large surface area could promote 
glucose absorption. Furthermore, certain motor patterns 
could facilitate mixing of  complex carbohydrates with 
digestive enzymes, and their exposure to brush border 
disaccharidases. Thus, when glucose is infused directly 
into the duodenum, its rate of  absorption increases with 
the number of  duodenal pressure waves and propagated 
pressure wave sequences[54,67]. Further insights into the 
effects of  luminal flow on glucose absorption are likely 
to require additional techniques, such as intraluminal 
impedance measurement, in which inferences can be 
made regarding movement of  fluid boluses by measuring 
changes in electrical impedance between sequential pairs 
of  intraluminal electrodes. A preliminary study in healthy 
humans using this technique indicates that pharmacological 
suppression of  intraduodenal flow with an anticholinergic 
agent is associated with delayed absorption of  luminal 
glucose[68]. These observations are likely to be of  relevance 
to patients with type 1 diabetes mellitus, who demonstrate 
an increased frequency of  small intestinal pressure waves 
in the postprandial state[67].

The region of  small intestine that is exposed to 
carbohydrate is also likely to be a determinant of  the 
glycemic response. GLP-1 is released from intestinal L 
cells, whose concentration is greatest is the distal jejunum, 
with fewer L cells located in the proximal jejunum, ileum, 
and colon[69]. In humans, it is unclear whether nutrients 
must interact directly with L cells to stimulate GLP-1 
release. A neural or endocrine loop between the duodenum 
and the more distal small bowel has been postulated[70], 
but remains unproven. The lack of  a GLP-1 response 
when glucose is infused into the duodenum below a 
certain dose (1.4 kcal/min)[71] would be consistent with the 
concept of  complete absorption of  the glucose load high 

in the small intestine, precluding significant interaction 
with L cells, although other investigators have reported 
a GLP-1 response even with 1 kcal/min intraduodenal 
glucose infusion[52]. Nevertheless, GLP-1 responses to 
meals are enhanced following intestinal bypass procedures 
that promote access of  nutrients to more distal small 
intestine[72-75], while inhibition of  sucrose digestion in 
the proximal small intestine with acarbose increases the 
GLP-1 response[76], presumably by facilitating more distal 
interaction of  the intestine with glucose. It follows that 
dietary modifications that favor exposure of  more distal 
small intestinal segments to glucose could reduce glycemic 
excursions by stimulating GLP-1 release. Furthermore, a 
major action of  both GLP-1 and peptide YY, which is also 
released from L cells, is to retard gastric emptying, thus 
slowing any further entry of  carbohydrate to the small 
intestine[77].

Impact of variations in glycemia 
on upper gut motility
Acute changes in the blood glucose concentration are 
now recognised to have a major, reversible impact on the 
motor function of  every region of  the gastrointestinal 
tract. This may in part account for the poor correlation 
of  upper gastrointestinal dysfunction in diabetes with 
evidence of  irreversible autonomic neuropathy, to which 
it has traditionally been attributed[78]. When compared 
to euglycemia (4-6 mmol/L), gut motility is modulated 
through the range of  blood glucose concentrations from 
marked hyperglycemia (greater than 12 mmol/L), through 
“physiological” blood glucose elevation (8-10 mmol/L), to 
insulin-induced hypoglycemia (less than 2.5 mmol/L), and 
effects are observed rapidly (within minutes), although the 
thresholds of  response may differ between gut regions[6]. 
The mechanisms mediating the effects of  acute changes 
in the blood glucose concentration are poorly defined, 
and the potential impact of  chronic, as opposed to acute, 
variations in glycemia on gastrointestinal motility has 
hitherto received little attention. Nevertheless, it is clear 
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A Figure 3  Effect of initially more rapid intraduodenal 
glucose infusion (3 kcal/min between t = 0 and 
15 min and 0.71 kcal/min between t = 15 and 
120 min) (closed symbols) compared to constant 
infusion (1 kcal/min between t = 0 and 120 min) 
(open symbols) in healthy subjects (triangles) and 
patients with type 2 diabetes (circles) on (A) blood 
glucose, (B) plasma insulin, (C) plasma GLP-1, 
and (D) plasma GIP. Each pair of curves differs 
between 0 and 30 min for variable vs constant 
intraduodenal infusion (P < 0.05). Adapted from 
O’Donovan et al 2004[52]. 
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that gut motor function and postprandial glycemia are 
highly interdependent variables.

Gastric motility
Marked hyperglycemia (16-20 mmol/L) slows both solid 
and nutrient liquid emptying in patients with type 1 
diabetes when compared to euglycemia (5-8 mmol/L)[79]; in 
type 2 patients, cross-sectional data also indicate an inverse 
relationship between the blood glucose concentration 
and the rate of  gastric emptying[49]. Conversely, gastric 
emptying is accelerated by acute hypoglycemia induced 
by insulin (2.6 mmol/L) in healthy subjects[80] and type 
1 patients, even when emptying is slower than normal 
during euglycemia[81]. In type 1 diabetes, as well as healthy 
volunteers, elevation of  blood glucose to “physiological” 
postprandial levels (8 mmol/L) also slows gastric emptying 
when compared to euglycemia (4 mmol/L)[82] (Figure 4). 
The magnitude of  the effects of  glycemia on the rate of  
gastric emptying is substantial, and has implications for 
absorption of  orally administered medications, including 
oral hypoglycemic agents[83], as well as impacting on 
carbohydrate absorption. 

The rate of  gastric emptying is determined by the 
coordinated activity of  various regions of  the stomach 
and proximal small intestine[84]. The proximal stomach 
acts as a reservoir for solids and generates tonic pressure 
to facilitate liquid emptying. The distal stomach grinds 

and sieves solids and pumps chyme across the pylorus, 
predominantly in a pulsatile manner, while phasic and 
tonic pyloric pressures, and duodenal contractile activity 
act as a break to gastric outflow. The timing of  antral 
contractions is controlled by an electrical slow wave, 
with a frequency of  about 3 per minute, generated by 
the interstitial cells of  Cajal[85]. During fasting, cyclical 
activity of  gastric motility is observed, with a periodicity 
of  about 90 min, characterised by irregular contractions 
of  increasing frequency (phase Ⅱ), and a brief  (5-10 min) 
period of  regular contractions at the rate of  3 per minute 
(phase Ⅲ) during which indigestible solids empty from the 
stomach, followed by motor quiescence (phaseⅠ). Acute 
hyperglycemia is associated with diminished proximal 
gastric tone[86-88], suppression of  both the frequency and 
propagation of  antral pressure waves[89-92], and stimulation 
of  pyloric contractions[93] -a motor pattern associated with 
slowing of  gastric emptying. The frequency of  the gastric 
slow wave is also disturbed[94]. The suppression of  antral 
motility is observed at blood glucose concentrations as 
low as 8 mmol/L[89,91]; the threshold appears higher in the 
proximal stomach[95]. Hyperglycemia also attenuates the 
prokinetic effects of  erythromycin in both healthy subjects 
and type 1 patients[96,97], at least in part by inhibiting the 
stimulation of  antral waves and coordinated antroduodenal 
pressure sequences[98]. This effect is of  considerable 
importance, since the action of  other prokinetic drugs is 
also likely to be impaired during hyperglycemia, although 
this issue has not been specifically examined.

Small intestinal motility
As in the stomach, fasting small intestinal motility is 
cyclical, and characterised by phasesⅠto Ⅲ, the latter with 
a frequency of  9 to 12 per minute. This “migrating motor 
complex” (MMC) propagates aborally along the small 
intestine, and serves to “sweep” the lumen of  indigestible 
debris. After a meal, the MMC is interrupted by irregular 
contractions propagated over short distances, which 
facilitate digestion and absorption of  nutrients. 

In healthy subjects during hyperglycemia (10 mmol/L), 
the duodenum becomes less compliant (more “stiff ”) to 
balloon distension, while distension stimulates a greater 
number of  phasic pressure waves, when compared to 
euglycemia[99]. Both phenomena could contribute to a 
duodenal “brake” to gastric emptying. More marked 
hyperglycemia (12-15 mmol/L) reduces the cycle length 
of  the MMC[100], the frequency of  duodenal and jejunal 
pressure waves, and the duration of  the postprandial 
period (early return of  phase Ⅲ activity), and slows 
small intestinal transit[101]. These alterations in function 
could have implications for absorption of  nutrients and 
medications, alteration in bowel habit, and the occurrence 
of  small intestinal bacterial overgrowth in diabetes[102]. 
However, other than suppression of  proximal duodenal 
wave frequency[103], there is limited information about 
the effects of  hyperglycemia on small intestinal motor 
function in patients, as opposed to healthy volunteers.

Mechanisms mediating the effects of hyperglycemia on 
gastric and small intestinal motility
Most information about the etiology of  gastrointestinal 
dysfunct ion in diabetes re la tes to the effects of  
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longstanding diabetes rather than acute, reversible changes 
that could relate to transient hyperglycemia[104]. Rodent 
models of  diabetes have demonstrated marked apoptosis 
of  enteric neurons[105], affecting nitrergic (inhibitory) 
neurons in particular[106], and loss of  interstitial cells of  
Cajal[107]. The latter are also deficient in humans with 
diabetes and severe gut symptoms[108]. Hyperglycemia 
appears to be responsible for apoptosis of  enteric 
neurons[109], but the latter would seem unlikely to mediate 
changes that are evident within minutes, rather than days 
or weeks. Enteric neurons sensitive to changes in glucose 
have been identified[110], although their responsiveness 
to systemic, as opposed to luminal glucose remains 
unclear. Vagal nerve function is reversibly inhibited by 
acute hyperglycemia[111,112], and this may account for 
some of  the observed phenomena. Hyperinsulinemia is 
unlikely to explain the observed effects, particularly as 
they are seen in type 1 (insulin deficient) as well as type 2 
and healthy subjects. Studies are indicated to determine 
whether reversible changes in nitrergic or serotonergic 
neurotransmission occur with variations in glycemia.

Therapeutic strategies directed at 
minimising postprandial glycemia 
The major impact of  gastrointestinal function on the 
glycemic response to meals, as outlined above, suggests a 
number of  logical, and in many cases complimentary, strat-
egies to lower postprandial blood glucose concentrations 
(Table 1). These include (1) minimising the carbohydrate 
content, or substituting low- for high-glycemic index foods 
in meals, (2) slowing gastric emptying, even in individuals 
with modest delays in emptying provided they remain free 
of  symptoms, (3) inhibiting the absorption of  carbohy-
drate from the small intestine, or delaying its absorption to 
more distal small intestinal segments, and (4) augmenting 
the incretin response. Many approaches fulfill a number 
of  these aims concurrently. Most studies relating elevated 
postprandial glycemia with cardiovascular risk have evalu-
ated blood glucose 2 h after a meal[113], suggesting that 
lowering peak blood glucose may be an appropriate tar-
get. Nevertheless, the glycated hemoglobin relates closely 
to the integrated mean blood glucose (i.e. area under the 
curve) over 24 h, albeit with a curvilinear rather then linear 
relationship[114], so reducing the total area under the blood 
glucose excursion over several hours after a meal may also 
be an important goal. It should be noted that strategies 
for individuals with impaired glucose tolerance or type 2 
diabetes managed without exogenous insulin, particularly 
those involving slowing of  gastric emptying, may not be 
applicable to type 1 and insulin-requiring type 2 patients, in 
whom the goal should be to coordinate the absorption of  
carbohydrate with the action of  exogenous insulin, which 
in some cases may involve accelerating gastric emptying, if  
it is already delayed[115].

Carbohydrate content and glycemic index
Low-carbohydrate diets were the mainstay of  treatment 
for diabetes in the pre-insulin era[116]. The outcome of  
the Nurses’ Health Study is indicative of  a relationship 
between both cardiovascular risk and the incidence 
of  diabetes with dietary glycemic load[117]. Short-term 

studies indicate the potential for low-carbohydrate diets 
to improve 24 h glycemia and glycated hemoglobin in 
patients with type 2 diabetes[118], including those failing 
conventional treatment with diet and a sulfonylurea[119]. 
In medium- to long-term studies, substituting protein 
for carbohydrate improved glycemia in overweight 
hyperinsulinemic subjects[120], while a low-carbohydrate diet 
improved fasting glucose over 6 mo in type 2 patients, with 
glycemic benefits maintained at 1 year, when compared 
to a low-fat diet[121,122]. The magnitude of  the decrease in 
glycated hemoglobin was small (mean 0.6% in the latter 
study), but likely to be clinically significant. In addition 
to the reduction in carbohydrate load, protein itself  
might improve glycemia by stimulating insulin release[123], 
although this phenomenon is less apparent in medium- 
versus short-term studies[124].

Rather than trading carbohydrates for alternative 
macronutrients, another approach is to substitute low- 
for high-glycemic index carbohydrates. The glycemic 
index (GI) compares the blood glucose response of  a test 
food with that of  a standard carbohydrate, either glucose 
or white bread[125]. Foods may be low GI by virtue of  a 
relative delay in gastric emptying and/or small intestinal 
glucose absorption[126,127]. For example, spaghetti (low GI) 
empties from the stomach much slower than potato (high 
GI) from about 60 min after the meal, although their 
glycemic profiles diverge earlier[128], indicating that slowing 
of  small intestinal glucose absorption is important. Both 
the physical properties of  the carbohydrate (such as 
enclosed kernels) and its chemical composition (such as a 
high amylose:amylopectin ratio) influence small intestinal 
carbohydrate digestion and absorption[127,129]. Glycemic 
index tends to vary inversely with the content of  dietary 
fiber in meals[130]; dietary fiber per se potentially slows 
gastric emptying[131] and small intestinal carbohydrate 
absorption[132], the latter by a mechanism that includes 
modification of  small intestinal motility from a stationary 
(favoring mixing), to a propulsive pattern. The beneficial 
effect on the glycemic response of  adding guar gum to an 
oral glucose load appears to be achieved mainly by slowing 
gastric emptying[133,134]. Nevertheless, guar also slows 

Table 1  Therapeutic strategies directed at minimizing 
postprandial glycemia

Strategy Examples

Alter carbohydrate in diet Low-carbohydrate diets
Low glycemic index carbohydrates

Slow gastric emptying High fiber diets
Fat “preloads”
Low glycemic index carbohydrates
Acarbose
GLP-1 analogs and DPP-IV inhibitors
Pramlintide

Inhibit small intestinal 
carbohydrate absorption

Acarbose
High fiber diets
Low glycemic index carbohydrates

Augment the incretin response GLP-1 analogs and DPP-IV inhibitors
Acarbose
Fat “preloads”
? Low glycemic index carbohydrates
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small intestinal glucose absorption, probably by inhibiting 
diffusion of  glucose out of  the luminal contents[135]; this is 
reflected in the observation that both GLP-1 and insulin 
responses are less than with guar-free glucose[136].

Low GI foods may also stimulate insulin release 
through the incretin effect, or other mechanisms[137]. 
Furthermore, they may enhance satiety and reduce energy 
intake at a subsequent meal[138,139]. Additional information 
about the potential for these beneficial effects from 
different classes of  low GI foods is needed. Fructose has 
been advocated as a low GI substitute for glucose in the 
diabetic diet, since it results in a much lower glycemic 
excursion than an equivalent glucose load[140], while 
retaining the capacity to stimulate insulin secretion[141]. 
In addition, some investigators have found that fructose 
ingestion suppresses food intake more than glucose[140,142], 
although this issue is controversial[141], and probably 
depends on the load and timing of  fructose ingestion in 
relation to the subsequent meal.

Most medium- to long-term studies of  low GI diets 
indicate a benefit for glycemic control[143]; typically the 
effect is modest[144], but is still likely to be clinically 
meaningful, and in many cases is of  similar magnitude 
to the improvement in glycemic control achieved by 
pharmacological agents[145].

Slowing gastric emptying
Given the relationship between the degree of  postprandial 
glycemia and the rate of  gastric emptying in both healthy 
subjects[27] and type 2 patients[28], it is logical that dietary 
and/or pharmacological interventions which slow gastric 
emptying should be effective in lowering postprandial 
glycemia in type 2 diabetes. In addition to the effects of  
dietary fiber in retarding gastric emptying, slowing of  
emptying by either an oral proteinase inhibitor[146], adding 
a solid non-carbohydrate meal to an oral glucose load[147], 
or combining fat (the most potent macronutrient for 
slowing gastric emptying[148]) with carbohydrate[149], all 
reduce postprandial blood glucose and insulin responses. 
The underlying concept is that the presence of  nutrients 
in the small intestine both delays gastric emptying and 
stimulates GLP-1 and GIP. Hence, consumption of  oil 
as a “preload” before a mashed potato meal markedly 
delays the subsequent rise in blood glucose, and stimulates 
GLP-1 release in patients with type 2 diabetes[150]. This 
approach requires further refinement to determine the 
optimum load, timing, and macronutrient content of  the 
“preload”, but has the potential advantage of  simplicity 
when compared to pharmacological strategies, which also 
appear to act predominantly by slowing gastric emptying. 
For example, the improvement in postprandial glycemia 
associated with GLP-1 and its analogs is related to slowing 
of  gastric emptying rather than enhancement of  insulin 
secretion[40]; the latter is in fact reduced due to a decrease 
in the rate of  entry of  carbohydrate into the small 
intestine. The amylin analog, pramlintide, also slows gastric 
emptying[151], and its use is associated with an improvement 
in overall glycemic control, as assessed by glycated 
hemoglobin, with medium-term use in type 1 and type 2 
patients[152-155]. Pramlintide has the additional advantage 
of  promoting weight loss, probably by suppressing 
appetite[156].

Inhibiting absorption of glucose
The α-glucosidase inhibitors, including acarbose, delay 
absorption of  carbohydrates in the proximal small 
intestine[157]. The resultant exposure of  more distal 
intestinal segments to glucose results in enhanced and 
prolonged GLP-1 secretion in healthy subjects[76,158], with 
subsequent slowing of  gastric emptying[159]. The magnitude 
of  these affects is likely to depend on meal content (ie. 
disaccharide load). Moreover, acarbose fails to stimulate 
GLP-1 release or delay gastric emptying in patients with 
type 2 diabetes, although it is still beneficial for reducing 
postprandial glycemia in this group[160], presumably by 
impairing carbohydrate absorption. Inhibition of  glucose 
entry into enterocytes might represent an additional 
mode of  action of  acarbose[161]. Again, it is clear that the 
mechanisms by which postprandial glycemia is improved 
frequently overlap. For example, slowed absorption of  
glucose, as discussed, is also a feature of  low GI and high 
fiber diets. 

Augmenting the incretin response
The effect on GLP-1 concentrations of  the dietary 
strategies already discussed, and the observed potentiation 
of  GLP-1 secretion and associated improvement in 
glycemic control after bariatric surgery[162], point to the 
value of  augmenting the incretin response in optimising 
postprandial glycemia. GLP-1 is metabolised rapidly by the 
enzyme dipeptidyl peptidase Ⅳ (DPP-Ⅳ), and therefore 
is not a suitable agent for therapeutic administration. 
Instead, longer lasting agonists have been developed, 
including both albumin-bound analogs of  GLP-1, and 
exendin-4, a peptide derived from the saliva of  the Gila 
monster lizard, which is structurally similar to GLP-1 and 
shares several biological properties, but may be a more 
potent insulinotropic agent than GLP-1[26]. Subcutaneous 
administration has been shown to reduce postprandial 
glycemia in type 2 patients[163]. Resistant analogs of  GLP-1, 
along with DPP-Ⅳ inhibitors, appear to have a promising 
role in the therapy of  diabetes[164]. 

Conclusion
Upper gastrointestinal function plays a major, though often 
overlooked, role in determining postprandial glycemia. 
Recent insights into the mechanisms by which variations 
in gut function alter the blood glucose concentration have 
suggested a number of  potential therapeutic strategies that 
require further evaluation for their utility in achieving good 
glycemic control.
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