
PO Box 2345, Beijing 100023, China                                                                                                                 World J Gastroenterol  2006 October 28; 12(40): 6429-6439
www.wjgnet.com                                                                                                                                          World Journal of Gastroenterology  ISSN 1007-9327
wjg@wjgnet.com                                                                                                                                                                       © 2006 The WJG Press. All rights reserved.

Emerging roles of the intestine in control of cholesterol
metabolism

Janine K Kruit, Albert K Groen, Theo J van Berkel, Folkert Kuipers

Janine K Kruit, Folkert Kuipers, Department of Pediatrics, 
Center for Liver, Digestive, and Metabolic Diseases, University 
Medical Center Groningen, Groningen, The Netherlands
Albert K Groen, Department of Experimental Hepatology, 
Academic Medical Center, Amsterdam, The Netherlands
Theo J van Berkel, Division of Biopharmaceutics, Leiden/
Amsterdam Center for Drug Research, Leiden University, Leiden, 
The Netherlands
Supported by grant 2001B043 from the Netherlands Heart 
Foundation
Correspondence to: Dr. Folkert Kuipers, Professor, Laboratory 
of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, 
University Medical Center Groningen, Hanzeplein 1 9700 RB 
Groningen, The Netherlands. f.kuipers@med.umcg.nl
Telephone: +31-50-3632669  Fax: +31-50-3611746 
Received: 2006-06-02             Accepted: 2006-07-07

Abstract
The liver is considered the major “control center” for 
maintenance of whole body cholesterol homeostasis. This 
organ is the main site for de novo  cholesterol synthesis, 
clears cholesterol-containing chylomicron remnants 
and low density lipoprotein particles from plasma and 
is the major contributor to high density lipoprotein 
(HDL; good cholesterol) formation. The liver has a 
central position in the classical definition of the reverse 
cholesterol transport pathway by taking up periphery-
derived cholesterol from lipoprotein particles followed 
by conversion into bile acids or its direct secretion into 
bile for eventual removal via  the feces. During the 
past couple of years, however, an additional important 
role of the intestine in maintenance of cholesterol 
homeostasis and regulation of plasma cholesterol levels 
has become apparent. Firstly, molecular mechanisms of 
cholesterol absorption have been elucidated and novel 
pharmacological compounds have been identified that 
interfere with the process and positively impact plasma 
cholesterol levels. Secondly, it is now evident that the 
intestine itself contributes to fecal neutral sterol loss 
as a cholesterol-secreting organ. Finally, very recent 
work has unequivocally demonstrated that the intestine 
contributes significantly to plasma HDL cholesterol levels. 
Thus, the intestine is a potential target for novel anti-
atherosclerotic treatment strategies that, in addition to 
interference with cholesterol absorption, modulate direct 
cholesterol excretion and plasma HDL cholesterol levels.
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INTRODUCTION
Maintenance of  cholesterol homeostasis in the body 
requires accurate metabolic cross-talk between processes 
that govern de novo cholesterol synthesis and turnover 
to adequately cope with (large) fluctuations in dietary 
cholesterol intake. Imbalance may lead to elevated plasma 
cholesterol levels and increased risk for cardiovascular 
diseases (CVD), the main cause of  death in Western 
society. A multitude of  epidemiological studies has shown 
the direct link between high plasma cholesterol, particularly 
of  low density lipoprotein (LDL) cholesterol, and risk 
for CVD. Treatment of  high plasma cholesterol has been 
focused for many years on interference with cholesterol 
synthesis by application of  statins. Statins are competitive 
inhibitors of  3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase, the rate-controlling enzyme in 
the cholesterol biosynthesis pathway[1]. Inhibition of  
cholesterol synthesis leads to reduced production of  very 
low density lipoprotein (VLDL) particles by the liver 
and particularly, up-regulation of  LDL receptor activity. 
Both processes contribute to lowering of  plasma LDL-
cholesterol levels[2]. Large clinical trials have established the 
beneficial effects of  statin treatment[3]. However, a relative 
large number of  hypercholesterolaemic patients do not 
adequately respond to statin therapy or remain at risk for 
CVD despite substantial reductions in LDL cholesterol[4,5]. 
Consequently, alternative strategies are currently actively 
pursued, particularly high density lipoprotein (HDL)-
raising approaches. These approaches are considered 
particularly promising, as data from epidemiological 
studies indicate that every 1 mg/dL increase in HDL 
cholesterol reduces CVD risk by 2%-3%[6,7]. In addition, 
strategies aiming at interference with intestinal cholesterol 
metabolism are gaining interest. A major development 
has been the introduction of  ezetimibe, a potent inhibitor 
of  intestinal cholesterol absorption that reduces plasma 
LDL-cholesterol by approximately 20% in mildly 
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hypercholesteroleamic patients[8]. Likewise, phytosterol/
stanol (esters)-enriched functional foods have successfully 
been introduced for lowering of  plasma cholesterol levels 
through interference with cholesterol absorption[9].

Recently obtained insights in intestinal cholesterol 
trafficking may open even more promising avenues for 
further developments. It appears that the intestine actively 
excretes cholesterol and thereby, significantly contributes 
to fecal sterol excretion. In addition, it appears that the 
intestine is an important source of  HDL-cholesterol, also 
known as “good” cholesterol. Thus, the intestine is an 
attractive target for new therapeutic strategies aimed to 
alter plasma cholesterol profiles and to reduce the risk for 
CVD. This review summarizes the important new findings 
regarding the mechanism(s) of  intestinal cholesterol 
absorption, with specific focus on newly identified 
transporter proteins, the novel concept of  direct intestinal 
cholesterol secretion and the role of  the intestine in HDL 
biogenesis.

SOME BASIC FEATURES OF CHOLESTEROL
Cholesterol is essential for mammalian life as a structural 
component of  cellular membranes, influencing membrane 
organization and thereby membrane properties[10]. 
Cholesterol is the precursor molecule of  steroid hormones 
and therefore, essential for metabolic control. In the 
liver, cholesterol can be converted into bile salts, which 
represents the major pathway for cholesterol metabolism 
in quantitative sense. Bile salts are amphipathic molecules 
that facilitate the absorption of  dietary cholesterol, fats 
and fat-soluble vitamins in the small intestine. Recently, it 
has become clear that bile salts are able to regulate gene 
expression through activation of  the nuclear receptor, 
the farnesoid X receptor (FXR)[11-13]. Cholesterol or 
more correctly, oxidized cholesterol acts as a ligand for 
the nuclear liver X receptor (LXR or NRH2 or NRH3) 
and directly contributes to regulation of  expression 
of  genes involved in cholesterol, lipid, and glucose 
metabolism. Accumulation of  free cholesterol rather than 
cholesterylesters, has been shown to induce apoptosis 
in macrophages by activating the Fas pathway[14]. Thus, 
cholesterol is a key component in cellular and whole-body 
physiology and cholesterol homeostasis is tightly regulated 
at a variety of  levels.

Body cholesterol derives from two sources, i.e., de novo 
biosynthesis and diet. Cholesterol is synthesized from 
two-carbon acetyl-CoA moieties. The rate-controlling 
enzyme in the synthetic pathway is HMG-CoA reductase, 
a highly regulated enzyme that catalyses the conversion of  
HMG-CoA into mevalonate. Cholesterol itself  regulates 
feed-back inhibition of  HMG-CoA reductase activity, as 
accumulation of  sterols in the endoplasmic reticulum (ER) 
membrane triggers HMG-CoA reductase to bind to Insig 
proteins, which leads to ubiquitination and degradation 
of  HMG-CoA reductase[15,16]. In addition, cholesterol 
regulates the gene expression of  HMG-CoA reductase 
indirectly by blocking the activation of  the transcription 
factor, sterol regulatory element-binding protein 2 
(SREBP2). Under low-cholesterol conditions, SREBP2 
in the ER binds to the SREBP cleavage activating protein 

(SCAP), which escorts SREBP2 to the Golgi. In the Golgi, 
SREBP2 is cleaved to generate its transcriptionally active 
form, which activates transcription of  the HMG-CoA 
reductase encoding gene. Upon accumulation of  sterols 
in the ER-membrane, binding of  cholesterol to the sterol-
sensing domain of  SCAP causes a conformation change, 
which induces binding of  SCAP to the ER anchor protein 
Insig, preventing exit of  SCAP-SREBP2 complexes to the 
Golgi thereby preventing activation of  SREBP2[17] .

The contribution of  the two sources to the total pool 
of  cholesterol differs between species and prevailing diet 
composition, but the total cholesterol pool is similar in 
rodents and humans when expressed on the basis of  
body weight[18]. Cholesterol synthesis in the liver is highly 
sensitive to the amount of  (dietary) cholesterol that reaches 
the liver from the intestine via the chylomicron-remnant 
pathway[19]. The Western-type human diet provides 
approximately 400 mg of  cholesterol per day. On top of  
this, the liver secretes approximately 1 gram of  cholesterol 
into bile per day[20]. Intestinal cholesterol absorption 
efficiency in humans is highly variable, ranging from 15% 
to 85% in healthy subjects[21]. After uptake by enterocytes, 
cholesterol is packed with triglycerides into chylomicrons 
and secreted into the lymph. In the circulation, the 
triglycerides are rapidly hydrolyzed and free fatty acids are 
taken up by the peripheral tissues. Cholesterol-enriched 
chylomicron remnants are subsequently cleared by the 
liver. Since chylomicron remnants, which contain most of  
the cholesterol that is being absorbed from the intestine, 
are rapidly taken up by the liver, interference with the 
absorption process directly influences hepatic cholesterol 
synthesis.

The healthy liver is perfectly equipped for handling 
large amounts of  cholesterol. When relatively large 
amounts of  cholesterol reach the liver, de novo synthesis 
and LDL uptake are rapidly down-regulated. In addition, 
the liver can dispose excess cholesterol molecules in 
several ways. A rapid response involves esterification 
of  cholesterol by Acyl CoA cholesterol acyltransferase 
(ACAT) 2 for storage as cholesterylesters in cytoplasmic 
lipid droplets. Cholesterylester can be hydrolyzed when 
necessary and this esterification/hydrolysis cycle provides 
cells with short-term buffering capacity for cholesterol. 
The liver, like the intestine, is able to produce and secrete 
VLDL particles, which consist of  a neutral lipid core 
composed of  cholesterylesters and triacylglycerols and 
a monolayer surface containing phospholipids, free 
cholesterol, and a variety of  apolipoproteins. Finally, 
cholesterol can be converted into bile acids by the 
hepatocytes, followed by their secretion into the bile 
along with significant amounts of  free cholesterol and 
phosphatidylcholine. In humans, cholesterol lost via the 
feces consists of  approximately 50% acidic (= bile acids) 
and 50% neutral sterols, emphasizing the point that 
conversion into bile acids represents a major pathway for 
cholesterol elimination.

Peripheral cells, e.g., macrophages, muscle and fat 
cells, are not able to form lipoproteins or to metabolize 
cholesterol extensively. Therefore, these cell types depend 
massively on efflux pathways for removal of  their excess 
cholesterol. It is generally assumed that HDL is the 
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primary acceptor for cholesterol efflux from cells. HDL 
cholesterol can subsequently be taken up by the liver for 
further processing. This pathway is generally referred to 
as the reverse cholesterol transport (RCT) pathway. The 
RCT pathway is particularly important for removal of  
excess cholesterol from macrophages, as accumulation 
of  esterified cholesterol in these cells is considered a 
primary step in the development of  atherosclerosis. 
Several epidemiological studies have shown that plasma 
HDL is an independent, negative risk factor for the 
development of  CVD. The common hypothesis is that 
high HDL cholesterol levels decrease the risk for CVD by 
removing the excess of  cholesterol from the macrophages 
and enhancing RCT. Recent work, however, indicates that 
this is an oversimplification and that current concepts 
of  RCT require re-definition[22]. In addition, the anti-
inflammatory and anti-oxidant features of  molecules rather 
than cholesterol associated with the HDL particles, like 
paraoxonase, platelet activating factor-acetylhydrolase or 
lysophospholipids, are becoming increasingly apparent[23-25].

T O W A R D S U N D E R S T A N D I N G O F 
INTESTINAL CHOLESTEROL ABSORPTION
In the past years, insight in regulation of  cholesterol 
absorption has greatly increased by identification of  
transporter proteins involved. In addition, unraveling of  
molecular regulation of  their expression is progressing. 
Yet, it should be realized that besides transporter proteins, 
the presence of  bile acids in the intestinal lumen is an 
essential prerequisite for absorption to occur[26]. Micellar 
solubilization of  (dietary/biliary) cholesterol is necessary 
for its absorption as exemplified by the fact that fractional 
cholesterol absorption is virtually zero in bile-diverted rats 
and Cyp7a1-deficient mice with a strongly diminished bile 
acid pool size[26].

Identification of novel proteins involved in cholesterol 
absorption
Cholesterol absorption has long been considered a merely 
passive process, despite the fact that the process is clearly 
selective since dietary cholesterol is absorbed with a relative 
high efficiency whereas structurally similar phytosterols are 
not. Several candidate intestinal cholesterol transporters 
have been proposed during the past couple of  years, e.g., 
SR-B1[27] and aminopeptidase N[28], but their role (if  any) 
has remained elusive so far. The recent identification of  
the Niemann-Pick C1 like 1 (NPC1L1) protein as a crucial 
molecule involved in cholesterol uptake by enterocytes[29] 
and of  Abcg5 and Abcg8 proteins as ( intest inal ) 
cholesterol efflux transporters[30-32], has provided definite 
proof  that cholesterol absorption is a protein-mediated, 
selective and active process.

The identification of  NPC1L1 is strongly facilitated 
by the discovery of  a powerful cholesterol absorption 
inhibitor named ezetimibe[33]. Ezetimibe and analogs 
comprise a new class of  sterol absorption inhibitors 
that reduce diet-induced hypercholesterolemia in mice, 
hamsters, rats, rabbits, dogs, monkeys and humans[8,33-37]. 
Using a bioinformatics approach, Altmann et al[29] have 

identified the NPC1L1 protein as a putative cholesterol 
transporter in intestinal cells. NPC1L1 is expressed in 
the intestine at the brush border membrane and Npc1l1- 
deficient mice show a 69% reduction in fractional 
cholesterol absorption. Importantly, treatment with 
ezetimibe could not further reduce fractional cholesterol 
absorption efficiency in these mice, indicating that 
NPC1L1 at least is involved in a pathway targeted by 
ezetimibe[29]. In support of  this, recent studies have shown 
that ezetimibe glucuronide, the active molecule, indeed 
binds to cells expressing NPC1L1[38]. Using intestinal 
brush border membrane (BBM) fractions, the authors 
showed that ezetimibe binds specifically to a single site in 
the brush border membrane and that this binding is lost 
in BBM fractions of  Npc1l1- deficient mice[38]. The exact 
cellular localization of  NPC1L1 is, however, still under 
debate. Iyer et al[39] showed that NPC1L1 is glycosylated 
and enriched in the BBM of  rat enterocytes. Davies  
et al[40] who were the first to identify NPC1L1 as a homolog 
of  the Niemann Pick type C (NPC) protein[40], showed 
in HepG2 cells that NPC1L1 is localized to a subcellular 
vesicular compartment but not in the plasma membrane. 
Using immortalized fibroblasts from wild-type and 
Npc1l1 knock-out mice these authors also showed that 
lack of  NPC1L1 activity causes dysregulation of  caveolin 
transport and localization, suggesting that the observed 
sterol transport defect may be an indirect result of  the 
inability of  Npc1l1-deficient cells to properly target and/or 
regulate cholesterol transport in the cells.

Another possible mechanism of  action of  ezetimibe 
has been proposed by Smart and colleagues[41]. These 
authors described the presence of  a stable complex 
of  annexin (ANX) 2 and caveolin (CAV) 1 located in 
enterocytes of  zebrafish and mouse. Disruption of  
this complex by morpholino antisense oligonucleotides 
in zebrafish prevented normal uptake of  cholesterol. 
Ezetimibe treatment of  zebrafish, C57Bl/6 mice fed a 
Western type diet and LDL receptor knock-out mice 
disrupted the ANX2-CAV1 complex, suggesting that 
ANX2 and CAV1 are components of  an intestinal sterol 
transport complex and targets for ezetimibe. Interestingly, 
C57BL/6 mice fed a standard diet did not show disruption 
of  the ANX2-CAV1 complex upon ezetimibe treatment, 
but did show decreased cholesterol absorption[41].  
Moreover, recent research using CAV1-deficient mice 
revealed that inhibition of  cholesterol absorption by 
ezetimibe did not require the presence of  CAV1[42]. In 
addition, rabbits did not appear to form the ANX2-CAV1 
complexes, yet, their cholesterol absorption efficiency 
was still inhibited by ezetimibe[43]. Collectively, these 
studies make a mode of  action in which ezetimibe acts by 
deregulating the ANX2-CAV1 complex less likely.

Other proteins critical in control of  sterol absorption 
are the ATP-binding cassette (ABC) transporter proteins, 
G5 and G8. ABCG5 and ABCG8 act as functional  
heterodimers[44] and are localized at the canalicular 
membrane of  hepatocytes and at the brush border 
membrane of  enterocytes. Mutations in the human 
genes encoding ABCG5 or ABCG8 have been shown 
to cause the inherited disease sitosterolemia[30-32], which 
is characterized by an accumulation of  plant sterols 
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(e.g., sitosterol, campesterol) in blood and tissues due 
to their enhanced intestinal absorption and decreased 
biliary removal. Thus, ABCG5/ABCG8 limit plant sterol 
absorption by effective efflux back into the intestinal 
lumen. Since ABCG5/ABCG8 also accommodate 
cholesterol, as evidenced from the fact that Abcg5/g8-
deficient mice show a strongly reduced biliary cholesterol 
secretion[45], this system also provides a means to control 
cholesterol absorption efficiency. Yet, Abcg5 and/or 
Abcg8 deficiency in mice clearly enhances phytosterol 
absorption[45-47], but reported effects on cholesterol 
absorption efficiency are minimal[45,46]. On the other hand, 
overexpression of  ABCG5 and ABCG8 in mice as well as 
pharmacological induction of  their expression did lead to a 
strongly decreased fractional cholesterol absorption[46,48,49], 
indicating that ABCG5 and ABCG8 play a role in control 
of  cholesterol absorption under certain conditions.

Other transporter proteins, like the scavenger receptor 
BI (SR-BI) and ABCA1 have been suggested to play a role 
in control of  cholesterol absorption. In the small intestine, 
SR-BI is localized both at the apical membrane and at 
the basolateral membrane of  enterocytes, with different 
expression levels along the length of  the small intestine[50]. 
It was reported that mice deficient in SR-B1, however, 
show only a small increase in fractional cholesterol 
absorption efficiency and a small decrease in fecal neutral 
sterol output[51]. On the other hand, intestine-specific 
overexpression of  SR-BI in mice did lead to increased 
cholesterol and triglyceride absorption in short-term 
absorption experiments[52], indicating that SR-BI might 
have a role in cholesterol absorption.

Although earlier reports[53] have suggested an apical 
localization, it is evident that ABCA1 is localized at the 
basolateral membranes of  chicken enterocytes[54] and 
human CaCo-2 cells[55]. The conflicting results yielded in 
studies assessing intestinal cholesterol absorption in mice 
lacking Abca1[56,57], suggest that the overall effect of  Abca1 
on absorption is very minor. However, as will be described 
later, this protein does have an important function in 
intestinal cholesterol metabolism.

After uptake, cholesterol is esterified by the enzyme 
ACAT 2 in the endoplasmic reticulum (ER) of  enterocytes. 
It was reported that Acat2-deficiency in mice on a low-
cholesterol chow diet did not affect cholesterol absorption 
efficiency, however, Acat2-deficient mice did show a 
clear reduction in cholesterol absorption upon feeding a 
high-fat/high-cholesterol diet and as a consequence, are 
resistant to diet-induced hypercholesterolemia[58]. Other 
proteins crucial for cholesterol absorption are those 
involved in chylomicron formation, like apolipoprotein 
B (apoB) and microsomal triglyceride transfer protein 
(MTP), and proteins involved in intracellular chylomicron 
trafficking such as SARA2. Mutations in the MTP gene 
result in abetalipoproteinemia, an inherited human disease 
characterized by extremely low plasma cholesterol and 
triglyceride levels and absence of  apoB-containing particles. 
Patients suffer from fat and cholesterol malabsorption 
and neurological diseases due to malabsorption of  lipid-
soluble vitamins. Mutations in SARA2 cause chylomicron 
retention disease or Anderson disease[59], both of  which 
are characterized by the inability to secrete chylomicrons 

causing severe fat malabsorption and accumulation of  
chylomicron-like particles in enterocytes. SARA2 belongs 
to the Sar1-ADP-ribosylation factor family of  small 
GTPases and is involved in intracellular trafficking of  
chylomicrons through the secretory pathway[59].

The major routes of  cholesterol in enterocytes and the 
proteins involved are depicted schematically in Figure 1. 

Regulation of cholesterol absorption
As indicated above, cholesterol can be taken up from the 
intestinal lumen by NPC1L1 and effluxed back into the 
lumen via ABCG5 and ABCG8. When both processes 
are active and present in the same cells, a classical futile 
cycle arises, enabling very sensitive regulation. Interference 
with this system has a great potential for reducing plasma 
cholesterol.

An established application hereof  is provided by 
ezetimibe that interferes with NPC1L1 activity[29,38]. 
Lowering of  NPC1L1 expression provides another 
potential means to reduce cholesterol absorption. 
Mechanisms involved in transcriptional control of  
NPC1L1 are beginning to be unraveled. The nuclear 
receptor peroxisome proliferator-activated receptor 
(PPAR) δ/β (NR1C2) has been shown to decrease 
cholesterol absorption, presumably by decreasing 
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NPC1L1 expression[60]. Activation of  PPARδ/β by the 
synthetic agonist GW610742 resulted in a 43% reduction 
of  cholesterol absorption in mice, which coincides with 
unchanged intestinal expression of  Abcg5 and Abcg8 but 
a decreased intestinal expression of  Npc1l1. Treatment 
of  human colon-derived CaCo-2 cells with ligands for 
PPARδ/β, but not for PPARγ or PPARα, decreased 
NPC1L1 expression as well [60]. Whether PPARδ/β 
regulates NPC1L1 directly or indirectly via transcriptional 
repression, is still under investigation.

The major regulator y pathways in cholesterol 
metabolism are controlled by the nuclear receptor liver X 
receptor (LXR). Two LXR isotypes have been identified in 
mammals, i.e., LXRα (NR1H3) which is mainly expressed 
in the liver, kidney, intestine, spleen and adrenals, and 
LXRβ (NR1H2) which is expressed ubiquitously. Natural 
ligands for both LXRs are oxysterols. After activation, 
LXR heterodimerizes with retinoid X receptor (RXR)[61,62]. 
Activated RXR/LXR heterodimers bind to specific LXR 
response elements (LXREs) in the promoter regions of  
their target genes and activate gene transcription. LXR 
target genes include many genes involved in cellular 
cholesterol efflux like ABCA1, ABCG1, ABCG5, and 
ABCG8[53,63,64], genes involved in bile acid synthesis 
[cholesterol-7α -hydroxylase (Cyp7a1)] in rodent models and 
genes involved in lipogenesis like sterol regulatory element-
binding protein (SREBP) 1C, fatty acid synthase (FAS) 
and acetyl-CoA carboxylase (ACC). Global LXR activation 
by synthetic agonists therefore has a plethora of  effects 
including elevated HDL levels, hypertriglyceridemia, 
hepatic steatosis, increased biliary cholesterol excretion, 
reduced intestinal cholesterol absorption efficiency 
and increased neutral sterol loss via the feces[65,66]. The 
decreased intestinal cholesterol absorption is primarily 
due to increased cholesterol efflux of  cholesterol towards 
the intestinal lumen due to increased Abcg5 and Abcg8 
expression, as fractional cholesterol absorption was 
reduced upon LXR activation in wild-type mice but 
remained unaltered in Abcg5/g8-deficient mice[49] and 
Abcg5-deficient mice[46] under these conditions. Other 
mechanisms, such as reduced intestinal Npc1l1 expression 
after LXR activation contribute to reduced cholesterol 
absorption, as recently shown in ApoE2-knock-out mice[67].

Dietary phytosterols and phytostanols and their esters 
have been introduced in functional foods to suppress 
intestinal cholesterol absorption and hence to reduce 
the risk for CVD[9]. Phytosterols and stanols are thought 
to decrease cholesterol absorption by competing with 
cholesterol for incorporation into mixed micelles in 
the intestinal lumen[68]. However, several recent studies 
suggested additional mechanisms involving alterations 
of  intestinal gene expression. Igel and colleagues[69] 
showed for the first time that phytosterols and stanols 
are actually taken up by the enterocytes and subsequently 
re-secreted into the gut lumen, most probably through 
the action of  Abcg5/Abcg8 transporters. This finding 
indicated that phytosterols and stanols, in addition 
to modes of  action within the intestinal lumen, exert 
metabolic actions from inside the enterocytes. Moreover, 
dietary phytostanol consumption (2.5 g) once a day 
reduces LDL cholesterol as effective as consumption 

of  2.5 g phytostanols ingested in three daily portions[70], 
suggesting that luminal concentrations may not be the 
key to the control of  metabolic actions. The identification 
of  a phytosterol-derived agonist for the nuclear receptor 
LXR[71] has led to the proposal that phytosterols and 
stanols decrease cholesterol absorption via activation of  
intestinal LXR. In vitro studies in CaCo-2 cells indicated 
that phytostanols indeed are able to induce the expression 
of  ABCA1, an established LXR target gene[72]. Recent 
in vivo studies, however, showed that dietary phytosterols 
and phytostanols decrease cholesterol absorption without 
activating LXR in rodent models.  Field et al[73] showed that 
addition of  2% phytostanols to a chow diet do not affect 
intestinal expression of  ABC sterol transporters and Npc1l1 
in male golden Syrian hamsters. Likewise, Calpe-Berdien 
et al[74] showed very recently that decreased cholesterol 
absorption upon addition of  2% phytosterol to a Western 
type diet is not associated with transcriptional changes in 
Abca1, Abcg5, Abcg8 or Npc1l1 in C57BL/6J, ApoE-/- and 
LDLr-/- mice. Plösch and colleagues[66] have shown similar 
results using 0.5% phytosterol or phytostanol in a semi-
synthetic diet containing 0.2% cholesterol in C57BL mice. 
Additionally, these authors showed that the plant sterol/
stanol-induced reduction of  cholesterol absorption in mice 
is not influenced by Abcg5-deficiency (J. Nutr., in press), 
indicating that intra-luminal events are most relevant for 
the inhibitory effect of  these dietary compounds.

The modes of  action of  the different cholesterol 
absorption decreasing compounds are schematically 
depicted in Figure 2. 

NOVEL ROLE OF THE INTESTINE IN 
REVERSE CHOLESTEROL TRANSPORT
It is clear that the intestine plays a major role in cholesterol 
homeostasis as a cholesterol absorbing organ. However, 
recent studies revealed that the intestine also acts as an 
excretory organ in the reverse cholesterol transport (RCT) 
pathway[66,75]. This pathway is classically defined as the 
HDL-mediated flux of  cholesterol from peripheral cells 
to the liver, followed by its secretion into bile and disposal 
via the feces. RCT is extremely important in prevention of  
CVD as it removes excess cholesterol from macrophages 
present in the ar terial vessel wall . The amount of  
cholesterol secreted into bile is substantial. As only part of  
it is absorbed by the intestine, it contributes significantly 
to cholesterol loss via the feces. However, a novel pathway 
that contributes to fecal cholesterol loss has recently been 
established.

Already in the nineteen-sixties, it was suggested that 
non-dietary cholesterol present in the intestinal lumen 
consists of  a fraction secreted by the liver into the bile and a 
second fraction directly secreted by the intestine. Measuring 
dietary cholesterol, cholesterol absorption and cholesterol 
loss via the feces in patients with complete obstruction 
of  common bile duct due to carcinoma of  the head of  
the pancreas unequivocally established the presence of  
intestinally secreted cholesterol in the feces[76]. By intestinal 
perfusion studies in humans, Simmonds et al[77] have tried 
to quantify this route. In a triple lumen tube system, 
perfusion studies were carried out using micellar solutions 
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with radio-labeled cholesterol. Decrease in specific activity 
was interpreted as secretion of  endogenous cholesterol 
from the intestine and the contribution of  endogenously 
secreted cholesterol from the intestine was estimated to be 
about 44% of  total fecal output, but direct proof  for the 
existence of  this pathway could not be provided[77].

Since these early experiments, the focus of  research 
has shifted more towards the liver. Biliary cholesterol and 
bile acid secretions are believed to represent the major 
pathways for removal of  excess cholesterol. However, 
recent calculations of  cholesterol fluxes in different 
mouse models again emphasize the relevance of  intestinal 
cholesterol secretion. A striking example is provided by 
the Cyp7a1-deficient mouse[78]. Cyp7a1 is important for 
converting cholesterol into bile acids and catalyzing the 
formation of  7α-hydroxycholesterol[79]. As Cyp7a1 is rate-
controlling in this pathway, it is regulated in a complex 
manner involving multiple nuclear receptors. Cyp7a1-
deficiency in mice leads to significantly decreased fecal 
bile acid loss and bile acid pool size. Surprisingly, fecal 
neutral sterol output is increased two times in Cyp7a1-/- 
mice, although biliary cholesterol concentration remains 
unaffected[78]. As dietary intake and cholesterol absorption 
are known, it can be calculated from these data that direct 
intestinal cholesterol secretion contributes at least 30% to 
the increased fecal neutral sterol output.

Plösch and colleagues[66] showed that the pathway of  
intestinal cholesterol secretion can be induced in mice by 
treatment with the synthetic LXR agonist T0901317. In 
C57BL/6 mice, efflux of  cholesterol from the intestinal 
epithelium into the lumen, calculated from the difference 
between dietary and biliary input minus fecal output, 
contributed up to 36% of  the total fecal cholesterol loss. 
Pharmacological LXR activation in these mice tripled the 
intestinal cholesterol secretion, showing that this represents 
a valid, inducible pathway for removal of  cholesterol in 
mice.

To further characterize this route, Kruit et al[75] studied 
the effects of  LXR activation by the synthetic agonist 
GW3965 in wild-type and Mdr2-deficient mice. Mdr2-Pgp 
(or Abcb4 according to the new nomenclature) mediates 
the ATP-dependent translocation of  phospholipids at the 
canalicular membrane of  hepatocytes. Consequently, Mdr2-
deficiency leads to the inability to secrete phospholipids 
into the bile. Due to the tight coupling of  phospholipid 
and cholesterol secretion, these mice also show a severely 
impaired biliary cholesterol secretion[80,81]. Despite the 
impaired biliary cholesterol secretion, chow-fed Mdr2-/- 
mice showed a similar fecal neutral sterols loss as wild-type 
mice, suggesting that the intestine indeed contributes to 
the fecal neutral sterol loss. LXR activation increased fecal 
neutral sterol output to a similar extent in Mdr2-/- and wild-
type mice, although biliary cholesterol secretion remained 
impaired in Mdr2-/- mice but increased in wild-type mice. 
These data show that the increased fecal cholesterol loss 
upon LXR activation is independent of  biliary cholesterol 
secretion. Although fractional cholesterol absorption 
decreased to a greater extent in Mdr2-/- mice compared to 
wild-type mice upon LXR activation, it could be calculated 
that at least 57% of  fecal cholesterol originates from 
intestinal secretion in Mdr2-/- mice[75].

The most intriguing question, namely the origin of  
intestine-derived cholesterol has remained unanswered 
so far. Part of  the cholesterol could, in theory, originate 
from enhanced sloughing of  intestinal cells or reflect a 
consequence of  increased intestinal de novo cholesterol 
synthesis. Indeed, increased intestinal cholesterol synthesis 
has been found in Cyp7a1-/- mice[78]. Upon LXR activation, 
however, intestinal HMGCoA reductase gene expression 
remained unchanged[66,75], indicative for unchanged 
cholesterol synthesis, while fecal sterol loss increased 3 
times. Staining for the proliferation marker Ki-67 has 
revealed no signs of  increased intestinal cell proliferation 
upon LXR act ivat ion , making the poss ib i l i ty of  
enhanced cell shedding less likely[75]. Using intravenously 
injected radiolabeled cholesterol as a marker, Kruit and 
colleagues[75] additionally showed that fecal loss of  plasma-
derived cholesterol is 1.7-fold higher upon LXR activation 
in Mdr2-/- mice, suggesting that the intestine plays an 
important role independently of  biliary cholesterol in 
cholesterol transport from plasma to the feces.

Further research should be done to identify the 
putative proteins involved in this pathway. The sterol efflux 
proteins, ABCG5/ABCG8, seem to be good candidates, 
as increased fecal neutral sterol output upon LXR 
activation requires the presence of  Abcg5 and Abcg8[49] 
and transgenic mice overexpressing human ABCG5 
and ABCG8 (hG5G8Tg) showed significantly-increased 
fecal neutral sterol loss[48]. However, deficiency of  Abcg5 
and/or Abcg8 leads to only mild[45,49] or no[46] decrease in 
fecal neutral sterol loss and the increased fecal neutral 
sterol excretion loss in the hG5G8Tg mice was inhibited 
in hG5G8Tg mice lacking Mdr2 (Mdr2-/-hG5G8Tg mice), 

Figure 2  Schematic overview of the regulation of cholesterol transport in 
enterocytes. Plant sterols, ezetimibe PPARd/b agonists and LXR agonists all 
reduce cholesterol absorption through different mechanisms. Plant sterols interfere 
with micellisation of cholesterol. Ezetimibe binds to NPC1L1 and thereby interferes 
with the cholesterol uptake. Agonists for PPARd/b reduce expression of NPC1L1 
and thereby the amount of NPC1L1 protein. Agonists for LXR increase the 
expression of ABCG5 and ABCG8 and thereby enhance the efflux of cholesterol 
towards the intestinal lumen. LXR: Liver X Receptor; PPARd/b: Peroxisome 
proliferators-activated receptor d/b.
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suggesting that biliary cholesterol secretion is responsible 
for the increased fecal sterol loss in hG5G8Tg mice[82]. 
However, hG5G8Tg mice showed a high expression 
of  human ABCG5 and ABCG8 in the liver but their 
expression in the intestine was far less pronounced[48]. 
Thus, the question whether intestinal ABCG5 and ABCG8 
are important for intestinal cholesterol efflux under normal 
conditions still remains unanswered.

Virtually nothing is known about transporter systems 
involved in uptake of  plasma cholesterol by enterocytes 
prior to its excretion into the intestinal lumen. LXR 
activation can upregulate a number of  cholesterol 
transporters, of  which only SR-BI is known to be involved 
in cholesterol uptake, at least in the liver. Chow-fed 
SR-B1-/- mice show only a small decrease in fecal neutral 
sterol loss, suggesting a relatively small contribution 
of  intestinal SR-B1 to the control of  fecal cholesterol 
excretion. However, basolaterally localized SR-B1 in 
enterocytes could theoretically play a role in cholesterol. 
When free cholesterol in enterocytes decreases due to 
activation of  ABCG5 and ABCG8, uptake of  the sterol 
from the plasma compartment may become energetically 
favorable.

INTESTINAL CONTRIBUTION TO HDL
BIOGENESIS
The intestine along with the liver, has been known for 
many years to synthesize and secrete apolipoprotein A-I 
(ApoA-I), the principal apolipoprotein of  HDL. Already in 
1977, Glickman and Green[83] have described the synthesis 
of  ApoA-I by the intestine of  rats. One year later, Wu 
and Windmueller[84] estimated that intestinally synthesized 
ApoA-I contributes up to 56% of  total plasma ApoA-I 
in rats. A potential role for the intestine in HDL particle 
assembly was initially suggested from experiments in 
hepatectomized dogs and studies describing the presence 
of  HDL in mesenteric lymph[86-89]. More recently, in vitro 
studies using the human colon carcinoma cell line CaCo-2 
showed that basolateral efflux of  cholesterol occurs in high 
density ApoB-free, ApoA-I containing lipoproteins[90,91].

In addition to ApoA-I, ATP-binding cassette (ABC) 
transporter 1 (ABCA1) is of  crucial importance for HDL 
formation. Three different groups have independently 
reported mutations of  the ABCA1 gene as the cause of  
Tangier disease[92-94]. Tangier disease is characterized by 
almost complete absence of  plasma HDL, abnormal 
accumulation of  cholesteryl esters in reticuloendothelial 
cells of  many tissues and early incidence of  atherosclerosis. 
No abnormalities in the ApoA-I protein[95] or in protein 
synthesis have been found. These findings and the 
subsequent generation of  Abca1-/- mice which also lack 
plasma HDL[57], underscore that ABCA1 is crucial for 
HDL formation.

ABCA1 performs the rate-controlling step in HDL 
formation by mediating the efflux of  cholesterol and 
phospholipids to nascent ApoA-I. ABCA1 is widely 
expressed throughout the body[96], however not all tissues 
are important for the regulation of  plasma HDL. Bone 
marrow transplantation studies in which bone marrow of  
wild-type and Abca1-/- mice was transplanted into Abca1-/- 

or wild-type mice, respectively, revealed that macrophage 
expression of  Abca1 contributes only minimally to plasma 
HDL[97]. Macrophage ABCA1 is, however, important for 
the development of  atherosclerosis because deficiency 
of  Abca1 in bone marrow-derived cells increased the 
susceptibility to atherosclerosis in sensitive strains of 
mice[98,99]. Conversely, overexpression of  ABCA1 in 
bone marrow-derived cells inhibited the progression of  
atherosclerotic lesions in such mice[100].

As both the liver and intestine synthesize ApoA-I 
and express significant levels of  ABCA1, they are 
prone to contribute to plasma HDL levels. Indeed, 
mice overexpressing human ABCA1 in the liver and 
macrophages showed increased plasma HDL levels. Since 
macrophage ABCA1 can only minimally increase plasma 
HDL[97], this indicates that plasma HDL is controlled by 
hepatic ABCA1. A similar conclusion can be drawn from 
studies employing adenoviral Abca1 transfer to mouse liver 
in vivo[101,102]. Basso et al showed that treatment of  C57BL/6 
mice with adenovirus containing rABCA1-GFP resulted in 
a 2-fold increase in plasma HDL levels. Wellington et al[102] 
treated mice with increasing doses of  ABCA1-containing 
adenoviruses, resulting in a dose-dependent increase in 
hepatic ABCA1 protein expression. HDL cholesterol was 
increased in mice injected with low doses of  adABCA1, 
but surprisingly higher doses did not further raise plasma 
HDL levels[102]. Liver-specific Abca1 knockdown by 50% 
in mice using siRNA resulted in a 40% decrease of  plasma 
HDL cholesterol levels, indicating that hepatic Abca1 
expression correlates with plasma HDL levels in mice[103].

The creation of  l iver-specific Abca1 knock-out  
(Abca1-L/-L) mice definitively showed that the liver is 
the major contributor to plasma HDL as liver-specific 
deficiency of  Abca1 results in a decrease of  plasma HDL 
cholesterol levels by 80%. Further analysis revealed that in 
vivo catabolism of  HDL ApoA-I isolated from wild-type 
mice was 2-fold higher in Abca1-L/-L mice due to a 2-fold 
higher rate of  catabolism of  ApoA-I in the kidneys[104]. 
These data unequivocally demonstrate that hepatic Abca1 is 
responsible for the maintenance of  the circulating plasma 
HDL by direct lipidation of  lipid-poor ApoA-1 containing 
particles. These data also show that, although the liver is 
the major organ responsible for HDL levels, additional 
extra-hepatic sites also contribute to HDL biogenesis.

To address the contribution of  intestinal Abca1 
to plasma HDL, intestine-specific Abca1 knockout  
(Abca1-i/-i) mice were created using the Cre/Lox system 
with the Cre transgene under the control of  the villin 
promoter[105]. Brunham et al showed that intestinal Abca1 
deficiency resulted in a 30% decrease in plasma HDL 
cholesterol levels, indicating that intestinal Abca1 is 
critically involved in HDL biogenesis. Combined deletion 
of  both hepatic and intestinal Abca1 resulted in a 90% 
decrease of  plasma HDL, which was similar to the level 
found in the whole-body Abca1-/- mice, proving that 
the liver and intestine are really the two major sites for 
HDL biogenesis. Absence of  intestinal Abca1 resulted 
in decreased transport of  dietary cholesterol into plasma 
HDL, but total intestinal cholesterol absorption was not 
affected. Surprisingly, lymphatic HDL content was hardly 
affected in Abca1-i/-i mice. In contrast, HDL was virtually 
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absent in lymph of  Abca1-L/-L mice, indicating that lymph 
HDL originates from the plasma compartment rather 
than directly from the intestine[105]. This finding has 
solved a long-lasting debate on the origin of  lymphatic 
HDL[83,86-88,106,107]. It would be interesting to see whether 
lack of  intestinal Abca1 influences the development of  
atherosclerosis.

Modulation of plasma HDL by intestine- specific LXR 
activation
As discussed above, LXR is a major regulator of  
cholesterol metabolism and LXR agonists are considered 
promising candidates for novel treatment strategies against 
atherosclerosis. Indeed, treatment of  ApoE-/- and LDLr-/- 
mice, both are sensitive to atherosclerosis development, 
with synthetic LXR agonists inhibited the development 
of  atherosclerosis[108,109]. However, general LXR activation 
also leads to increased lipogenesis, hypertriglyceridemia 
and hepatic steatosis in rodents[65] and is therefore not 
recommended for its use in humans. Specific LXR 
activation in the intestine may be beneficial in this respect, 
as it can theoretically lead to decreased cholesterol 
absorption, increased intestinal cholesterol excretion 
and plasma HDL levels. The preliminary data from our 
laboratory, using an intestine-specific LXR agonist in 
Wistar rats, showed that intestine-specific LXR activation 
indeed has the desired effect in this model without adverse 
effects on triglyceride metabolism.

CONCLUSION
During the past 5 years, a number of  developments have 
greatly contributed to appreciation of  the important role 
of  the intestine in maintenance of  cholesterol homeostasis 
(Figure 3). The most important developments include 
the identification of  transporter proteins involved in 
uptake and secretion of  cholesterol by enterocytes, the 
establishment of  the direct cholesterol excretion pathway 

of  the intestine, and the definition of  the role of  the 
intestine in HDL biogenesis.

A wealth of  data indicate that the intestine should be 
considered a promising target for development of  anti-
atherosclerotic drugs that, in addition to interference with 
cholesterol absorption, may directly modulate cholesterol 
excretion and plasma HDL cholesterol levels.
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