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Abstract
AIM: To evaluate the changes in hepatic platelet 
activating factor (PAF) and its receptors and their effect 
on portal pressure of cirrhotic rats induced by CCl4.

METHODS: A model of liver cirrhosis was replicated in 
rats by intra-peritoneal injection of CCl4 for 8 wk. We 
determined the effect of hepatic PAF and its receptor 
level on portal and arterial pressure by EIA, saturation 
binding and RT-PCR technique.

RESULTS: Compared to control rats, cirrhotic rats 
had higher hepatic PAF levels and output as well as 
higher plasma PAF levels (P < 0.01, P < 0.01, P < 0.05, 
respectively). Both hepatic PAF receptor mRNA levels 
and PAF binding were nearly 3-fold greater in cirrhotic 
rats (P < 0.01). Portal injection of PAF (1 g/kg WT) 
increased the portal pressure by 22% and 33% in 
control and cirrhotic rats, respectively. In contrast, the 
arterial pressure was decreased in the both groups (54% 
in control rats and 42% in cirrhotic rats). Injection of the 
PAF antagonist BN52021 (5 mg/kg WT) decreased the                      
portal pressure by 16% in cirrhotic rats but had no effect 
in the control rats.

CONCLUSION: The upregulation of the PAF system 
contributes to hepatic hemodynamic and metabolic 
abnormalities in cirrhosis, and the increased release of 
PAF into the circulation has impacts on the systemic 
hemodynamics.

© 2006 The WJG Press. All rights rese rved.
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INTRODUCTION
Platelet activating factor (PAF: 1-O-alkyl-2-acetyl-
sn-g lycero-3-phosphochol ine) i s a phosphol ip id 
exhibiting diverse biological actions. PAF acts both 
as a multifunctional, soluble, proinflammatory agent 
and as a specific membrane-bound adhesion molecule. 
PAF receptors have been identified in smooth muscle 
cells, cardiomyocytes, endothelial cells, neutrophils, 
monocyte-macrophages, Kupffer cells and eosinophils[1]. 
The physiological actions of  PAF play a role in platelet 
secretion and aggregation, bronchoconstriction, vascular 
permeability and systemic arterial hypotension[1-4]. 
Exogenous PAF administration via the portal vein increases 
portal venous pressure and activates glycogenolysis both 
in perfused organs[5] and in vivo[6]. In contrast, systemic 
infusion of  PAF reduces arterial blood pressure[7,8]. Portal 
hypertension and hyperdynamic systemic circulation are 
two prominent clinical features of  human and animal 
experimental liver cirrhosis[9-11]. Circulatory responses to 
intravenous infusion of  PAF resemble the hemodynamic 
change in advanced liver cirrhosis. Excessive deposition of  
extracellular matrix is a cause of  the increased resistance 
to hepatic blood flow and consequent portal hypertension 
in cirrhosis, but studies in animals indicate that increased 
vascular tone is also a contributing factor[12].

The PAF content in intact liver is elevated by various 
types of  injury, including ischemia-reperfusion[13], 
obstructive jaundice[14], and endotoxin exposure in vivo. 
Based on these observations, we hypothesized that 
increased hepatic synthesis of  PAF in cirrhosis could 
lead to increased plasma levels, and that PAF might play 
a role in portal hypertension. Our results have confirmed 
that hepatic PAF levels are elevated and PAF receptors 
are upregulated in cirrhosis. The reactivity of  the hepatic 
vasculature to PAF is consequently increased, while that of  
the systemic vasculature is attenuated.

MATERIALS AND METHODS
Induction of cirrhosis
Cirrhosis was induced in male Sprague-Dawley rats 
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weighing 230-250 g as described previously[10,15,16]. Briefly, 
intraperitoneal injection of  CCl4 (0.15 mL/kg WT, twice 
a week for 8 wk) was combined with drinking water 
containing phenobarbital (0.4 g/L). Control rats received 
injection of  the vehicle (peanut oil) and phenobarbital 
water.

Determination of portal venous and systemic arterial 
pressure
Rats were anesthetized with 50 mg/kg (i.p.) pentobarbital, 
and placed on a heated water blanket maintained at 38°C. 
A PE-50 catheter (Thomas Scientific, Swedesboro, NJ, 
USA) was inserted into the femoral artery to monitor 
ar terial blood pressure via a strain gauge pressure 
transducer connected to a 4-channel Grass polygraph 
(Model no. 79E, Quincy, MA, USA). The hepatic trigone 
was exposed via laparotomy, and the portal vein was 
skeletonized. The intestines and the abdominal cavity 
were covered with warm saline-soaked sponges, and a 
catheter was inserted into the portal vein and connected 
to a pressure transducer coupled to a 4-channel Grass 
polygraph to monitor portal pressure. After stable 
recordings of  both portal and arterial blood pressure were 
obtained, 1 mL of  blood was withdrawn from the femoral 
artery, portal vein and suprahepatic vena cava, respectively. 
Then, the liver was rapidly excised and washed in ice-cold 
phosphate buffered saline containing 0.1 mmol/L EDTA 
and 0.1 mmol/L EGTA. A portion of  the liver tissue was 
stored in 10% buffered formalin, a portion in OCT, and 
the rest was snap-frozen in liquid nitrogen and stored at 
-80 °C.

Morphometric analysis
An established histological grading system was employed 
for the determination of  pathological scores of  liver 
injury[17-19]. Paraffin-embedded liver sections of  4-µm 
thickness were stained with hematoxylin-eosin and Masson’
s trichrome. Steatosis, inflammation, necrosis and fibrosis 
were scored in at least three random fields of  view in 
each tissue section and a score for each specific parameter 
was estimated. Steatosis was assessed by estimating the 
percentage of  cells with micro- and macrovesicular fat as 
follows: 0 (absent), 1 (1-25%), 2 (26-50%), 3 (51-75%), and 
4 (76-100%). Necrosis was scored as follows: 0 (absent), 
1 (1-10 necrotic cells per view), 2 (11-20 necrotic cells per 
view), 3 (21-30 necrotic cells per view), 4 (31-40 necrotic 
cells per view), and 5 (41-50 necrotic cells per view). 
Inflammation was assessed as follows: 0 (absent), 1 (rare), 
2 (scattered), 3 (scattered with localized foci), 4 (abundant 
with foci), and 5 (extensive). Architectural change, fibrosis 
and cirrhosis were estimated as follows: 0 (absent), 1 
(rare), 2 (scattered deposition), 3 (scattered with localized 
deposition), 4 (abundant with minor bridging fibrosis), 5 
(bridging fibrosis) and 6 (cirrhosis). A total pathology score 
was calculated by combining and summing the scores for 
the above pathological parameters, and the average score 
per animal/treatment group was calculated.

Determination of PAF in liver and blood
Lipids were extracted as previously described[20]. Briefly, 100 
mg of  liver or 1 mL of  blood was homogenized in 9.5 mL 

of  a mixture of  methanol, chloroform and water (2:1:0.8, 
v:v:v). The homogenates were kept at room temperature 
for 1 h, followed by the addition of  chloroform (2.5 mL) 
and water (2.5 mL). After being thoroughly mixed, 
the mixture was kept at room temperature for 1 h and 
centrifuged at 1 200 r/min for 15 min. The chloroform 
layer was aspirated and dried under nitrogen at 35 °C. The 
residue was dissolved in 200 μL chloroform, and applied 
to the Bond Elut SI column (Amprep silica mini-columns; 
Amersham Pharmacia Biotech, Piscataway, NJ, USA). The 
column was washed with 3 mL of  chloroform, 2 mL of  
chloroform-methanol (6:4; v/v) and 3 mL of  chloroform-
methanol-28% aqueous ammonia (70:85:7, v:v:v). PAF was 
eluted with 2 mL of  chloroform-methanol-28% aqueous 
ammonia (50:50:7, v/v). The elute was evaporated to 
dryness under nitrogen, and the residue was dissolved in 
200 μL of  saline containing 0.01% Triton X-100. PAF 
concentration was determined by [3H]-PAF scintillation 
proximity assay (Amersham-Pharmacia Biotech).

Determination of hepatic PAF binding
Hepat ic membranes were prepared as descr ibed 
previously[10,16] and suspended in 50 mmol/L Tris-HCl 
(pH 8.0) containing 5 mmol/L MgCl2, 125 mmol/L 
choline chloride, 0.1 mol/L PMSF, 0.1 μg/mL leupeptin 
and 1 μg/mL pepstatin. The membrane suspension was 
stored at -80 °C in aliquots after the protein concentration 
was ad justed to 10 mg prote in/mL. Membranes 
(100 μg protein) were incubated in 50 mmol/L Tris-
HCl (pH 7.2) containing 5 mmol/L MgCl2, 125 mmol/L 
choline chloride, 0.25% BSA and 0.125-32 nmol/L 
1-O-[3H]octadecyl-2-acetyl-sn-glycero-3-phosphocholine 
(151 Ci/mmol, 9.96 GBq/mg; Amersham) ± 10 μmol/L 
unlabeled PAF (Bachem Americas, King of  Prussia, PA, 
USA) at 30 °C for 1 h. The reaction was terminated with 
the addition of  5 mL ice-cold assay buffer and filtration 
through Whatman GF/C filters (Whatman, Hillsboro, 
OR, USA) presoaked in assay buffer for 1 h. Filters 
were washed thrice with 4 mL of  assay buffer, and the 
radioactivity was determined in a β-scintillation counter.

Determination of hepatic PAF receptor mRNA levels
The mRNA expression of  PAF receptors was determined 
by semi-quantitative reverse transcriptase polymerase chain 
reaction (RT-PCR). RNA was isolated from the livers 
using a RNA isolation kit (ToTALLY RNATM, Ambion, 
Austin, TX, USA). Two micrograms of  total RNA was 
used for the preparation of  cDNA by reverse transcription 
as described. cDNA equivalent of  5 ng original RNA was 
used in PCR. The reaction mixture (50 μL) contained 10 
mmol/L Tris-HCl (pH 8.3), 50 mmol/L KCl, 1.5 mmol/L 
MgCl2, 0.2 mmol/L dNTPs, 20 pmol of  PCR primers and 
2U platinum Taq DNA polymerase (GIBCO-Invitrogen, 
Carlsbad, CA, USA). Thirty-five cycles of  reaction 
were carried out as follows: denaturation at 94 °C for 1 
min, annealing at 60 °C for 30 s, and extension at 72 °
C for 30 s. The PCR primers used for PAF cDNA were: 
5'-GCCACAACAGAGGCTTGA-3'(forward) and 5'-TC
CATTGCTCTGGGCAGGAA-3'( reverse) [product size, 
121 bp[21]]. For normalization, β-actin mRNA levels were 
measured as described previously[15], using cDNA primers: 
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5’-TTCTACAATGAGCTGCGTGTG-3’( forward) and 5’
-TTCATGGATGCCACAGGATTC-3’( reverse) [product 
size, 561 bp[22]]. The PCR products were resolved in a 
25 g/L agarose gel and stained with SYBR Green I (FMC 
Bioproduct, Rockland, ME, USA). The gels were scanned 
under blue fluorescent light using a phosphorimager and 
the band intensity was quantified using ImageQuaNT 
software (Molecular Dynamics, Sunnyvale, CA, USA).

Determination of PAF effect on portal venous and 
systemic arterial pressure
The experiment was essentially conducted for the 
measurement of  baseline pressure. After a stable recording 
of  portal and systemic mean arterial pressure (MAP) was 

obtained, 1 mL of  a solution containing PAF (1 μg/kg) 
was infused over 1 min from a 975 Harvard apparatus 
compact infusion pump into the portal vein via a 23 gauge 
needle/PE50 catheter. Portal venous pressure and MAP 
were monitored continuously for 15 min.

Statistical analysis
The values were presented as mean ± SD. Student’s t-test 
was employed for statistical comparison between the 
groups. P < 0.05 was considered statistically significant.

RESULTS
Characteristics of cirrhosis
There were no notable changes in l iver histology 
throughout the 8 wk in control rats (Figure 1A1). In 
contrast, CCl4-treated rats demonstrated extensive changes 
in liver morphology, including steatosis, inflammation, 
hepatocyte ballooning, and necrosis. Extensively distorted 
architecture due to excessive deposition of  extracellular 
matrix was observed, which caused bridging of  fibrosis, 
and infiltration of  inflammatory cells in sinusoids and their 
accumulation around the islands of  hepatocytes (Figure 
1A3). Hepatic fibrosis was further validated histologically 
with Masson’s trichrome staining (Figures 1A2 and A4).

The liver/body weight ratio was not significantly 
different between control and cirrhotic rats, whereas 
spleen weight of  cirrhotic rats was nearly doubled (Table 
1). MAP was significantly lower in cirrhotic rats (10.9 ± 1.3 
kPa) than in control rats (15.2 ± 1.2 kPa). Portal venous 
pressure was higher in cirrhotic rats (1.63 ± 0.09 kPa) 
than in control rats (0.71 ± 0.08 kPa), indicating portal 
hypertension (Table 1).

Effect of cirrhosis on hepatic and circulating PAF and 
hepatic PAF receptor levels
Hepatic PAF concentrations were increased by 44% in 
cirrhotic rats (Table 1). Concentrations of  PAF in the 
femoral arterial, portal venous, and hepatic arterial blood 
were significantly greater in cirrhotic rats than in control 
rats (Figure 2). Moreover, the concentration of  PAF 
was significantly greater in hepatic venous blood than in 

Figure 1  Morphometric analysis of cirrhotic liver 8 wk after CCl4 or vehicle treat-
ment (A) and scores for necroinflammatory NFS, architectural change, fibrosis and 
cirrhosis (AFCS) (B). bP < 0.01 vs control.
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Figure 2  Effect of cirrhosis on circulating PAF levels. Concentrations of PAF in 
blood from femoral artery, portal and hepatic vein (suprahepatic vena cava) were 
determined. Values are mean±SD. aP < 0.05 vs control; bP < 0.01 vs control.
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Portal pressure (kPa)                       0.71 ± 0.08            1.63 ± 0.09            0.001
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Table1  Characteristics of cirrhosis (mean±SD)

NS: not significant.
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portal venous blood in cirrhotic rats (Figure 2). No such 
difference in hepatic venous and portal venous blood of  
control rats was observed.

Scatchard analysis of  the saturation binding data 
revealed a 3-fold increase in PAF binding capacity in 
cirrhotic liver as compared to the control (Bmax of  
2.8 ± 0.21 vs 0.9 ± 0.06 fmol/μg protein, P < 0.01), whereas 
receptor affinity was unaltered (Kd: 8.01 ± 1.33 nmol/L 
for cirrhotic rats and 5.79 ± 0.96 nmol/L for control rats, 
P < 0.05, Figure 3). Consistent with the increased receptor 
density, a similar increase in the PAF receptor mRNA 
transcript was observed in the cirrhotic liver as determined 
by RT-PCR (PAFR/β-actin mRNA ratio of  0.51 ± 0.03 vs 
0.16 ± 0.015, P < 0.01, Figure 4).

Effect of PAF on portal and arterial pressure in cirrhotic 
rats
A separate set of  control and cirrhotic rats were used 
to determine the PAF-induced changes in portal and 
systemic blood pressure. Infusion of  PAF (1 g/kg WT) 
via the portal vein after a short delay caused a greater 
increase (P < 0.01) in portal pressure in cirrhotic rats 
(from 1.61 ± 0.08 to 2.13 ± 0.09 kPa; 33% increase) than 
in control rats (from 1.07 ± 0.10 to 1.30 ± 0.09 kPa; 22% 
increase) (Figures 5 and 6). Following the initial rise, the 
portal pressure decreased progressively with time and was 
lower than the basal value 9 min after the administration 

of  PAF.
The effect of  PAF administered into the portal vein 

on arterial pressure was opposite to that observed on 
portal pressure (Figures 5 and 6). In contrast to the delay 
onset of  the rise in portal venous pressure, MAP fell 
immediately after the administration of  PAF. The decrease 
in MAP (P < 0.01) was greater in control rats (54%) than in 
cirrhotic rats (42%). With the fall in MAP, pulse pressure 
fell markedly and did not recover, suggesting a reduction 
in cardiac contractility.

Effect of PAF antagonist BN52021 on portal and arterial 
pressure in cirrhotic rats
Administration of  BN52021 (5 mg/kg WT) via the portal 
vein caused a 16% decrease in the portal pressure of  
cirrhotic rats (from 1.95 ± 0.21 to 1.64 ± 0.15 kPa, P < 0.01). 
This effect occurred 2 to 3 min after the administration 
of  BN52021. On the other hand, arterial pressure did not 
change upon treatment with BN52021 (from 11.0 ± 0.8 to 
11.3 ± 0.67 kPa). In control rats, BN52021 had no effect 
on either portal or arterial pressure(Figure 7).

DISCUSSION
This investigation showed that increased production 
of  PAF in the cirrhotic liver could lead to an increased 
circulating level of  PAF, which is likely responsible for 
the arterial hypotension associated with the disease. In 
addition, hepatic PAF receptor mRNA expression was 
upregulated with a concomitant increase in PAF binding. 
Since PAF potently increases portal pressure and hepatic 
vascular resistance[6,7,23], it can be concluded that the up-
regulated PAF system in the liver plays an important role 
in portal hypertension.

In the present study, the source of  the increased hepatic 
PAF and the site of  increased PAF receptors were not 

Figure 3  Effect of cirrhosis on hepatic PAF binding. A: Results of the saturation 
binding assay. 3H-PAF was incubated with 100 μg membrane protein, in the 
presence or absence of 10 μmol/L at 30 °C for 1 h; B: Scatchard plot analysis of 
3H-PAF binding to hepatic tissue of cirrhotic and control rats. Values are mean of 
separate experiments. Cirrhosis: R = 0.98, Kd = 8.013 nmol/L, Bax = 2.8 ± 0.213 
fmol/μg membrane protein; control: R = 0.99, Kd = 5.794 nmol/L, Bax = 0.9 ± 0.061 
fmol/μg membrane protein.
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determined. Yang et al [10] reported that Kupffer cells are a 
major source of  increased PAF in CCl4-induced cirrhotic 
rat liver. Synthesis of  PAF by Kupffer cells is stimulated 
by a number of  inflammatory mediators and bacterial 
endotoxin (ET)[2,24,25]. Increased circulating ET is a strong 
candidate contributor to the elevation of  hepatic portal 
pressure in cirrhosis[15,26]. We have previously reported 
that hepatic ET-1 and its receptors increase in rats 24 
h after the administration of  CCl4

[15] and progressively 
thereafter during the development of  cirrhosis. In the 
present study, hepatic PAF did not increase during the first 

week of  CCl4 treatment (2.70 ± 0.75 ng/g in control rats 
and 2.74 ± 0.46 ng/g in CCl4-treated rats, P > 0.05) but 
increased after 2 wk of  treatment. Since PAF synthesis by 
Kupffer cells is increased by ET-1[24], the early elevation of  
ET-1 may contribute to the long-term increase in hepatic 
PAF. To further investigate the interaction between these 
two potent mediators during cirrhosis, we infused the 
powerful vasoconstrictor ET-1 into some experimental 
animals. After stabilization of  the portal and arterial 
pressures following the administration of  PAF, ET-1 
(0.75 nmol) was infused as a bolus into the portal vein. 
The magnitude of  ET-1 effect was much greater in control 
rats (200% increase) than in cirrhotic rats (80% increase, 
P  < 0.01). We have previously reported that portal infusion 
of  ET-1 alone causes a 150% increase in portal pressure 
in control rats and a 23% increase in cirrhotic rats[15], 
suggesting that with or without prior infusion of  PAF, 
the qualitative responses to ET-1 are similar between 
control and cirrhotic rats. Quantitatively, prior infusion of  
PAF appears to sensitize the hepatic vasculature to ET-1 
moderately in control rats (200% vs 150%) and greatly in 
cirrhotic rats (80% vs 23%). The interaction between these 
two potent mediators during cirrhosis warrants further 
investigation.
Potentially, PAF could be increased by a decrease in 
the activity of  plasma PAF-acetylhydrolase, which is 
predominantly responsible for the hydrolysis of  PAF to 
lyso-PAF[27,28]. Plasma PAF-acetylhydrolase activity is similar 
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in normal individuals and patients with alcohol-induced 
liver cirrhosis[29]. Patients with primary and secondary 
biliary cirrhosis have elevated levels of  circulating PAF 
and serum PAF-acetylhydrolase activity[30], suggesting that 
synthesis of  PAF increased by plasma PAF-acetylhydrolase 
is the mechanism underlying the elevated circulating levels 
of  PAF.

The augmented effect of  PAF on the vasculature of  
chronically injured liver appears to be independent of  
the hemodynamic state of  the liver (i.e. normotensive or 
portal hypertensive). The vasoconstrictor effect of  PAF 
in the perfused livers is greater in rats with thioacetamide-
induced hepatic fibrosis than in control rats, even though 
the fibrosis rats have no portal hypertension[31]. In the 
present study, PAF-induced portal hypertension was of  
greater magnitude in the cirrhotic rats than in the control 
rats. These results suggest that the increased reactivity to 
PAF is associated with the pathology of  hepatic cirrhosis 
or injury rather than the pre-existing presence or absence 
of  portal hypertension. That is to say, the response to 
PAF is not dependent upon the already increased hepatic 
vascular tone.

The reduction of  portal pressure in cirrhotic rats 
induced by the PAF antagonist BN52021 provides 
convincing evidence that endogenous PAF is involved in 
the development of  portal hypertension. The mechanisms 
of  PAF-induced hepatic vasoconstriction are very complex 
and remain to be defined. PAF receptors have been 
found in smooth muscle cells[32]. PAF elevates cytosolic 
free calcium in smooth cells[33,34], which is necessary for 
muscle contraction. Exogenous PAF causes contraction 
of  smooth muscle from i leal and peripheral lung 
strips[35,36] and contributes to endothelin-induced vascular 
constriction in rat mesentery[37]. Therefore, the contractile 
effect of  PAF on the hepatic vasculature may be elicited 
by its direct action on smooth muscle cells. PAF may also 
act by stimulating the synthesis of  eicosanoids such as 
thromboxane, PGE2, and PGD2, which are known to cause 
portal vasoconstriction[38-41].

The combination of  portal hypertension and peripheral 
vasodilatation with systemic arterial hypotension is 
characteristic of  liver cirrhosis and implicates PAF. The 
observation that PAF induces smooth muscle contraction 
of  ileal[35] and pulmonary strips[36], and micro-vessels[37] 
is apparently in contradiction with the observation that 
it induces hypotension when administered intravenously 
to rats[42]. In fact, PAF produces hypotension in all 
animal species studied[8]. Increased plasma levels of  
PAF in cirrhosis are associated with low peripheral 
vascular resistance that is reversed by PAF antagonist 
BN52021[9,29,43]. Sakaguchi et al [44] and Hines et al [6] reported 
that intravenous administration of  PAF (1.5 μg/kg WT) 
causes arterial hypotension. The mechanisms of  PAF-
induced systemic arterial hypotension are not clearly 
understood. PAF-induced hypotension is not mediated 
by the central nervous system, renin-angiotensin system, 
β-adrenergic and dopaminergic eicosanoids, as well as Ca2+ 

influx and thyrotropin releasing steroids[45,46]. However, 
PAF-induced delay and persistent hypotension is inhibited 
by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine[47] 
while nitric oxide plays a role in PAF-induced relaxation 

of  rat thoracic aorta[48]. This can be partially explained by 
the observation that PAF released by the liver may regulate 
systemic hemodynamics or stimulate the release of  very 
powerful hypotensive agents such as nitric oxide[47,48]. The 
involvement of  nitric oxide requires clarification.

In conclusion, PAF is an important mediator of  hepatic 
pathology during chronic liver injury. Cirrhotic liver is a 
source of  circulating PAF and a major contributor to the 
systemic hypotension associated with liver cirrhosis.
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