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chymal cell populations which consist of  Kupffer cells 
(KCs), sinusoidal endothelial cells (SEC) and stellate cells 
(SC). All three cell-types seem to play a crucial role in liver 
homeostasis and in the pathogenesis of  liver disease[1]. 
KCs constitute 80%-90% of  the tissue macrophages in the 
reticuloendothelial system and account for approximately 
15% of  the total liver cell population[2]. They are mainly 
found in the periportal area of  the lobule (43%), but KCs 
also exist in the midzonal (28%) and in the central area 
(29%)[2]. Despite the view that KCs are fixed tissue mac-
rophages of  the liver, there is evidence that they have the 
ability to migrate along sinusoidal walls with a mean speed 
of  4.6 ± 2.6 (SD) microns/min[3]. Since the description of  
these resident liver macrophages in 1876 by von Kupffer 
various theories have been proposed with regard to their 
origin and involvement in liver homeostasis and injury. It 
should be noted that almost all available evidence for the 
role of  Kupffer cells comes from animal models.

KCs are the first cells to be exposed to materials ab-
sorbed from the gastrointestinal tract. Their ability to elim-
inate and detoxify microorganisms, endotoxins, degenerat-
ed cells, immune complexes, and toxic agents (e.g. ethanol) 
is an important physiological function. Due to their key 
location, KCs might function as antigen-presenting cells[4] 
and participate in tumour surveillance[5] and the regenera-
tion processes of  the liver[6]. They also seem to play a key 
role in innate immune responses and host defence through 
the expression and secretion of  soluble inflammatory me-
diators[7]. There is accumulating evidence that the interac-
tion between KC and lipopolysaccharide (LPS) may be the 
initiating event leading to hepatotoxicity in various types 
of  liver injury including endotoxinaemia, alcoholic liver in-
jury and ischemia/reperfusion injury[8,9] and systemic viral 
infections[10].

THE ROLE OF KUPFFER CELLS IN HEPATIC 
INJURY
Kupffer cells are involved in the pathogenesis of  liver inju-
ry mediated by chemical substances, toxins and pharmaco-
logical agents[7,9] such as carbontetrachloride (CCl4)[11], en-
dotoxin[12], galactosamine[13] and acetaminophen[14] through 
the release of  biologically active substances that promote 
the pathogenic process[9]. In liver injury and hepatocellu-
lar necrosis activated Kupffer cells are a major source of  
inflammatory mediators including cytokines, superoxide, 
nitric oxide, eicosanoids, chemokines, lysosomal and pro-
teolytic enzymes and demonstrate increased cytotoxicity 
and chemotaxis[7,14-16].

Reactive oxygen radicals are released by hepatic mac-

PO Box 2345, Beijing 100023, China                                                                                                             World J Gastroenterol  2006 December 14; 12(46): 7413-7420
www.wjgnet.com                                                                                                                                          World Journal of Gastroenterology  ISSN 1007-9327
wjg@wjgnet.com                                                                                                                                                                       © 2006 The WJG Press. All rights reserved.

 EDITORIAL

www.wjgnet.com

George Kolios, Vassilis Valatas, Elias Kouroumalis, Depart-
ment of Gastroenterology and Hepatology, University Hospital 
and Medical School, University of Crete, Heraklion, Greece
Correspondence to: Professor Elias Kouroumalis, MD, PhD, 
Department of Gastroenterology and Hepatology, University Hos-
pital, PO Box 1352, Heraklion 71100, Crete, 
Greece. kouroum@med.uoc.gr
Telephone: +30-2810-392356   Fax: +30-2810-542085
Received: 2006-09-25 	     Accepted: 2006-11-03

Abstract
Kupffer cells, the resident liver macrophages have long 
been considered as mostly scavenger cells responsible 
for removing particulate material from the portal circu-
lation. However, evidence derived mostly from animal 
models, indicates that Kupffer cells may be implicated 
in the pathogenesis of various liver diseases including 
viral hepatitis, steatohepatitis, alcoholic liver disease, in-
trahepatic cholestasis, activation or rejection of the liver 
during liver transplantation and liver fibrosis. There is ac-
cumulating evidence, reviewed in this paper, suggesting 
that Kupffer cells may act both as effector cells in the 
destruction of hepatocytes by producing harmful soluble 
mediators as well as antigen presenting cells during viral 
infections of the liver. Moreover they may represent a 
significant source of chemoattractant molecules for cy-
totoxic CD8 and regulatory T cells. Their role in fibrosis 
is well established as they are one of the main sources 
of TGFβ1 production, which leads to the transformation 
of stellate cells into myofibroblasts. Whether all these 
variable functions in the liver are mediated by different 
Kupffer cell subpopulations remains to be evaluated. In 
this review we propose a model that demonstrates the 
role of Kupffer cells in the pathogenesis of liver disease.

© 2006 The WJG Press. All rights reserved.

Key words: Kupffer cells; Liver disease; Hepatic injury; 
Liver fibrosis; Hepatocellular carcinoma; Hepatitis; Ste-
atohepatitis

Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in 
the pathogenesis of liver disease. World J Gastroenterol 
2006; 12(46): 7413-7420

 http://www.wjgnet.com/1007-9327/12/7413.asp

INTRODUCTION
The sinusoidal lining of  the liver contains the nonparen-



rophages after activation with cytokines, LPS and prostag-
landins as a defence against bacterial invasion. These mol-
ecules have been implicated in the pathogenesis of  liver in-
jury induced in a rat model by sequential administration of  
endotoxin and Corynebacterium parvum[17]. In this model, the 
products of  oxidation of  hepatocellular membrane lipids 
were detected in the systematic circulation and were related 
with the degree of  liver necrosis. Administration of  super-
oxide dismutase, a reactive oxygen radical scavenger, signif-
icantly reduced the liver injury and animal mortality[12]. Iso-
lated Kupffer cells from Corynebacterium parvum-treated rats 
demonstrated significantly increased release of  superoxide 
that was further enhanced following administration of  en-
dotoxin[17]. The toxicity of  reactive oxygen intermediates 
on hepatocytes has also been demonstrated in vitro using 
cultured rat hepatocytes[18]. However, LPS-treated Kupffer 
cells are cytotoxic to hepatocytes in co-culture experiments 
only in the presence of  L-arginine, probably in response to 
simultaneous secretion of  nitric oxide by Kupffer cells or 
induction of  production by hepatocytes[19].

Nitric oxide is produced in the liver by Kupffer cells 
and hepatocytes. Its role in the pathogenesis of  hepatic in-
jury is controversial. A protective role has been detected in 
various conditions such as endotoxemia or CCl4-induced 
damage where it protects hepatocytes via the inhibition of  
caspases and apoptosis. In other conditions like ischemia/ 
reperfusion injury, shock, and galactosamine induced liver 
injury, nitric oxide increases oxidative stress via its interac-
tion with reactive oxygen species leading to the formation 
of  peroxynitrite or it induces the expression of  inflamma-
tory mediators such as TNF-α and IL-1[20]. Adiponectin 
suppresses TNF-α production and induces IL-10 produc-
tion by Kupffer cells and administration of  galactosamine 
in adiponectin knock-out mice significantly increases mor-
tality rate compared with wild type animals[21]. It has been 
suggested that the hepato-protective activity of  adiponec-
tin is due, at least in part, to a direct anti-inflammatory ef-
fect of  adiponectin on Kupffer cells[22]. 

Cytokine and chemokine production by activated 
Kupffer cells is involved in the pathogenesis of  liver dam-
age. It has been reported that alcohol-induced liver injury 
is accompanied by increases in the portal concentration of  
endotoxin, leading to activation of  Kupffer cells and sub-
sequent TNF-α production[23]. Other studies have shown 
a role for the increased production of  the chemokine 
MCP-1 by Kupffer cells in the pathogenesis of  acute liver 
injury due to CCl4[24] or acetaminophen[25] administration. 
Proteolytic enzymes released by recruited and activated 
liver macrophages were also found to promote hepatic in-
jury in a rat model of  hepatic damage[26].

The pivotal role of  Kupffer cells in the initiation 
of  hepatocellular damage is supported by experimental 
models that have demonstrated a correlation between the 
degree of  activation of  Kupffer cells and the degree of  
hepatocellular destruction[14]. Administration of  endotoxin 
to rats with activated Kupffer cells due to liver resection 
induced damage of  endothelium, sinusoidal fibrin deposi-
tion, and lethal massive hepatic necrosis[27]. In another rat 
model, activation with endotoxin enhanced CCl4-induced 
liver damage, while pretreatment with polymyxin B or ad-
ministration of  endotoxin in low doses induced immune 

tolerance which protected the liver from CCl4-induced 
damage[27]. Other studies demonstrated that activated 
Kupffer cells express CD95L and could induce apoptosis 
in CD95+ T lymphocytes and hepatocytes[28]. 

However, Kupffer cells also participate in protective 
mechanisms via the production of  mediators that induce 
synthesis of  the antioxidant agent glutathione[29], or the 
production of  nitric oxide[30,31]

. The production of  ELR-
CXC chemokines such as MIP-2, which induce hepato-
cyte proliferation also has a protective role in models of  
hepatotoxicity such as acetaminophen-induced injury[32-34]. 
This protection is also possibly mediated by the produc-
tion of  IL-10 and IL-18 by Kupffer cells, since depletion 
of  Kupffer cells increases susceptibility of  the murine liver 
to acetaminophen in parallel with a reduction in IL-10 and 
IL-18[35]. On the other hand, hard evidence for the pro-
tective role of  Kupffer cells is missing since depletion of  
Kupffer cells by the traditional method of  administration 
of  gadolinium chloride (GdCl3) intraperitoneally might not 
deplete the liver from Kupffer cells. Instead GdCl3 might 
change the acinar distribution and phenotype of  Kupffer 
cells promoting the production of  TNF-α and IL-6[36-38]. 
Therefore interpretation of  experiments using GdCl3 is 
difficult. In conclusion, Kupffer cell-induced hepatotoxic-
ity is not only a result of  the reaction to hepatotoxins[39], 
but it might also be a response to an excessive activation 
or a suppression of  hepatoprotective mechanisms[40]. 

THE ROLE OF KUPFFER CELLS IN LIVER 
FIBROSIS 
Liver fibrosis is a complex process that involves many cells 
of  the hepatic sinusoid and is characterized by disturbance 
of  the architecture and composition of  extracellular matrix 
in the liver[41,42]. The extracellular matrix in the subendothe-
lial space of  Disse mainly consists of  collagen type Ⅳ, 
laminin, and proteoglycans that are progressively replaced 
during fibrosis by collagen type Ι and Ⅲ. This excess 
deposition disrupts the normal architecture of  the hepatic 
lobule[43,44].

Ito or stellate cells are the main cellular source of  ex-
tracellular matrix proteins in the liver[45,46]. The initiation 
and maintenance of  fibrogenesis in the liver is character-
ized by two processes. The former is characterized by the 
activation and transformation of  Ito cells to myofibrob-
lasts resulting in increased production of  collagen types 
I and Ⅲ[47]. In parallel, there seems to be a disturbance 
of  the homeostatic mechanisms involved in extracellular 
matrix deposition due to reduced expression of  the pro-
teolytic enzymes that degrade the extracellular matrix and 
increased expression of  their inhibitors. Thus, maintaining 
fibrosis involves decreased production of  matrix metallo-
proteinases (MMPs) and increased production of  specific 
(tissue inhibitors of  matrix metalloproteinases, TIMPs) or 
non specific metalloproteinase inhibitors (alpha1-antitryp-
sin)[48].

Kupffer cells are involved both in processes via the 
production of  cytokines and growth factors that induce Ito 
cell myofibroblastic transformation and also via regulation 
of  the production of  metalloproteinases and their inhibi-
tors[49]. Kupffer cell-derived TGF-β1 has been suggested 
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to drive Ito cell transformation and to induce production 
of  collagen and proteoglycans by these cells[50]. TGF-β1 is 
considered as the main cytokine that drives fibrosis in vari-
ous animal models of  hepatic damage, including alcoholic 
liver fibrogenesis[51], schistosomiasis and CCl4-induced fi-
brosis[52], and one of  the major factors involved in fibrosis 
in patients with chronic liver disease[53].

In vitro studies have also shown that Kupffer cells 
can induce expression of  platelet-derived growth factor 
(PDGF) receptors on Ito cells, thus enhancing Ito cell 
proliferation in response to PDGF[54]. TNF-α, IL-1 and 
MCP-1, that are produced by activated Kupffer cells, are 
also mitogenic and chemoattractant for Ito cells[55,56]. In 
addition, TGF-β1 and IL-6 were found to induce mRNA 
expression of  metalloproteinases (MMPs) and also their 
specific inhibitors TIMPs (mostly TIMP-1, in hepatocytes, 
Kupffer cells and Ito cells in rat liver[57].

Finally another mechanism that could lead to the phe-
notypic change of  Ito cells is the production of  gelatinases 
by Kupffer cells. It has been demonstrated that extracellu-
lar matrix proteins play a crucial role in the maintenance of  
normal function of  hepatocytes and Ito cells. Culture of  
Ito cells on type I collagen or plastic resulted in activation 
of  cells and transformation to myofibroblasts. In contrast, 
culture of  Ito cells in collagen type Ⅳ did not result in 
phenotypic change[58]. It has been suggested that activation 
of  Kupffer cells and secretion of  gelatinase degrades col-
lagen type Ⅳ and therefore triggers the phenotypic change 
of  Ito cells[7,59]. 

THE ROLE OF KUPFFER CELLS IN LIVER 
DISEASES 
The role of Kupffer cells in liver infections
Kupffer cells are involved in the defence against infec-
tions of  the liver. Their major role in the host defence 
and the prognosis of  liver infection is indicated by studies 
in experimental models of  sepsis. LPS pre-treatment has 
been shown to increase Kupffer cell numbers leading to a 
reduction of  bacterial load and improvement of  prognosis 
in a Salmonella septicemia model[60]. Impairment of  the 
phagocytic function and the production of  superoxide by 
Kupffer cells in models of  obstructive jaundice leads to 
increased susceptibility to infection[61]. 

Infection of  mice with Listeria monocytogenes is a 
well studied liver infection model. In this model, the accu-
mulation of  bacillus in the liver depends on recognition of  
bacillus surface sugars and lectins by cognate receptors on 
Kupffer cells. On the other hand, production of  inflam-
matory mediators such as IL-6, IL-12, IL-1β, TNF-α, and 
nitric oxide by infected Kupffer cells inhibits proliferation 
of  the microorganism[62,63]. At the same time Kupffer cell 
derived chemokines such as MIP-1α, MIP-1β, MCP-1, and 
MIP-2, drive monocyte and neutrophil recruitment into 
the liver in order to control infection[64-66]. Thus as expect-
ed, Kupffer cell inactivation results in impaired infection 
clearance[67]. Being the first line of  defence, Kupffer cells 
also represent the portal of  entry for viruses such as cyto-
megalovirus[68] and parasites such as Plasmodium bergei[69] and 
Leishmania[70], which enter and proliferate in Kupffer cells 
and then infect the rest of  the liver cells.

In humans, phenomena like the increased frequency of  
septicaemia and septic shock from Gram negative bacteria 
that are observed in patients with acute hepatic failure, 
have been attributed to the inability of  Kupffer cells to 
clear the portal circulation of  micro-organisms and endo-
toxin[71]. Various studies have shown that a large percent-
age of  patients with chronic hepatic disease present with 
a systematic endotoxinaemia and high titres of  antibodies 
against intestinal bacteria.In contrast, in normal individuals 
endotoxin is detected only in the portal circulation[72].

Very recently a direct contribution of  Kupffer cells to 
the pathogenesis of  hepatitis has been reported[73]. Influen-
za hepatitis was associated with absence of  virus from the 
liver and foci of  CD8+ virus specific T cells in close con-
tact with Kupffer cells. Moreover, elimination of  Kupffer 
cells abrogated the hepatocellular necrosis, despite persist-
ence of  CD8+ reactive cells. It seems that activated T cells 
are trapped and retained in the liver through an antigen-
independent mechanism as a possible interaction between 
activated integrins like LFA-1 on the T cells and constitu-
tively expressed integrin ligands like VCAM and ICAM-1 
on sinusoidal endothelium[74,75]. In this model, Kupffer 
cells are possibly the effector cells killing hepatocytes in 
an as yet unidentified manner. Kupffer cells can kill hepa-
tocytes either directly via activation of  fas-dependent or 
CD95-dependent apoptotic pathways[76] or indirectly by 
interacting with CD8+ (and possibly CD4+) lymphocytes 
with the stimulation of  cytokine secretion[77] and other me-
diators like phospholipases and nitric oxide, as previously 
reported. Although such a mechanism as that proposed 
in the paper by Polakos et al[73] might explain the hepatitis 
observed in measles, SARS and CMV infection (where the 
virus is not identified in the liver), a similar mechanism 
could well operate in the pathogenesis of  hepatitis due to 
hepatotropic viruses like HBV, HCV and HEV. The only 
difference would be that the generation of  CD8+ virus 
specific cells would take place in either the portal tracts or 
the sinusoids per se, with Kupffer cells and dendritic cells 
being the antigen presenters.

Kupffer cells and hepatocellular carcinoma
The liver is a frequent site of  hematogenous metastasis 
particularly for cancers of  the gastrointestinal system. Iso-
lated Kupffer cells were found to be cytotoxic against hu-
man colon adenocarcinoma cells and this cytotoxicity was 
increased significantly when the KC were stimulated with 
INF-γ and endotoxin[78,79]. It has been suggested that this 
effect is related to TNF-α expression by Kupffer cells as 
it is inhibited by anti-TNF-α[80,81]. Other studies have dem-
onstrated that Kupffer cells induce Fas expression in colon 
cancer cells[82] and malignant glioma cells[83] leading to Fas-
mediated apoptosis and death in the presence of  tumour 
infiltrating lymphocytes or TNF-α. 

Data from in vivo studies show that the degree of  
activation or repression of  Kupffer cells influences the 
number and the size of  hepatic metastases following in-
jection of  colon carcinoma cells in portal circulation[84]. 
Administration of  GdCl3, which is reported to deplete and 
block the function of  Kupffer cells, resulted in increased 
size of  metastases, while activation of  Kupffer cells with 
Zymosan and Corynebacterium parvum decreased the size of  

Kolios G et al . Kupffer cells in liver disease 								                7415

www.wjgnet.com



metastases[85].
In vivo microscopy has shown that Kupffer cells are at-

tracted to tumour cells in the hepatic circulation and have 
the ability to phagocytose these cells[86]. Nitric oxide pro-
duced by Kupffer cells after stimulation with endotoxin, 
TNF-α and prostaglandin Ε2

[16,87] may also be an effec-
tive weapon of  the Kupffer cell machinery against tumor 
cells[88]. Moreover, an indirect mechanism of  defence by 
Kupffer cells against hepatic tumours is the induction of  
natural killer cell (NK-cell) cytotoxicity via the production 
of  IL-12[84] and a possible anti-tumour effect of  octreotide 
in hepatocellular carcinoma[89,90] might, in part, be explained 
by its antiapoptotic effect on Kupffer cells[91].

Alcohol-related liver disease and Kupffer cells
Alcohol-related liver disease is a chronic inflammatory 
disease of  the liver parenchyma due to chronic ethanol 
ingestion with the end result being alcoholic fibrosis and 
cirrhosis. Kupffer cells have been suggested to participate 
in this process mainly through the increased production 
of  inflammatory mediators. Indeed, increased circulating 
levels of  pro-inflammatory cytokines like TNFα and IL-6, 
and chemokines like IL-8, MCP-1 and MIP-1α have been 
detected in patients with alcoholic liver disease, which 
could potentially be related to Kupffer cell activation[92-95]. 
Increased numbers of  Kupffer cells in the portal tracts 
have been observed in patients with acute alcoholic hepati-
tis or chronic alcoholic liver disease[96].

Animal studies have shown that acute or chronic 
ethanol administration is associated with an increase in 
numbers of  Kupffer cells that exhibit morphologic signs 
of  cell activation[97], up regulation of  CD14 expression[98] 
and increased production of  inflammatory mediators such 
as IL-1, TNF-α[99] and oxygen free radicals[100]. Kupffer 
cell depletion with GdCl3 has been found to prevent early 
alcohol-induced liver inflammation and necrosis[101]. 

One of  the current hypotheses about the pathophysi-
ology of  alcohol induced liver damage is that ethanol 
increases the proportion of  Gram negative bacteria in the 
bowel flora and therefore the intraluminal production of  
LPS. Concurrently, the increase in the intestinal perme-
ability due to alcohol-induced alterations of  the epithelial 
barrier function results in portal vein endotoxinemia. This 
activates Kupffer cells leading to production of  inflamma-
tory mediators, which in turn activate the endothelium and 
induce neutrophil and mononuclear cell recruitment and 
infiltration resulting in liver damage. Furthermore, it has 
been suggested that ethanol may also have a direct effect 
on Kupffer cell activation by altering cell membrane cal-
cium channels[102].

A synergistic effect of  LPS with ethanol has been 
described. Recent evidence indicates that chronic etha-
nol administration decreases the cellular cAMP levels of  
Kupffer cells and this leads to enhanced NF-κB activation 
by LPS and TNF-α production[95]. Interestingly an increase 
in cAMP does not affect NF-κB activation but it decreases 
its transcription capability.

Kupffer cells and liver transplantation 
There is indirect evidence indicating that Kupffer cells may 
play a role in the process of  graft rejection following liver 

transplantation mainly though their ability to act as antigen 
presenting cells (APC). Kupffer cells express MHC class 
Ⅱ and have been found to be effective APC in vitro[103]. 
Animal studies have shown that following liver transplan-
tation Kupffer cells up-regulate MHC class Ⅱ expression 
and this has been associated with the initiation of  the 
rejection process[104]. In humans the rate of  reconstitution 
of  the graft with recipient-derived Kupffer cells has been 
found to increase during the rejection phase[104]. Finally, 
graft rejection and the vanishing-bile duct syndrome oc-
cur more frequently in cases of  MHC class I incompat-
ibility accompanied by a MHC class Ⅱ partial or complete 
match, which suggests that presentation of  MHC I anti-
gens of  the billiary epithelium by donor Kupffer cells may 
also take place[105]. 

Ischemia-reperfusion injury during the extracorporal 
preservation of  the graft may often result to primary graft 
dysfunction[106]. There is accumulating evidence to suggest 
a major role for Kupffer cells during this process through 
the activation and production of  oxygen free radicals re-
sulting in alteration of  the microcirculation of  the graft[107]. 
Kupffer cell inactivation using GdCl3 has been found to 
prevent ischemia-reperfusion injury, whereas administra-
tion of  latex particles that induce Kupffer cell activation 
through phagocytosis, accelerates ischemia-reperfusion 
injury of  the graft[108]. Kupffer cell derived TNF-α, MIP-2 
and keratinocyte chemoattractant chemokine have also 
been found to play a role in the microcirculatory failure 
that accompanies ischemia-reperfusion. Increased expres-
sion of  TNFα, MIP-2 and keratinocyte chemoattractant 
both systemically and in the liver parenchyma have been 
observed in animal models during the reperfusion phase 
injury, and they have been associated with endothelial acti-
vation and β2-integrin up-regulation[109] and infiltration of  
the graft by neutrophils[110] respectively. 

Kupffer cells and portal hypertension
Kupffer cells have been shown to be the main source of  
thromboxane A2 production in the liver and this produc-
tion is mediated by COX-1 and COX-2[111]. Recently it 
was demonstrated that the infusion of  endothelin-1 sig-
nificantly increased portal pressure in animal models. This 
increase was mediated by the production of  thromboxane 
A2 by the Kupffer cells[112], since both thromboxane syn-
thase inhibition and thromboxane A2 receptor antagonists 
blocked the effect of  endothelin-1 on portal pressure[113]. 
Whether this is relevant to the situation in humans remains 
to be established.

Kupffer cells and non alcoholic steatohepatitis
Recently a connection between Kupffer cells and the pro-
gression of  non alcoholic steatosis to steatohepatitis and 
fibrosis was reported[114]. Interestingly, this report is one of  
the few that are based on human data. The enzyme chito-
triosidase (CHIT), a member of  the chitinase family, was 
found exclusively expressed in Kupffer cells in liver biop-
sies from patients with NASH. The levels of  this enzyme 
were significantly higher in NASH than in simple steatosis 
and CHIT overexpression influenced hepatic stellate cell 
activation. A significant correlation was also observed 
between CHIT, TNF-α and lipid peroxidation in both 
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NASH and simple steatosis. Since CHIT is increased in the 
liver in other forms of  lipid storage disease it is postulated 
that Kupffer cells are implicated in the pathogenesis of  
NASH. Another study using an animal model has shown 
an enhancement of  the TNF-α/TNFR mediated signalling 
pathway via activation of  Kupffer cells in an autocrine or 
paracrine manner which might be critically involved in the 
pathogenesis of  liver fibrosis in this NASH[115].

Kupffer cells and intrahepatic cholestasis
Recently Kupffer cells have been implicated in the patho-
genesis of  intrahepatic cholestasis following hepatic 
ischaemia-reperfusion injury. Many hepatic canalicular 
transporters were reduced in parallel to the production 
of  cytokines by Kupffer cells in an experimental model. 
Moreover, depletion of  Kupffer cells abolished the re-
duced expression of  transporters[116]. However, the role of  
Kupffer cells in cholestasis remains controversial. Recently, 
in bile duct ligated rats, selective anti-inflammatory block-
ade of  Kupffer cells increased fibrosis and deposition of  
collagen I and Ⅲ[117]. More recently, in a bile duct ligated 
mouse model, depletion of  Kupffer cells by intravenous 
inoculation of  dichloromethylene diphosphonate resulted 
in high serum alanine transaminase levels and serious his-
tologic portal inflammation and hepatocellular necrosis, in-
dicating that Kupffer cells abrogate cholestatic liver injury 
in mice[118]. Moreover it seems that the abrogation of  liver 
injury in this model might be cytokine dependent, mostly 
through the production of  IL-6 by Kupffer cells[118].

A PROPOSED MODEL FOR THE INVOLVEMENT 
OF KUPFFER CELLS IN THE PATHOGENESIS 
OF LIVER DISEASE
Based mostly on the presented data from experimental 
animals, we propose a model to demonstrate the role of  

Kupffer cells in the pathogenesis of  various liver diseases. 
According to this model Kupffer cells are responsible 
for six major functions that are vital for the development 
of  liver disease. Kupffer cells are the main effector cells, 
killing hepatocytes in various forms of  hepatitis. This is 
achieved by the production of  proinflammatory cytokines, 
reactive oxygen species, nitric oxide, phospholipase and ly-
sosomal enzymes. Kupffer cells may harm hepatocytes by 
initiating their apoptosis through the CD95L-CD95 path-
way (1). This effect is possibly accentuated by CD8 positive 
antigen restricted T cells and is stopped by CD4+CD25+ 
regulatory T cells. In this respect, Kupffer cells are acting 
as antigen presenting cells of  either extrahepatic viruses 
like influenza[10,73] or intrahepatic viruses like HBV and 
HCV (2). Following antigen presentation Kupffer cells at-
tract both CD8+ T cells and regulatory T cells by produc-
ing chemokines (3). T cells expressing LFA-1 are trapped 
as a result of  endothelial cell overexpression of  adhesion 
molecules like ICAM-1 and VCAM (4), while CD8 posi-
tive cells might be driven to apoptosis by direct contact 
with Kupffer cells. Moreover, TGF-β1 production by 
Kupffer cells drives stellate cells to be transformed into 
myofibroblasts eventually leading to fibrosis (5). Finally, by 
producing glutathione, IL-6 and MIP-2 Kupffer cells may 
protect hepatocytes from further damage (6). One vital 
question remains. Are all these six different functions me-
diated through the same Kupffer cells or are there differ-
ent Kupffer cell subpopulations in the liver? A schematic 
presentation of  this model is presented in Figure 1.
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Figure 1  Schematic representation of the 
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hepatocytes; E: endothelial cells; K: Kupffer 
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