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Abstract
AIM: To study the effects of IκBα and its mutants 
(IκBαM, IκBα243N, IκBαM244C) on NF-κB, p53 and 
their downstream target genes. The relationship of NF-
κB, p53, and IκBα was further discussed.

METHODS: pECFP-IκBα, pECFP-IκBαM (amino acides 
1-317, Ser32, 36A), pECFP-IκBα243N (amino acides 
1-243), pECFP-IκBα244C (amino acides 244-317), 
pEYFP-p65 and pp53-DsRed were constructed and 
transfected to ASTC-α-1 cells. Cells were transfected 
with pECFP-C1 as a control. 30 h after the transfection, 
location patterns of NF-κB, p53 and IκBα (IκBαM, 
IκBα243N, IκBα244C) were observed by a laser scanning 
microscope (LSM510/ConfoCor2, Zeiss). RNA extraction 
and reverse transcription were performed in cells 
transfected or co-transfected with different plasmids. 
Effects of IκBα and its mutants on the transpiration level 
of NF-κB, NF-κB downstream target gene TNF-α, p53 
and p53 downstream target gene Bax were observed 
by real time QT-PCR. In all experiments β-actin was 
reference. Results are expressed as the target/reference 
ratio of the sample divided by the target/reference ratio 
of the control. Different transfected cells were incubated 
with CCK-8 for 2 h in the incubator. Then the absorbance 
at 450 nm was measured by using a microplate reader.

RESULTS: Cells that were transfected with p53-
DsRed revealed a predominant nuclear localization. 
YFP-p65 mainly existed in the cytoplasm. Cells were 
transfected with CFP-IκBα, CFP-IκBαM, and CFP-
IκBα243N respectively and revealed a predominant 
cytosolic localization. However, cells transfected of CFP-
IκBα244C revealed a predominant nuclear localization. 
The mRNA levels of p65, TNF-α, p53 and Bax in CFP-

IκBα transfected cells did not change significantly, 
while in YFP-p65/CFP-IκBα co-transfected cells, IκBα 
decreased the transcription of p65 downstream gene 
TNF-α (2.24 ± 0.503) compared with the YFP-p65/
CFP-C1 co-transfected cells (5.08 ± 0.891) (P  < 0.05). 
Phosphorylation defective IκBα (IκBαM) decreased 
the transcription levels of all the four genes compared 
with the control (P  < 0.05). The N terminus of IκBα 
(IκBα243N) increased the transcription of NF-κB (1.84 
± 0.176) and TNF-α (1.51 ± 0.203) a little bit. However, 
the C terminus of IκBα (IκBα244C) increased the 
transcription of NF-κB, TNF-α, p53 and Bax significantly 
(8.29 ± 1.662, 14.16 ± 2.121, 10.2 ± 0.621, 3.72 ± 
0.346) (P  < 0.05). The CCK-8 experiment also showed 
that IκBα244C and p53 synergistically mediate apoptosis.

CONCLUSIONS: IκBα and i ts mutants (IκBαM, 
IκBα243N, IκBαM244C) have different effects on NF-
κB and p53 signaling pathways, according to their 
different structures. IκBαM bounds with NF-κB and 
p53 in cytoplasm steadily, and inhibits both of the two 
signaling pathways. p53 and IκBα244C may be co-factor 
in inducing apoptosis. The C terminal of IκBα enhanced 
cell death, which suggests that it may be a pro-apoptotic 
protein existed in cells.
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INTRODUCTION
Nuclear factor κB (NF-κB) is a family of  pleiotropic 
transcription factors[1]. It regulates the transcription of  a 
large number of  genes that play key roles in embryonic 
development, lymphoid differentiation, apoptosis, 
and immune and inflammatory responses[2-5] .They are 
characterized by the presence of  so called Rel homology 
domain, RHD, with a length of  about 300 amino acids. 
Their active DNA-binding forms are homodimeric or 
heterodimeric complexes consisting of  combinations of  
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these protein family members. The most abundant forms 
of  NF-κB are p65/p50 hetero-dimers and p65/p65 
homo-dimers[6-7]. In most cells, NF-κB complexes are 
normally localized to the cytosol as inactive complexes 
with inhibitory IκBα protein[8]. Activation of  NF-κB in 
response to stimuli involves activation of  IκB kinase (IKK), 
phosphorylation and degradation of  IκBα at two serine 
residues (Ser32 and Ser36), followed by rapid ubiquitin-
dependent degradation by the 26S proteosome and release 
of  activated NF-κB[9-11]. Activated NF-κB then translocates 
to the nucleus, where it binds to its target DNA sequence 
and activates the transcription of  a vast number and wide 
range of  genes[12-15].
    RelA, the p65 subunite of  NF-κB is constitutively 
activated in certain neoplastic cells, such as pancreatic 
cancer cells and acute leukemia cells[16-19]. Approaches to 
suppress NF-κB activation in malignant cells have been 
considered as a potential treatment for neoplasia. Studies 
show that inhibition of  NF-κB activation by expression 
of  a dominant-negative mutant form IκBα (Ser 32, 
36A) (IκBαM) completely inhibited liver metastasis of  a 
pancreatic cancer cell line, and reduced angiogenesis in an 
ovarian cancer cell line[20-22]. 
    Recent studies have shown that IκBα is found to 
inhibit p53 tumor suppressor protein by binding p53 to 
form a cytoplasmic p53· IκBα complex, thus it prevents 
p53 nuclear translocation[23]. On the basis of  this data, we 
hypothesized that when IκBα or its mutants were used 
to mediate activities of  NF-κB in cells, they might affect 
the p53 signaling pathway simultaneously. In this study, 
pECFP-IκBα and its three mutants, pECFP-IκBαM 
(amino acides 1-317, S32, 36A), pECFP-IκBα243N (N 
terminus of  IκBα, amino acides 1-243) and pECFP-
IκBα244C (C terminus of  IκBα, amino acides 244-317), 
were constructed. The location patterns of  NF-κB, p53 
and IκBα (IκBαM, IκBα243N, IκBα244C) were observed 
by laser confocal scanning microscopy. The effects of  
IκBα (IκBαM, IκBα243N, IκBα244C) on p53 and NF-
κB, as well as the downstream genes of  these two signaling 
pathways, were studied with real time QT-PCR. The 
relationship of  NF-κB, p53, and IκBα activities is further 
discussed.

MATERIALS AND METHODS
Materials
Mammalian cell expression vector pEYFP-p65 was 
provided by Professor Johannes A. Schmid[24]. A human 
full-length IκBα cDNA was found in the universal 
GenBank database (gene number: AY033600) and was 
obtained from Funeng company (vector: RB01-IκBα). 
pDsRed-Mit vector was provided by Dr. Fuminori 
Tsuruta[25]. Wild-type p53 cDNA was provided by Dr. 
Ye KH (Jinan University, Guangzhou). Dulbecco’s 
modified Eagle medium (DMEM) was purchased from 
GIBCO (Grand Island, NY). The RNA isolation kit and 
LightCycler FastStart DNA Master SYBR GreenⅠkit 
were obtained from Roche. M-MLV Reverse Transcriptase 
was provided by BBI. LipofectamineTM Reagent was 
purchased from Invitrogen. Cell Counting Kit-8 (CCK-8) 

was purchased from Dojindo Laboratories (Kumamoto, 
Japan).

Construction of CFP-IκBα, YFP-p65 and p53-DsRed 
variants
Four expression constructs were constructed with the 
pECFP-C1 vector (cloning site, EcoRI and BamHI; 
Clontech): (1) IκBα, the entire coding region (amino 
acides 1-317)(primers: FW3/RV1); (2) IκBαM, dominant 
negative IκBα construct made by altering Ser-32 to Ala-32 
and Ser-36 to Ala-36, (amino acides 1-317, Ser32A,Ser36A) 
using primers FW1/RV1, FW2/RV1 and FW3/RV1 in 
turn; (3) IκBα243N, the N-terminal ankyrin region (amino 
acides 1-243 ) (primers: FW3/RV2); (4) IκBα244C, the 
C-terminal domain (amino acids 244-317) (primers: FW4/
RV1). Wild-type p53 cDNA were cloned into the NheI and 
BamHI sides of  pDsRed-Mit vector (primers: p53F/p53R). 
The synthetic primers used for making these constructs by 
PCR are FW1: 5’-gag cgg cta ctg gac gac cgc cac gac gcc 
ggc ctg gac gcc atg aaa gac gag gag ta-3’, FW2: 5’-g gag tgg 
gcc atg gag ggc ccc cgc gac ggg ctg aag aag gag cgg cta ctg 
gac gac c-3’, FW3: 5’-c cgg aat tca ttc cag gcg gcc gag cgc 
ccc cag gag tgg gcc atg gag ggc c-3’, FW4: 5’-gg aat tct aac 
aga gtt acc tac cag ggc ta-3’, RV1: 5’-cgc gga tcc tca taa cgt 
cag acg ctg gcc tcc aaa cac aca gtc -3’,RV2: 5’-cg gga tcc tta 
tca atg gtg atg gtg atg gtg gac atc agc ccc aca ctt-3’, p53F: 
5’-c tag cta gcg gaa gct tcc acc atg gag gag ccg cag tca 
gat-3’, p53R: 5’- c ggg atc ccg gtc tga gtc agg ccc ttc tgt-3’. 
All constructs were verified by restriction and sequence 
analysis.

Cell culture and transfections
Cell line, ASTC-α-1, was cultured in DMEM medium, 
supplemented with HEPES and 100 mL/L new born 
calf  serum, and maintained at 37℃ at an atmosphere of  
5% CO2. Transient transfections were performed using 
the LipofectamineTM Reagent (Invitrogen). Cells were 
transfected with CFP-C1 as a control. Microscopy of  
cells, RNA extraction and RT were performed 30 h after 
transfection.

Laser scanning microscopy
YFP-p65, p53-DsRed and CFP-IκBα were visualized by 
using a laser scanning microscope (LSM510/ConfoCor2, 
Zeiss, Jena, Germany) with a 37℃ stage incubator. The 
distribution of  YFP-p65 was observed by 514nm laser 
(HFT458/514, LP530). Cells transfected with p53-DsRed 
were observed with a 543nm laser and fluorescent images 
were collected with a 560 nm long-pass filter (HFT700/543, 
NFT545, LP560nm). CFP-IκBα, CFP-IκBαM, CFP-
IκBα243N and CFP-IκBα243C were observed with an 
Argon-ion laser with 458 nm output and a band pass 
barrier filter (HFT458 nm, NFT545 nm, BP470-500 nm).

RNA extraction and RT
Total RNA was isolated by using a high purity RNA 
isolation kit (Roche) according to the manufacturer’s 
instructions. Total RNA (1 μg) was reverse transcribed with 
20 U of  M-MLV Reverse Transcriptase, using Oligo(dT)18 
primers (BBI) according to the manufacturer’s instructions.



LightCycler real-time QT-PCR
cDNA amplification by QT-PCR was carried out with 
the LightCycler FastStart DNA Master SYBR GreenⅠ 
kit (Roche). For QT-PCR, a mastermix of  the following 
reaction components was prepared: 0.8 µL MgCl2 stock 
solution, (25 mmol/L), 2 µL LightCycler FastStart DNA 
Master SYBR Green I, 2 µL (0.3 µmol/L) each of  the 
primers, 11.2 µL water. LightCycler mastermix was filled 
in the glass capillaries and 2 µL of  total cDNA temple 
was added. PCR primers were target gene 1 (p65: forward 
primer, 5’- ggctataactcgccta gtga -3’; reverse 
primer, 5’- cgaag gagctgatctgactca -3’), gene 
2 (NF-κB downstream gene, TNF-α[26]: forward primer, 5’
- cagagg gaagagttccccag -3’; reverse primer, 
5’- ccttggtctggtagga gacg -3’), gene 3 (p53: 
forward primer, 5’-AGGTTGGCTCTGACTGTA-3’; 
reverse primer, 5’- gcagctcgtggtgaggctc -3’), 
and gene 4 (p53 downstream gene, Bax[27]: forward primer, 
5’- ctgaca tgttttc tgacggc -3’; reverse primer, 
5’-tcagcccatcttcttccaga-3’). In all experiments, 
β-actin was the reference (forward primer, 5’-gaaat
cgtgcgtgacattaa-3’; reverse primer, 5’- gga 
ctcgtcatactcctg-3’). 
    The following LightCycler experimental run protocol 
was used: denaturation program (95℃ for 10 min), 
amplification and quantification program repeated 40 
times (95℃ for 10 s, 55℃ for 5 s, 72℃ for 10 s), melting 
curve program (65-95℃ with a heating rate of  0.1℃ 
per second and a continuous fluorescence measurement) 
and finally a cooling step to 40℃. For the mathematical 
model it is necessary to determine the crossing points (CP) 
for each transcript. CP is defined as the point at which 
the fluorescence rises appreciably above the background 
fluorescence. The ‘Fit Point Method’ must be performed, 
at which CP will be measured at a constant fluorescence 
level[28]. Results are expressed as the target/reference ratio 
of  the sample divided by the target/reference ratio of  the 
control.

CCK-8 experiment
Different transfected group cells were cultured in 96-well 
microplates for 48 h. CCK-8 was added to the cells and 
incubated for 2 h. OD450, the absorbance value at 450 
nm, was read with a microplate reader (DG5032, Hua 
dong, Nanjing, China). The value is directly proportional 

to the number of  viable cells in a culture medium and the 
cell proliferation.

Statistical analysis
Statistical results were obtained using the statistical 
software SPSS. The significant difference tests were based 
on analysis of  variance with a single factor and two sample 
t-tests were performed.

RESULTS
Localization patterns of p53-DsRed, YFP-p65, CFP-IκBα  
and its mutants in living cells
Cells transfected with p53-DsRed revealed a predominant 
nuclear localization. YFP-p65 mainly existed in the 
cytoplasm (Figure 1). Cells were transfected with CFP-
IκBα, CFP-IκBαM and CFP-IκBα243N respectively, and 
revealed a predominant cytosolic localization, while cells 
transfected with CFP-IκBα244C revealed a predominant 
nuclear localization of  CFP-IκBα244C (Figure 2). 

Standard curve for real time QT-PCR
The concentration of  the standards covers the expected 
concentration range of  all samples. Dilution folds of  the 
cDNA template for the standard curve run were 10ul to 
3.20E-3 µL (Figures 3 and 4). The standard curves were 
analyzed with Real Quant Software to create a coefficient 
file. The coefficient file was used later in the relative 
quantification analysis. 

Effects of IκBα  and its mutants on the NF-κB signaling 
pathway 
Results are expressed as the target/reference ratio of  

YFP-p65			        p53-DsRed

Figure 1  Microscopy of YFP-p65 and p53-DsRed in living cells.

CFP-IκBα	 		   CFP-IκBαM

CFP-IκBα243N		   CFP-IκBα244C

Figure 2  Localization patterns of CFP-IκBα, CFP-IκBαM, CFP-IκBα243N and 
CFP-IκBα244C in living cells. 
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the samples divided by the target/reference ratio of  the 
control (n = 3). In all experiments β-actin cDNA was the 
reference. Results for the analysis of  different transfected 
cells by QT-PCR showed that the level of  p65 cDNA/
β-actin cDNA (0.945 ± 0.152) and TNF-α cDNA /β-actin 
cDNA (1.05 ± 0.106) in CFP-IκBα transfected cells did 
not change significantly compared with the control(1.000 
± 0.000) (Figure 5), while in YFP-p65/CFP-IκBα co-
transfected cells, IκBα decreased the transcription of  p65 
downstream gene TNF-α (2.24 ± 0.503) compared with 
the YFP-p65/CFP-C1 co-transfected cells(5.08 ± 0.891) (cP 
< 0.05) (Figure 6). In CFP-IκBαM transfected cells, the 
transcription level of  the two genes (0.548 ± 0.086, 0.53 
± 0.056) decreased compared with the control (aP < 0.05). 
The level of  p65 cDNA /β-actin cDNA and TNF-α 
cDNA /β-actin cDNA in CFP-IκBα243N transfected 
cells increased a bit (1.84 ± 0.176, 1.51 ± 0.203) (aP < 0.05). 
The most prominent was CFP-IκBα244C. It increased 
the transcription level of  all the genes significantly (8.29 ± 
1.662, 14.16 ± 2.121) compared with the control (aP < 0.05) 
(Figure 5).

Effects of Iκ Bα  and its mutants on the p53 signaling 
pathway 
Results for the analysis of  different transfected cells by 
QT-PCR indicated that the effect of  IκBα and its mutants 
on p53 and its downstream gene, Bax, were different 
(Figure 7). The level of  p53 cDNA /β-actin cDNA and 
Bax cDNA /β-actin cDNA in CFP-IκBα (0.9 ± 0.126, 

1.04 ± 0.109) and CFP-IκBα243N (0.806 ± 0.129, 0.79 
± 0.108) transfected cells did not change very much. In 
CFP-IκBαM transfected cells, the transcription level 
of  the genes decreased (0.43 ± 0.061, 0.53 ± 0.063) 
compared with the control (aP < 0.05), however, CFP-
IκBα244C increased the transcription level of  p53 and 
Bax significantly (10.2 ± 0.621, 3.72 ± 0.346) (aP < 0.05) 
(Figure 7), which suggested that IκBα244C may play an 
important role in inducing apoptosis[14].

IκBα 244C and p53 synergistically mediates apoptosis
To study the effect of  IκBα244C on cell death, a CCK-8 
experiment was performed. As Figure 8 shows, transient 
expression of  p53-DsRed (1.206 ± 0.099 ) or CFP-
IκBα244C (1.259 ± 0.072) resulted in enhancement of  cell 
death compared with the control (1.531 ± 0.168) (n = 6, aP 
< 0.05). The synergistic effect in mediating apoptosis by 
p53-DsRed/CFP-IκBα244C (0.805 ± 0.047) (dP < 0.01) 
was obtained.

DISCUSSION
NF-κB and p53 are important transcription factors present 
in the majority of  cells[27-30]. Constitutively activated NF-
κB has been associated with increased cell proliferation 
and survival in cancer cells. Inhibitor of  NF-κB alpha, 
IκBα, participates in both NF-κB and p53 signaling 
pathways[23,31-33] (Figure 9). The functional NF-κB and p53 
activities may modulate each other, which in turn could 
affect the subsequent responses. 
    Previous studies demonstrated that IκBα interacts 
with NF-κB and p53 with different interaction sides[2,8,23]. 
IκBα and its mutants might have different effects on the 
transcription of  NF-κB, p53 and their downstream genes, 
according to their different structures. Our studies showed 
that IκBα did not influence the transcription level of  NF-
κB, p53 and their downstream target genes in static cells 
compared with controls, which maybe due to the integrity 
of  IκBα and the self-regulation capability of  the cells. 
IκBα243N (amino acides 1-243), with lack of  the PEST 
domain that regulates basal level protein turnover and 
is required for inhibition of  DNA binding of  NF-κB, 
increased the transcription of  NF-κB and TNF-α slightly. 
Because IκBα243N cannot interact with p53, it has no 
effect on the transcription of  p53 and Bax.
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Figure 4  Standard curve constructed with the β-actin cDNA standards from 1.00E 
+ 1 to 3.20E + 3 by plotting the logarithmic concentration of the standard versus 
the crossing points (cycle number).
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Figure 3  Amplification plots of five fold serial 
dilutions of β-actin cDNA. The fluorescence values 
versus cycle number are displayed.



    Dominant negative IκBα (IκBαM, Ser32, 36A) and the 
C terminus of  IκBα (IκBα244C, amino acides 244-317) 
are notable because of  their significantly different effects. 
IκBαM has mutations in Ser32 and Ser36. It can not 
phosphorylate at Ser32 and Ser36 and degradate, so 
IκBαM bound with NF-κB and p53 in the cytoplasm 
steadily and inhibited the transcription of  their downstream 
genes, which is consistent with the report that IκBαM has 
been found to represses p53-dependent apoptosis in acute 
lymphoblastic leukemia cells[34]. In particular, transfection 
of  IκBαM in human colon carcinoma and breast cancer 
cell lines did not increase sensitivity to daunomycin or 

Taxol[35,36]. IκBαM may repress p53 expression in two 
ways: (1) A portion of  IκBαM directly interacts with p53 
in cytoplasm and inhibits p53 translocate to the nucleus; 
(2) IκBαM binds to NF-κB in the cytoplasm and NF-
κB·IκBαM complex is formed, which in turn inhibits the 
NF-κB activity and the NF-κB dependent p53 activity, for 
the NF-κB signaling cascade is a potential modulator of  
p53 activity, and NF-κB is a co-factor of  p53 in mediating 
cell death[37-39]. 
    IκBα244C does not have the ARD (ankyrin repeat 
domain) and NES in N terminus. It could not prevent NF-
κB from translocating to the nucleus, and IκBα244C itself  

Figure 5  Effects of IκBα and its mutants on NF-κB and NF-κB downstream gene TNF-α. 
Abscissa showed different transfected Cells. Y-coordinate expressed the target/reference ratio of 
the samples divided by the tar = get/reference ratio of the control. In all experiments β-actin cDNA 
was reference. (aP < 0.05 vs control). 
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Figure 6  Effects of IκBα on over expressed NF-κB. (aP < 0.05 
vs control; cP < 0.05 vs YFP-p65/CFP-C1 group).
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Figure 7  Effects of IκBα and its mutants on 
p53 and p53 downstream gene Bax. (aP < 0.05 
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mainly existed in the nucleus. IκBα244C enhanced the 
transcription level of  p53, NF-κB and their downstream 
genes. The CCK-8 experiment showed that co-expression 
of  p53 with IκBα244C resulted in enhancement of  p53-
mediated cell death. p53 and IκBα244C are possibly co-
factors in inducing apoptosis, and the C terminus of  IκBα 
may serve as a pro-apoptotic protein in living cells. 
    NF-κB has been considered a target for cancer 
treatment[17,40]. The function of  IκBα as an inhibitor 
in regulating NF-κB activation has been well studied. 
Findings from the present study suggest that mutants of  
IκBα have different effects on NF-κB and p53 signaling 
pathways, and may result in different therapy results. The 
inhibition effect of  IκBαM indicates drugs that induce 
apoptosis by a p53-dependent mechanism may be inhibited 
by the use of  IκBαM constructs through inhibition of  
p53 function by these agents. The C terminal of  IκBα 
enhanced cell death, which suggests that it may be a pro-
apoptotic protein existing in cells, but the mechanism 
remains to be determined and there may exist NF-κB and 
p53 independent pathways. 
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Figure 9  IκBα participates in NF-κB and p53 signaling pathways.
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