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Abstract
Cell proliferation is an important process in life for growth 
of normal and cancer cells. The signal transduction 
pathways activated during this process are strictly 
regulated. This editorial focuses on the role of nicotine, 
a mitogen, in the induction of signaling pathways 
resulting in proliferation of  pancreatic tumor cells and 
compares these events with those in normal acinar 
cells isolated from the rat pancreas. The data shows 
striking similarities between these two cellular systems. 
In addition, the editorial reviews very recent literature 
of the contribution of MAPK signaling in cell lines 
associated with human diseases. A prospective cellular 
model of nicotine induced activation of MAPK cascade is 
presented.
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INTRODUCTION
Cell proliferation is a strictly regulated event. The rate of  

cell division depends upon instructions by which the cell 
responds to mitogenic or other stimuli in order to enter 
the cell cycle substantiated by cyclin dependent kinases 
(CDKs) which are activated by cyclins. In a normal resting 
cell the intracellular signaling proteins and genes, activated 
by extracellular growth factors, are quiescent. However, 
when stimulated by growth factors, the cells undergo 
proliferation. In cancer cells, intracellular signaling proteins 
and oncogenes activated by the growth factors remain 
constitutively active[1]. In response to growth factors 
or other mitogenic stimuli, three major types of  signal 
transduction pathways are activated in a cell: mitogen 
activated protein kinase (MAPK) pathways, protein kinase 
C (PKC) pathways and JAK/STAT pathways. Activation 
of  each of  these pathways requires a phosphorylation step 
that regulates cell proliferation and differentiation[1].

Understanding of  the complex molecular mechanisms 
involved in the regulation of  cell proliferation in normal 
and cancer cells will provide us with tools to intervene in 
the regulation and control of  the cell cycle in the presence 
of  a mitogen. Qualitatively speaking, the biochemistry of  
growth of  tumor and normal cells appear similar[2]. The 
fundamental difference most probably lies in a relaxation 
of  regulation of  cell growth[3,4]. Here we will discuss the 
role of  nicotine in cell proliferation in reference to AR42J 
cells (a rat pancreatic tumor cell line) and look further 
into extended observations from our recent findings using 
primary cells derived from the normal rat pancreas when 
exposed to nicotine in culture. 

Nicotine is a major component of  cigarette smoke and 
is a known risk factor for the development of  numerous 
diseases[5-9]. The role of  nicotine/smoking as a risk 
factor for the induction of  pancreatic inflammation and 
pancreatic cancer has been reported recently[10,11]. The 
mechanism by which nicotine induces such pathologies 
is as yet unknown. Understanding of  the proliferative 
potential of  nicotine in primary and tumor cells of  the 
pancreas will allow us to develop measures that will 
ultimately lead to intervention, prevention and treatment. 

AR42J CELLS: CHARACTERISTICS AND
ASSOCIATION WITH MAP KINASES 
AR42J is a stable, rat pancreatic tumor cell line derived 
from the hyperplastic pancreatic nodules of  male rats 
following the administration of  azaserine[12]. Because of  
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their unique properties of  stability, secretory capacity, 
and growth potential[13], these cells have been extensively 
used as an in v i t r o model for studying exocytot ic 
secretory processes and activation of  signal transduction 
pathways[14-16]. In response to regulatory peptides, AR42J 
cells can be stimulated to secrete enzymes and induce 
proliferation[13,17,18].  

MAPK enzymes play critical roles in the regulation of  
cell proliferation, differentiation, and apoptosis, and are 
comprised of  a ubiquitous family of  tyrosine/threonine 
kinases that include the extracellular signal-regulated 
kinases (ERK1/2), c-jun NH2-terminal kinases (JNK1/2), 
and p38 MAPK. Cytokines and mitogens trigger signaling 
cascades that lead to the activation of  MAPK, as reported 
in studies with different cell lines[19-24].

Activation of  ERK has been primarily implicated in cell 
proliferation and survival, whereas activation of  JNK and 
p38 are associated with growth arrest and apoptosis[25-27]. 
Induction of  MAPK’s leads to the phosphorylation and 
activation of  a variety of  proteins, including a number of  
transcription factors involved in regulating the expression 
of  genes controlling cellular proliferation[28-30]. ERK1/2 
is found in most tumors and is involved in gastric 
carcinogenesis[31]. Differential activation of  MAPK by 
cholecystokinin (CCK) and bombesin has been reported in 
AR42J cells[17].

ACTIVATION OF SIGNALING PATHWAYS
BY NICOTINE
Nicotine is known to activate several MAPK signaling 
pathways in a variety of  tissue and cell types[32-37]. It 
also behaves like a growth factor promoting survival of  
human lung cancer cells[38]. Studies show that nicotine can 
increase the cell numbers of  certain cancer cell lines[39-41]. 
This suggests that nicotine exposure can lead to the 
disruption of  the dynamic balance between cell death and 
proliferation, which is required for normal functioning of  
cells.  

In pulmonary neuroendocrine cells, nicotine binds to 
nicotinic receptors, resulting in the phosphorylation of  
ERK and stimulation of  DNA synthesis[32,42]. Furthermore, 
nicotine induces Ca2+ influx and stimulates the Ras/ERK 
cascade that promotes cell survival in neuronal cells[43]. 
Thus, ERK1/2 is one of  the possible signaling pathways 
involved in nicotine-induced cell proliferation. Studies by 
Bose et al[44] on the mitogenic effect of  nicotine on AR42J 
cells show that nicotine activates ERK1/2 in AR42J cells 
and induces proliferation without affecting basal and 
stimulated enzyme secretion. These data suggest that 
MAPK signaling by nicotine in AR42J cells is independent 
of  the secretory response.

ACTIVATION OF SIGNALING PATHWAYS
BY NICOTINE IN PRIMARY CELLS:
EFFECTS ON PROLIFERATION
Primary cells are normally derived from intact rat pancreas. 
The functional status of  the primary acinar cells exposed 
to nicotine under basal and stimulated conditions has been 

reported[45,46]. However, the ability of  nicotine to activate 
MAPK signaling pathways and subsequent proliferation 
has not yet been reported. It has been shown that p42 
MAPK is fully activated at 5 min by cholecystokinin 
(CCK) in freshly isolated pancreatic acini, and JNK is 
activated maximally at 30 min and remains significantly 
elevated at 60 min[47,14]. Unpublished studies from our 
laboratory show that exposure of  primary cells to nicotine 
in short term culture activates ERK1/2 MAPK with very 
little or no effect on JNK and p38 MAPK. The results 
on primary cells from this study and the studies cited 
above thus demonstrate that some parallelism in the 
time-dependent activation of  ERK by CCK and nicotine 
exists, although these two secretagogues are completely 
different from one another in terms of  their biological 
actions on the pancreas[15,14,48]. Further, cell proliferation 
studies conducted and monitored with three independent 
methods (MTT assay, BrdU assay and flow cytometry) 
confirmed the proliferative ability of  primary cells in the 
presence of  nicotine. This response is reversed in the 
presence of  the ERK1/2 inhibitor UO126, suggesting 
that the proliferation induced by nicotine in primary cells 
is MAPK-dependent. Activation of  these signals and 
application of  their inhibitors in the presence of  nicotine 
had no effect on the stimulated enzyme secretion by these 
cells (unpublished observations). The proliferation of  
primary cells by nicotine thus appears to be independent 
of  the stimulus-secretion coupling response of  amylase 
secretion. 

ACTIVATION OF MAPK SIGNALING
PATHWAYS IN CELL LINES DERIVED
FROM HUMAN DISEASES
MAPKs are known to exert several complex functions, 
such as regulation of  cellular growth, proliferation, and 
differentiation[29,49,50]. It has also been shown that activation 
of  ERK1/2 MAPK is associated with cell proliferative 
signals whereas activations of  c-jun NH2-terminal kinases 
1/2 (JNK1/2) and p38 MAPKs are associated with 
stress-response signaling[51,52]. Zhao et al[53] have shown 
that in the human T lymphoma cell line Molt-4, ERK 
and p-38 mitogen activated protein kinase (MAPK) 
signaling are induced in response to hepatitis C virus E2 
envelope protein resulting in alterations in cell behavior. 
In human squamous cell carcinomas (SCC) of  the larynx, 
the potential derangement of  MAPK pathways which 
showed decreased activity of  ERK1/2 p44/42 reflecting 
alterations in tumor suppressing activity, has been 
reported[54]. Application of  low power laser irradiation 
(LPLI) has been shown to promote cellular proliferation 
of  human dental pulp derived fibroblast-like cells (dental 
pulp cells) inducing the activation of  ERK 1/2 with no 
induction pf  p38 MAPK or c-Jun N-terminal kinase (JNK) 
phosphorylation[55]. Hepatocyte growth factor (HGF) also 
enhanced proliferation and differentiation of  dental pulp 
cells by partial activation of  the ERK/MAPK pathway[56]. 

Recently Li et al have shown that anti-apoptotic 
human phosphatidylethanolamine-binding protein 
(hPEBP4) silencing, promotes tumor necrosis factor 



related apoptosis-inducing ligand (TRAIL)-induced 
apoptosis of  human ovarian cancer cells by activating 
ERK and JNK pathways[57]. Mutant huntingtin, a protein 
derived from Huntington disease (HD) affects signaling 
at upstream points activating ERK and JNK, suggesting 
that pharmacological intervention of  MAPK pathways 
may be an appropriate approach to HD therapy[58]. ERK 
1 expression has been shown to be an early marker of  
cervical carcinogenesis[59]. In human glomerulopathies, 
activation of  ERK pathways has been correlated with cell 
proliferation, histologic lesions, and renal dysfunction[60]. 
In human neutrophils, Rac/Cdc-dependent activation 
of  MAPK/ERK is a critical event in the immediate 
phagocytic response of  PMNs to microbial challenge[61]. 
IL-1 beta stimulated human airway smooth muscle cells 
demonstrate activated p38 MAPK, JNK kinase and 
p42/p44 ERK suggesting their role in the inflammatory 
process in asthma[62]. In the human myeloma cell line 
SKO-007, activation of  ERK in the Ras/MAPK signaling 
pathway has been shown to play important differences in 
their responsiveness to IFN-alpha[63]. Signaling through 
SAPK/MAK pathways is shown to be a typical feature 
of  chronic synovitis in rheumatoid arthritis, but not in 
degenerative joint disease. SAPK/MAPK signaling is 
found at distinct sites in the synovial tissue and is induced 
by proinflammatory cytokines[64]. 

CONCLUSIONS
The possible signaling pathways leading to cell proliferation 
by nicotine are shown in Figure 1 below. The schematic 
shows that nicotine enters the cell either by diffusion or 
via a calcium regulated pathway as demonstrated earlier[65].  

Entry of  nicotine induces the activation of  Ras-Raf-MEK-
ERK pathways inducing phosphorylation of  the MAP 
kinase cascade. Substrates of  ERK in the cytosol include 
tyrosine kinase receptors among others. Substrates of  ERK 
in the nucleus include transcription factors such as ELK-1 
and others. The endpoint of  ERK phosphorylation leads 
to the assembly of  transcription factors which stimulate 
the production of  proteins causing cells to proliferate and 
grow.

The parallelism observed in nicotine-induced cell 
proliferation studies conducted in a mutant pancreatic 
cell line and freshly isolated pancreatic acinar cells suggest 
the possibility that this stable mutant line can be used 
for extensive evaluation of  signal transduction pathways 
mediating oncogenesis. The data gathered from these 
studies can be extended to assess the mechanisms of  
development of  pancreatic diseases induced in animal 
models exposed to chronic/sub-chronic exposure to 
nicotine or cigarette smoking.
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Figure 1  The possible organisation of the Ras-Raf-MEK-ERK pathway by nicotine.
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