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Abstract
AIM: To investigate whether the stimulation of peripher-
al blood mononuclear cells (PBMNC) with the cell debris 
and cell extraction of different probiotic strains is similar 
or species specific. 

METHODS: Three strains of bifidobacteria , 4 strains of 
lactobacilli , and E. coli  nissle were sonicated and centri-
fuged in order to divide them into cell extract and cell 
debris. PBMNC were separated by density gradient and 
incubated for 36 h with either the cell debris or the cell 
extract of single strains of probiotic bacteria in doses 
from 102 to 108 CFU/mL. Cell supernatants were taken 
and interleukin (IL)-10, IL-1β, and tumor necosis factor 
(TNF)-α were determined by ELISA. 

RESULTS: Depending on the species super-family, the 
strains had different stimulation patterns. Except for 
both L. casei strains, the cell extract of bifidobacteria  

and lactobacilli  had less stimulating capacity than cell 
debris, whereas the cell extract of E. coli  nissle had simi-
lar stimulating properties to that of the cell debris of the 
strain and significantly more stimulating capacity than 
that of bifidobacteria  and lactobacilli . The cell debris of 
bifidobacteria  stimulated more cytokine release than the 
cell debris of lactobacilli . The cell debris of lactobacilli  did 
not have a stimulating capacity when lower concentra-
tions were used. Neither cell extraction nor cell debris 
had an inhibitory effect on the production of the tested 
cytokines by stimulated PBMNC. 

CONCLUSION: The incubation of probiotic strains, 
which have been used in clinical trials for inflammatory 
diseases, with immunocompetent cells leads to different 
species specific reactions. High IL-10 response to cell de-
bris of bifidobacteria  and E. coli  nissle can be found. This 
corresponds to positive effects of bifidobacteria  and E. 
coli  nissle in clinical trials for inflammatory bowel disease 
compared to negative outcomes obtained with lactoba-
cilli . 
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INTRODUCTION
There is no doubt that the relationship between intestinal 
microflora and immune system is complex. The host has 
to distinguish between pathogenic bacteria and harmless 
commensal and must react in an adequate and not self-
destructive manner[1]. There is an increasing body of  
evidence that chronic intestinal inflammations such as 



Helwig U et al . Cytokine release of PBMNC induced by probiotics                                                             5979

inflammatory bowel disease (IBD) are due to a disturbed 
relationship within the host’s immune response to the 
enteric microflora[2-4]. Based on these proposals the 
relationship between micro-flora and intestinal immune 
response has been intensively studied by manipulation of  
the enteric micro-flora with probiotic bacteria[5-11]. These 
are by definition “A preparation of  or a product containing 
viable, defined products in sufficient numbers which 
alter the microflora (by implantation or colonization) in 
a compartment of  the host and by exerting beneficial 
health effects in the host”[12]. The efficacy of  E. coli 
nissle in therapy for ulcerative colitis[5-6] has been shown 
and our own clinical experience has been focused on a 
highly concentrated probiotic preparation (VSL#3) in 
preventing pouchitis, an unspecific inflammation of  an 
ileal pouch anal anastomosis after colectomy for ulcerative 
colitis[9-10]. Lactobacillus GG instead has no influence on 
clinical outcome in Crohn’s disease[7-8]. Besides clinical 
findings, different studies have also shown the influence 
of  probiotic bacteria on the local and systemic immune 
response in experimental colitis[13-15]. The mechanisms 
underlying this effect are stil l under investigation. 
One hypothesis is based on modulating pro- and anti-
inflammatory cytokines[16-17]. Pro-inflammatory cytokines 
such as interleukin (IL)-1β and tumor necosis factor 
(TNF)-α play an important role in gut inflammation[17]. 
In Crohn’s disease and ulcerative colitis these cytokines 
are elevated in local inflammation area and peripheral 
blood cells[18-19], whereas the anti-inflammatory cytokine 
IL-10 is decreased in patients suffering from IBD[20]. 
IL-10 produced by gene manipulated bacteria, reduces 
toxic colitis that is associated with pro-inflammatory 
cytokines[21-22]. Further arguments have been found in the 
absence of  IL-10. IL-10 deficient (KO) mice do not show 
any symptoms of  intestinal inflammation as long as they 
are kept in sterile conditions, but spontaneously develop 
chronic colitis with a histological distribution similar to 
that found in Crohn’s disease after termination of  the 
sterile conditions[23]. If  the mice are fed with different 
lactic acid bacteria before finishing the sterile conditions, 
this chronic inflammation can be prevented[24]. Recently, 
during preventive therapy for chronic pouchitis using 
different probiotics as mentioned above, we investigated 
the cytokine tissue levels of  patients with pouchitis and 
after induction of  remission and during the following 
probiotic application. It is interesting to find that cytokine 
tissue levels of  IL-10 increase during the application of  
the probiotic preparation, whereas anti-inflammatory 
cytokine-levels such as TNF-α and IL-1 remain low after 
the application[25]. 
    The aim of  our study was to set up an in vitro model 
to compare the immunomodulatory effects of  different 
probiotic strains that have previously been evaluated 
in different clinical trials. For this purpose we used 
peripheral blood mononuclear cells (PBMNC), which are a 
combination of  different immunogenic cells. 

MATERIALS AND METHODS
Subjects
Blood samples were taken from 12 healthy blood 

donors (7 females, mean age: 44 years; 5 males, mean 
age: 52 years). Blood from the same donor was used for 
each co-incubation with all tested bacteria in different 
concentrations. Incubation experiments were repeated 4 to 
6 times with blood from different donors. The study was 
performed in accordance with the Declaration of  Helsinki 
and the local ethics committee. 

Separation of PBMNC
PBMNC from healthy donors were separated according 
to Boyum[26]. Briefly, peripheral blood diluted with Hank’s
balanced salt solution (HBSS) (without Ca2+ or Mg2+) 
(GIBCO, Karlsruhe, Germany) containing 100 U/mL 
heparin, was layered over a ficoll (Lymphoprep, Progen, 
Biotechnik, Heidelberg, Germany; specific gravity: 1.077) 
and centrifuged for 40 min at 400 r/min without using a 
frame. Cells harvested from the interface were washed in 
HBSS (without Ca2+ or Mg2+) and centrifuged for 10 min 
at 400 r/min. Supernatant was discarded and the pellet was 
resuspended in HBSS (without Ca2+ or Mg2+), which was 
repeated four times. Finally, resuspension was performed 
in RPMI 1640 (GIBCO, Karlsruhe, Germany) with 
10% fetal calf  serum, 100 U/mL penicillin, 100 μg/mL 
streptomycin, and 50 μg/mL gentamycin (all Sigma, St. 
Louis, MO). Viability of  cells was tested by trypan-blue, 
which was more than 97%. After calculation of  the cells 
per volume, the cell count was adjusted to 500 000 cells per 
well and per mL.

Bacteria and culture conditions
The bacteria species and strains used in this study are 
listed in Table 1. Strains in bold type originated from the 
pharmaceutical probiotic VSL#3 (Sigma Tau, Promezia, 
Italy). Bifidobacterium and Lactobacillus strains were grown in 
MRS broth (Difco, Detroit, MI) with the addition of  0.05% 
L-cysteine hydrochloride monohydrate (Merck, Darmstadt, 
Germany). All strains were incubated anaerobically at 
37℃. Mid log cultures counted by plating technique on the 
above mentioned media, were collected by centrifugation 
(8 000 × g for 3 min), washed and resuspended in 5 mL 
RPMI 1640 Medium (GIBCO, Karlsruhe, Germany). The 
bacterial suspensions were subsequently sonicated (Branson 
Sonifier W-250, Heinemann, Schwäbisch, Germany) at 
power levels 5-6 at 30% duty for 5 min to destroy cellular 
membranes. The sonicated suspension was centrifuged at 
8 000 × g for 30 min to separate cell debris from crude cell 
extract. After centrifugation the supernatant containing the 

Table 1  List of the bacterial strains

Bifidobacterium breve: Y 8
Bifidobacterium  infantis: Y 1
Bifidobacterium  longum: Y 10
E. coli: Stamm Nissle 1917 (Mutaflor, Ardeypharm, Herdecke,  Germany)
Lactobacillus azidophilus: MB 443
Lactobacillus  casei subspecies rhamnosus: Lactobacillus GG (LGG, Valio,
Helsinki, Finland): ATCC 53103
Lactobacillus casei: MB 451
Lactobacillus delbrueckii subspecies bulgaricus: MB 453
Lactobacillus plantarum: MB 452
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cell extract and the pellet containing the cell debris were 
taken for further investigation. 

Bacterial incubation with PBMNC
Bacter ia l ce l l debr is and extract were appl ied at 
concentrations ranging from 1 × 103 to 1 × 1010 colony 
forming units (CFUs)/mL. One hundred μL at specific 
concentration was transfer red to 900 μL medium 
containing 500 000 mononuclear cells and co-incubated 
at 37℃ and 50 mL/L CO2 for 36 h. Supernatants were 
collected and stored at -20℃ until assay. The viability 
of  PBMNC was checked by the trypan blue test. On 
each incubation plate a positive control with LPS added 
to PBMNC and a negative control without stimulus 
were investigated. The same set-up was used in order to 
examine the ability of  probiotics to inhibit LPS-induced 
cytokine release. PBMNC were incubated with bacterial 
cell extract and debris for 10 min, then LPS was added in a 
concentration of  100 ng/μL. 

Cytokine quantification in culture supernatant
Cytokine quantification in culture supernatant was 
analysed by commercially available sandwich enzyme 
linked immunosorbent assay (ELISA). 
    TNF-α was detected using anti-human TNF-α 
monoclonal “capture” antibody (MAB 610, R&D Systems, 
Minneapolis, MN, USA) and biotinylated “detection” 
antibody (BAF 210 R&D Systems, Minneapolis, MN, 
USA) with o-phenylenediamine buffer/H2O2 (Sigma, 
Steinheim, Germany) as substrate. Standard procedure was 
performed by using recombinant human TNF-α (210-TA, 
R&D Systems, Minneapolis, MN, USA). The absorbance 
values of  the sample were read at 490 nm on an ELISA 
plate reader. ELISA measurements were performed in 
duplicates or triplicates.
    IL-1β was detec ted us ing ant i -human IL-1β 
monoclonal “capture” antibody (MAB 601, R&D Systems, 
Minneapolis, MN, USA) and biotinylated “detection” 
antibody (BAF 201 R&D Systems, Minneapolis, MN, 
USA) with o-phenylenediamine buffer/H2O2 (Sigma, 
Steinheim, Germany) as substrate. Standard procedure was 
performed by using recombinant human IL-1β (201-LB, 
R&D Systems, Minneapolis, MN, USA). The absorbance 
values of  the sample were read at 490 nm on an ELISA 
plate reader. ELISA measurements were performed in 
duplicates or triplicates.
    IL-10 was detected using anti-human IL-10 “capture” 
antibody (18551A Pharmingen, San Diego, CA, USA) and 
biotinylated “detection” antibody (18562D, Pharmingen, 
San Diego, CA, USA) with o-phenylenediamine buffer/
H2O2 (Sigma, Steinheim, Germany) as substrate. Standard 
procedure was performed by using recombinant human 
IL-10 (19701V, Pharmingen, San Diego, CA, USA, USA). 
The absorbance values of  the sample were read at 490 
nm on an ELISA plate reader. ELISA measurements were 
performed in duplicates or triplicates.

Statistical analysis
Data of  cytokine concentration were presented as mean 
± SE and expressed in pg/mL. For quantification of  

stimulating capacity of  bacteria at different concentrations, 
cytokine concentration was resumed as an area under 
the curve (AUC) and described as (mean ± SE) AUC. 
Statistical significance was calculated by the Mann-
Whitney-Rank test and expressed as P-value.

RESULTS
Positive and negative controls 
Results from cytokine production in PBMNC after stimu-
lation with LPS (100 ng/mL) were pooled (144 samples 
from 12 different donors). The mean cytokine produc-
tion in stimulated PBMNC was 186.5 ± 125.6 pg/mL for 
IL-10, 1875.6 ± 1381.2 pg/mL for IL-1β and 356.0 ± 
249.1 pg/mL for TNF-α. Cytokine production in non-
stimulated PBMNC was under detection limit of  the ELISA. 

Cytokine production in PBMNC after incubation with cell 
debris and extract
Generally, cytokine production in PBMNC induced by 
bacteria differed in cell debris and extract between bacteria 
and depended on the applied concentration used (Figure 1).

IL-10 concentration 
Lactobacilli : Cell extracts from all applied lactobacilli in-
duced IL-10 concentration only weakly, whereas no dif-
ference was found between species (data not shown). The 
stimulation by cell debris of  these strains led to higher con-
centrations of  IL-10 whereas significance only reached in 
L. azidophilus MB443, L. delbrueckii subsp. bulgaricus MB453 
and L. plantarum MB452 (AUC: L. azidophilus MB443: 1.0 
± 1.5 pg/mL; L. delbrueckii subsp. bulgaricus MB453: 3.8 
± 4.65 pg/mL; L. plantarum MB452: 9.9 ± 13.8 pg/mL). 
The stimulation by cell debris of  both L. casei subs. (MB 
451 and L. GG)) did not differ from that of  cell extract of  
these strains. As shown in Figures 2 and 3, the cell debris 
of  lactobacilli had a weak stimulation capacity at concentra-
tions less than 105 CFU/mL.
Bifidobacteria : Cell debris of  each bifidobacteria strain 
stimulated IL-10 production in PBMNC more significantly 
than their cell extracts (AUC: B. breve Y8 cell debris: 1062.7
± 889.9 pg/mL; cell extract: 182.6 ± 177.5 pg/mL; AUC B. 
longum Y10 cell debris: 682.7 ± 466.9 pg/mL; cell extract: 
30.5 ± 28.9 pg/mL; AUC B. infantis Y1 cell debris: 1095.6
± 925.3 pg/mL; cell extract: 228.3 ± 233.0 pg/mL; P < 
0.05) (Figure1). No difference was found between differ-
ent bifidobacteria species when the stimulation capacity of  
cell extracts or cell debris was compared. Cell debris from 
bifidobacteria stimulated IL-10 production in PBMNC more 
significantly than lactobacilli (AUC cell debris of  bifidobac-
teria: 710.1 ± 795.5 pg/mL; AUC cell debris of  lactobacilli: 
219.6 ± 174.7 pg/mL; P < 0.02) (Figure 4).
    As shown in Figure 2 and Figure 3, the cell debris 
of  bifidobacteria had a weak stimulating capacity at the 
concentration lower than 103 CFU/mL. Moreover, the 
highest concentration (108 CFU/mL) of  bifidobacteria had a 
less stimulating capacity than the lower concentration (107 
CFU/mL), whereas the viability measured by trypan blue 
test was over 97%.
E. coli  nissle: Cell extracts and debris of  E. coli nissle led 

5980       ISSN 1007-9327       CN 14-1219/R      World J Gastroenterol        October 7, 2006    Volume 12    Number 37



to similar IL-10 concentrations (AUC cell debris: 1270.7 ± 
210.9 pg/mL; cell extract: 1154.8 ± 264.0 pg/mL) (Figure 
1). The stimulation ability of  cell extract to produce IL-1β 
in PBMNC was significantly higher in E. coli nissle than in 
lactobacilli or bifidobacteria (P < 0.05). The cell debris of  E. 
coli nissle had a similar stimulating capacity to bifidobacteria 
but a more significant capacity than lactobacilli (P < 0.02) 
(Figure 4). The cell debris and extract of  E. coli nissle even 
had a stimulating capacity at low concentrations (Figure 3). 
The highest concentration (108 CFU/mL) of  E. coli nissle 
had a less stimulating capacity than the lower concentra-
tion (107 CFU/mL), whereas the viability measured by 
trypan blue test was over 97%.

IL-1β  concentration
Lactobacilli : As shown in Figure 1 cell extracts from 
all applied lactobacilli induced IL-1β concentration only 
weakly, whereas no difference was found between spe-
cies (data not shown). The stimulation by cell debris of  L. 
acidophilus, L. delbrueckii subsp. bulgaricus and L. plantarum 
led to higher concentrations of  IL-1β (AUC: L. azidophilus 
MB443: 1282.2 ± 987.9pg/mL; L. delbrueckii subsp. bulgari-
cus MB453: 4881.5 ± 893.8 pg/mL; L. plantarum MB452: 
3390.8 ± 288.9 pg/mL) (P < 0.05) (Figure 1). The stimu-
lation by cell debris did not differ from cell extract of  L. 
casei subs. rhamnosus (L.GG) and L. casei MB451. As shown 
in Figures 2 and 3 , the cell debris of  lactobacilli had only 
a weak stimulating capacity at concentrations of  less than 
106 CFU/mL.
Bifidobacteria : Cell debris of  each bifidobacteria strain 
stimulated IL-1β production in PBMNC more significantly 
than their cell extract (AUC: B. breve Y8 cell debris: 11 152.9 
± 2547.7 pg/mL; cell extract: 1488.3 ± 454.0 pg/mL; 
AUC B. longum Y10 cell debris: 12 364.0 ± 192.5 pg/mL; 
cell extract: 491.0 ± 190.6 pg/mL; AUC B. infantis Y1 cell 
debris: 9018.8 ± 2190 pg/mL; cell extract: 2142.3 ± 925.0 
pg/mL; P < 0.05) (Figure 1). No difference was found 
between bifidobacteria species when the stimulating capac-
ity of  cell extracts or cell debris was compared. The cell 
debris from bifidobacteria led to higher IL-1β concentrations 
in supernatant of  PBMNC than cell debris of  lactobacilli 
(AUC cell debris of  bifidobacteria: 11692.8 ± 2283.2 pg/mL; 
AUC cell debris of  lactobacilli: 3143.3 ± 2689.0 pg/mL; P < 
0.02) (Figure 4). As shown in Figure 2, the cell debris of  B. 
breve Y8 and B. longum Y10 even had a stimulating capacity 
at low concentrations (103 CFU/mL and 102 CFU/mL), 
whereas the IL-1β production in PBMNC was weak when 
incubated with B. infantis Y1 at a concentration of  less 
than 104 CFU/mL. The highest cell debris concentration 
(108 CFU/mL) of  bifidobacteria had a less stimulating ability 
to produce IL-1β in PBMNC than its lower concentration, 
whereas the viability measured by trypan blue test was over 
97%.
E. coli  nissle: Cell extracts and debris of  E. coli nissle led 
to similar IL-1β concentrations (AUC cell debris: 9334.8 
± 2486.1 pg/mL; cell extract: 7875.0 ± 1595.3 pg/mL) 
(Figure 1). The stimulating ability of  the cell extract of  E. 
coli nissle to produce IL-1β in PBMNC was significantly 
higher than that of  lactobacilli or bifidobacteria (P < 0.05). 
The cell debris of  E. coli nissle had a similar stimulating 

capacity to bifidobacteria but a more significant capacity than 
lactobacilli (P < 0.02) (Figure 4). The cell debris and extract 
of  E. coli nissle even had a stimulating capacity at low con-
centrations (Figure 3). The highest concentration of  debris 
of  E. coli nissle had a less stimulatory capacity than lower 
concentration. 

TNF-concentration 
Lactobacilli : Cell extracts from L. azidophilus MB443, L. 
delbrueckii subsp. bulgaricus MB453, and L. plantarum MB452 
induced TNF-α concentration only weakly. The stimula-
tion by cell debris of  these strains led to higher TNF-α 
production (AUC: L. azidophilus MB443: 1695.3 ± 879.3 
pg/mL; L. delbrueckii subsp. bulgaricus MB453: 3593.2 ± 
822.1 pg/mL; L. plantarum MB452: 2466.5 L ± 433.3 pg/
mL) (P < 0.05) (Figure 1). The stimulation by cell debris 
did not differ from cell extract of  L. casei subs. rhamnosus 
(L.GG) and L. casei MB451. As shown in Figures 2 and 3, 
the cell debris of  lactobacilli only had a weak stimulating ca-
pacity at concentrations of  less than 107 CFU/mL.

Figure 1  Concentration of IL-10 (A), IL-1β (B) and TNFα (C) by PBMNC (area 
under the curve of mean ± SE) after incubation with cell debris ( ) or cell extract 
( ) of different strains.
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Bifidobacteria : Cell debris of  each bifidobacteria strain led 
to higher TNFα concentrations in supernatant of  PB-
MNC than their cell extract (AUC: B. breve Y8 cell debris: 
7645.5 ± 1823.1 pg/mL; cell extract: 180.1 ± 85.5 pg/mL; 
AUC B. longum Y10 cell debris: 6951.2 ± 522.7 pg/mL; cell 
extract: 83.6 ± 40.0 pg/mL; AUC B. infantis Y1 cell debris: 
5584.8 ± 1098.8 pg/mL; cell extract: 290.5 ± 103.6 pg/
mL) (P < 0.05). No difference was found between bifidobac-
teria species when the stimulating capacity of  cell extract or 
cell debris was compared. The cell debris from bifidobacteria 
led to higher TNFα concentrations in supernatant of  PB-
MNC than cell debris from lactobacilli or E. coli nissle (AUC 
cell debris of  bifidobacteria: 6882.4 L ± 1355.0 pg/mL; AUC 
cell debris of  lactobacilli: 1630.8 ± 1265.1 pg/mL; AUC cell 
debris of  E. coli nissle: 1466.6 ± 1356.0 pg/mL) (P < 0.02) 

(Figure 4). As shown in Figure 2, the cell debris from B. 
breve Y8 and B. longum Y10 even had a stimulating capacity 
at low concentrations (103 CFU/mL and 102 CFU/mL), 
whereas the TNF-α production in PBMNC was weak 
when incubated with B. infantis Y1 at a concentration of  
less than 104 CFU/mL. The highest concentration (108 
CFU/mL) of  bifidobacteria had no strong stimulating ability 
to produce TNF-α in PBMNC, whereas the viability meas-
ured by trypan blue test was over 97%.
E. coli  nissle: High concentrations (108 CFU/mL) of  
cell debris of  E. coli nissle led to high concentrations of  
TNF-α, whereas lower concentrations of  cell debris and 
extracts led to lower concentrations of  TNF-α (Figure 
3) (AUC cell debris: 1466.6 ± 1356 pg/mL; cell extract: 
1153.0 ± 748.4 pg/mL) The cell debris of  E. coli nissle 

5982       ISSN 1007-9327       CN 14-1219/R      World J Gastroenterol        October 7, 2006    Volume 12    Number 37

Figure 2  Cytokine concentration of supernatant after incubation of PBMNC with cell debris of bacteria in different concentrations. A and B: supernatant concentration 
of IL-10 in pg/ml (mean ± SE); C and D: supernatant concentration of IL1β in pg/ml (mean ± SE); E and F: supernatant concentration of TNFα in pg/mL (mean ± SE). 
Lactobacilli are described on the left side and bifidobacteria are described on the right side.
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had a similar stimulating capacity similar to lactobacilli but a 
significantly less capacity than that of  bifidobacteria (P < 0.02) 
(Figure 4). 

Inhibition of stimulated PBMNC by bacterial cell debris 
and extract
None of  the bacterial cell debris and extract of  lactobacilli, 
bifidobacteria or E. coli nissle had an inhibitory effect on the 
cytokine production in PBMNC. Pre-incubation with cell 
debris or with cell extract and stimulation with LPS led to 
similar cytokine production of  LPS alone or cell debris 
alone (data not shown).

DISCUSSION
Different probiotic strains used in clinical trials have shown 
prophylactic properties in different inflammatory diseases 
of  the gastrointestinal tract, such as Crohn’s disease, 
ulcerative colitis, pouchitis, antibiotic-associated colitis and 
traveller’s diarrhoea[27-28]. Recently, we have shown that the 
IL-10 concentration in the mucosa of  ileo- anal pouch 
tissue is elevated after administration of  probiotics[25]. 
In this in vivo approach we used a highly concentrated 
probiotic preparation containing different lactic acid 
bacteria. Our hypothesis is that a high concentration 
of  bacteria contributes to these clinical results and 
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Figure 3  Cytokine concentrations of supernatant after incubation of PBMNC with cell debris (left side) or cell extracts (right side) of bacteria from different species families 
in different concentrations. A and B: supernatant concentration of IL-10 in pg/ml (mean ± SE); C and D: supernatant concentration of IL1β in pg/ml (mean ± SE); E and F: 
supernatant concentration of TNFα in pg/mL (mean ± SE).
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immunologic findings[3]. However, the specific property of  
different strains remains unclear. Therefore, we investigated 
an in vitro model in order to test different probiotic strains 
and species, which are used in clinical practice to prevent 
inflammatory diseases, in order to understand the pro- 
and anti-inflammatory properties of  specific strains. There 
are several studies on the induction of  cytokines by cell 
components of  lactic acid bacteria to induce cytokines[29-31]. 
However, systematic analysis of  probiotic bacteria used 
in clinical practice for the prevention of  inflammatory 
disease, has not been performed until now in a human cell 
model. For this purpose we used PBMNC which are easily 
available and express toll-like-receptor (TLR) 2 and TLR 
4 as well as CD14 which are shown to mediate immune 
response to microbial components as peptidoglycan 
and lipoteichoic acid[32-33]. Until now there is no report 
on comparison of  dose response over a broad range of  
different concentrations of  probiotic bacteria used in 
clinical practice for prevention of  inflammatory bowel 
disease. Our findings on PBMNC indicate that stimulation 
by lactobacilli works in a dose-dependent way. High doses 
of  cell debris could stimulate PBMNC to produce pro- 
and anti-inflammatory cytokines. The cell extract has a 
less stimulating capacity in a dose-dependent manner. An 
interesting finding is that the cell debris of  L. delbrueckii 
subsp. bulgaricus MB453 and L. plantarum MB452 stimulates 
PBMNC when used at concentrations higher than 104 
CFU/mL, while both L. azidophilus MB443 and L. casei 
MB451 strains only require concentrations higher than 106 
and 105 CFU/mL. Cell debris of  L. casei supsp. rhamnosus 
(L.GG) had a very low stimulating capacity compared to 
other strains (Figure 1). The weak or even absent reaction 
at high concentrations of  lactobacilli (106 or 105 CFU/mL) 
is not suspected. This phenomenon is reproducible in 
different blood donors and exists in all different lactobacilli 
strains when used for this examination. Schultz and co-
workers[34] recently showed that L. casei subsp. rhamnosus 
(L.GG), which had the lowest stimulating capacity in our 
study, induces immunologic tolerance to granulocytes after 
oral administration for several weeks. Since lactobacillus 

strains normally are early inhabitants of  the human 
gastrointestinal tract, oral tolerance to low concentrations 
of  lactobacillus strains might generally develop[35]. Although 
this is expected for bifidobacteria, they stimulate pro- and 
anti-inflammatory cytokines more significantly than 
lactobacilli. But the stimulation pattern is different. The 
highest concentration of  bifidobacteria induces PBMNC to 
produce less pro- and anti-inflammatory cytokines than 
lower concentrations of  the strain. Whether the lower 
induction of  cytokine release in incubation with highly 
concentrated cell debris is due to deletion or apoptosis 
of  PBMNC remains unclear. Toxic reaction or a reaction 
resulting in direct cell death can be excluded by the trypan 
blue control test which provides information about 
the functionality of  cell membrane but not about the 
metabolic condition of  cells. Recently, it has been proposed 
in a different model that bifidobacteria strains induce 
oral tolerance[36] but also induction of  oral tolerance to  
E. coli and lactobacilli has been reported[37-38]. The stimulating 
capacity of  E. coli nissle shows a different pattern. The 
cell extract and debris of  E. coli nissle have a similar ability 
to produce cytokines. Interestingly, the cell debris and 
extract of  E. coli nissle at low concentrations can stimulate 
epithelial HT29/19 cells to produce the chemotactic factor 
interleukin-8 (IL-8), whereas the cell debris and extract 
of  lactobacilli and bifidobacteria do not stimulate epithelial 
HT29/19 cells to release IL-8[38]. E. coli nissle, which has 
been shown to be effective in maintaining remission of  
ulcerative colitis, has a high stimulating capacity for IL-10 
and IL-1β compared to other strains, but a low capacity 
for TNF-α. Bifidobacteria of  the probiotic composition 
VSL#3 of  bifidobacteria, which can prevent inflammatory 
bowel disease, can stimulate PBMNC to produce IL-10[9,10]. 
L. GG can weakly stimulate PBMNC to produce IL-10 and 
has no positive effect on inflammatory bowel disease[7-8]. 
This is consistent with the findings in another study[25]. 
L. GG has been primarily used in trials for prevention of  
relapses in Crohn’s disease. It has been recently reported 
that Crohn’s disease is associated with the polymorphism 
of  the nucleotide-binding oligomerization domain 2 

Figure 4  Supernatant concentrations of different cytokines after co-incubation of PBMNC with cell debris of bacteria from different species families. With regard to 
lactobacilli results are pooled from L.acidophilus, L.bulgaricus, L.casei, L.GG, L.plantarum. With regard to  bifidobacteria results are pooled from B.breve, B.infantis, B.longum.  
IL-10, IL-1β and TNFα shown as area under the curve (mean ± SE) ( aP < 0.05 ). 
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(NOD 2)[39-40]. NOD 2 is a regulator of  TLR 2-mediated 
response to microbial agents[41] and Gram-positive bacteria 
like lactobacilli are typical ligands for TLR 2[32]. Since the 
function of  mutations in the NOD 2 gene in Crohn’s 
disease is not clear[42], explanation about the lacking effect 
of  probiotics on Crohn’s disease is warranted.
    In conclusion, the ability of  probiotic bacteria to stimu-
late PBMNC is different. Compared to E. coli nissle and 
bifidobacteria, lactobacilli debris exerts effects only at high 
concentrations. Whereas the extract of  lactobacilli and bifido-
bacteria has only weak effects, while the cell extract and de-
bris of  E. coli nissle have similar effects. The higher IL-10 
response to E. coli nissle and bifidobacteria corresponds to 
the positive effect of  these probiotic strains on inflamma-
tory bowel disease compared to negative outcomes ob-
tained with lactobacilli. 
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