
be tested regarding their in vitro  efficiency. Growth 
inhibition by IFN-γ action requires STAT1.
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INTRODUCTION
Pancreatic stellate cells (PSCs) are the main source 
of  extracellular matrix (ECM) proteins in pancreatic 
fibrosis[1-3], a common feature of  chronic pancreatitis and 
pancreatic cancer[4,5]. They are closely related with hepatic 
stellate cells (HSCs), the key effector cells in liver fibrosis[6]. 
In response to pro-fibrogenic cytokines and ethanol 
metabolites, PSCs exhibit a myofibroblastic phenotype that 
is characterized by the expression of  α-smooth muscle 
actin (α-SMA), proliferative activity, a loss of  the typical 
retinoid-containing fat droplets, and enhanced ECM 
synthesis[3,7]. Similar phenotypic changes, considered as 
PSC activation, are induced when isolated PSCs are plated 
on cell-culture dishes[1,2,8-10]. The molecular principles of  
PSC activation in vivo and in vitro have been extensively 
analyzed in the past few years. Studies indicate that platelet-
derived growth factor (PDGF) exerts strong mitogenic 
effects on PSCs, while transforming growth factor-beta 
(TGF-β) has been suggested as the most potent stimulator 
of  ECM synthesis[11,12]. Furthermore, intracellular signal 
transduction pathways mediating PSC activation have, in 
part, been deciphered. Thus, we and others have recently 
shown that mitogen-activated protein kinases are key 
mediators of  activation signals[13-17]. In contrast, natural 
antagonists of  PSC activation have not been systematically 
studied so far. Their elucidation, however, may be helpful 
for the development of  antifibrotic therapies.

Interferons (IFNs) are multifunctional cytokines 
that block viral infection, modulate immune as well as 
inflammatory responses, and inhibit cell proliferation[18]. 
IFN-α is an effective drug for the treatment of  patients 
with chronic hepatitis B or C associated with liver 
fibrosis[19,20]. Recent studies suggest that IFNs not only 
block virus replication but also directly affect key functions 
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Abstract
AIM: To analyze and to compare the effects of interferon 
(IFN)-α, IFN-β, and IFN-γ on pancreatic stellate cell (PSC) 
activation in vitro  and to elucidate the molecular basis of 
IFN action.

METHODS: PSCs were isolated from rat’s pancreatic 
tissue, cultured and stimulated with recombinant rat 
IFNs. Cell proliferation and collagen synthesis were 
assessed by measuring the incorporation of 5‑bromo-2’
-deoxyuridine (BrdU) into DNA and [3H]-proline into 
acetic acid-soluble proteins, respectively. Apoptotic 
cel ls were determined by FACS analysis (sub-G1 
peak method). Exhibition of the myofibroblastic PSC 
phenotype was monitored by immunoblot analysis of 
α-smooth muscle actin (α‑SMA) expression. To assess 
the activation of signal transducer and activator of 
transcription (STAT), Western blots using phospho-
STAT-specific antibodies were performed. In studies on 
STAT1 function, expression of the protein was inhibited 
by siRNA.

RESULTS: IFN-β and IFN-γ, but not IFN-α significantly 
diminished PSC proliferation and collagen synthesis. 
IFN-γ was the only IFN that clearly inhibited α-SMA 
expression. Under the experimental conditions used, 
no enhanced rate of apoptotic cell death was observed 
in response to any IFN treatment. IFN-β and IFN-γ 
induced a strong increase of STAT1 and STAT3 tyrosine 
phosphorylation, while the effect of IFN-α was much 
weaker. Inhibition of STAT1 expression with siRNA was 
associated with a significantly reduced growth-inhibitory 
effect of IFN-γ.

CONCLUSION: IFN-β and particularly IFN-γ display 
inhibitory effects on PSC activation in vitro  and should 
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of  activated HSCs. Thus, IFN-γ inhibits HSC survival, cell 
proliferation and collagen synthesis[21-23]. The effects of  
IFNs on PSCs are largely unknown.

IFNs exert their biological effects on target cells by 
binding to cell surface receptors with specificity for either 
type I interferons (IFN-α, -β, and -ω) or type II interferon 
IFN-γ[18,24]. In the transduction of  signals from activated 
IFN-receptors to the nuclei, tyrosine kinases of  the 
Janus family (JAKs) and signal transducer and activator 
of  transcription (STAT) transcription factors play a key 
role[18,25]. IFN-α activates the JAK family proteins (JAK1 
and TYK2) as well as the ISGF3 complex (consisting of  
STAT1, 2 and the IFN regulatory family protein p48)[26]. 
Although tremendous progress has been made, the 
molecular mechanisms underlying the growth-inhibitory 
action of  these cytokines are only partially characterized so 
far.

This study was to analyze the biological effects of  
IFN-α, -β and -γ on PSCs and to study the molecular 
determinants of  IFN efficiency.

MATERIALS AND METHODS
Materials
The enhanced chemiluminescence (ECL) plus kit, 
horseradish-peroxidase labeled antibodies and [3H]-proline 
were purchased from Amersham Biosciences (Freiburg, 
Germany), the phospho-STAT1 and STAT3 antibodies 
from New England Biolabs (Frankfurt, Germany), and 
anti-STAT1 and STAT3 protein antibodies from Santa 
Cruz Biotechnologies (Santa Cruz, CA, USA). Hank’s 
buffered salt solution (HBSS), Iscove’s modified Dulbecco’
s medium (IMDM) and all supplements for cell culture 
were obtained from Biochrom (Berlin, Germany), 
Nycodenz from Nycomed (Oslo, Norway), simvastatin 
from Merck Biosciences (Schwalbach, Germany) and 
the recombinant rat interferons from R&D Systems 
(Minneapolis, MN, USA). Ascorbat, β-aminoproprionitrile 
and the α‑SMA antibody as well as standard laboratory 
chemicals were from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture
PSCs were isolated from the pancreas of  male LEW.1W 
inbred rats by collagenase digestion of  the organ and 
Nycodenz (120 g/L) density gradient centrifugation as 
previously described[13]. PSCs collected from the top of  
the gradient were washed and resuspended in IMDM 
supplemented with 170 g/L fetal calf  serum (FCS),  
10 mL/L non-essential amino acids (dilution of  a 100
× stock solution), 105 U/L penicillin and 100 mg/L 
streptomycin. The cells were cultured at 37 °C in a  
50 mL/L CO2 humidified atmosphere. All experiments 
were performed with cells growing in primary culture, or 
depending on the experimental settings, with cells of  the 
first passage. If  replating of  the cells was required, PSCs 
were harvested by trypzination on d 7 after isolation and 
recultured at equal seeding densities.

Quantification of DNA synthesis
To quantitate cel l proliferation, incorporation of  
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5-bromo-2’-deoxyuridine (BrdU) into newly synthesized 
DNA was measured using the BrdU labeling and enzyme-
linked immunosorbent assay kit (Roche Diagnostics). 
Therefore, cells were plated in 96-well plates in complete 
culture medium supplemented with IFN as indicated. 
After 48 h, BrdU labeling was initiated by adding labeling 
solution at a final concentration of  20 mL/L. After 
another 16 h, labeling was stopped, and BrdU uptake was 
measured according to the manufacturer’s instructions.

Analysis of cellular DNA content by flow cytometry (sub-
G1-peak)
Cells were grown to about 80% confluency and then 
incubated for 48 h in complete culture medium with or 
without IFN as indicated. Then the cells were harvested 
by trypzination, washed twice with PBS and resuspended 
in 2 mL ice-cold 70% ethanol for at least 12 h at  
-20 °C, washed again twice with PBS and incubated for 
1 h in 400 µL PBS containing 1 mL/L Tween 20 and  
1 g/L RNase at room temperature. After the addition of  
50 µg propidium iodide/106 cells, samples were subjected 
to cytofluorometric analysis using an FACScan (Becton 
Dickinson) and the CellQuest program. Ten thousand 
events were measured for each sample and the data were 
stored in list mode for further analysis.

Quantification of collagen synthesis
Collagen synthesis was assessed through the quantification 
of  [3H]-proline incorporation into acetic acid-soluble 
proteins. Therefore, cells were plated in 12-well plates and 
grown to subconfluency. Afterwards, they were cultured 
for 48 h in complete culture medium supplemented with 
2.5 mCi/L [3H]-proline (48 Ci/mmol), 50 mg/L ascorbate, 
50 mg/L β-aminoproprionitrile and IFN as indicated. All 
further steps were performed essentially as previously 
described[27]. Raw data of  [3H]-proline incorporation were 
normalized on the basis of  absolute cell counts determined 
by trypan blue staining of  PSCs cultured in parallel under 
identical conditions, except that no [3H]-proline was added.

Immunoblotting
Protein extracts of  PSCs (pretreated as indicated) were 
prepared, adjusted to identical protein concentrations 
and subjected to immunoblot analysis as previously 
described[13]. Briefly, proteins (15 µg/sample) were separated 
by SDS-polyacrylamide gel electrophoresis and blotted 
onto nitrocellulose membrane. Next, the filters were 
blocked with 1% bovine serum albumin (Sigma-Aldrich) 
and incubated with the indicated antibodies (diluted 
according to the manufacturer’s instructions) overnight 
at 4  °C. After a final incubation with a horseradish-
peroxidase labeled anti-rabbit or anti-mouse Ig antibody 
for 2 h at room temperature, blots were developed 
using ECL. For reprobing with additional antibodies, 
membranes were stripped by incubation in stripping buffer  
(62.5 mmol/L Tris-HCl, pH 6.7, 20 g/L SDS, 100 mmol/L 
2-mercaptoethanol) at 50 °C for 30 min.

Inhibition of STAT1 expression using siRNA
STAT1 siRNA was purchased from Qiagen (Hilden, 
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Germany) and applied according to the manufacturer’s 
protocol for the transfection of  adherent cells, using a 
1:6 ratio of  siRNA to RNAsFect Reagent. Efficiency of  
siRNA treatment was monitored by analyzing the STAT1 
protein level at different times after siRNA application. To 
study the effects of  STAT1 siRNA on PSC growth, cells 
growing in 96-well plates were pretreated with siRNA at 
100 nmol/L for 24 h before IFN-γ was added as indicated. 
After 48 h of  incubation, DNA synthesis was quantitated 
by the determination of  BrdU incorporation into DNA 
as described above. In all the experiments, a non-silencing 
siRNA oligonucleotide was included as a negative control.

Statistical analysis
Results were expressed as mean±SE for the indicated 

number of  separate cultures per experimental protocol. 
Statistical significance was checked using Wilcoxon’s rank 
sum test. P < 0.05 was considered statistically significant.

RESULTS
Effects of IFNs on PSC functions
To analyze the effects of  IFN-α, IFN-β and IFN-γ on 
PSC proliferation, DNA synthesis after IFN-pretreatment 
for 48 h was measured (Figure 1). Both IFN-β and IFN-γ 
inhibited DNA synthesis significantly and in a dose-
dependent manner, causing more than 30% reduction 
at the highest concentration tested. In contrast, IFN-α 
even at the concentration of  106 U/L had no effect on 
PSC growth. To study if  the inhibition of  DNA synthesis 
was in fact due to the induction of  apoptosis, an FACS 
analysis was performed (Figure 2). Under the experimental 
conditions tested, none of  IFN-α, IFN-β or IFN-γ 
induced a significant increase of  the sub-G1 fraction 
(representing apoptotic cells). In contrast, PSCs treated 
with simvastatin significantly accumulated in the sub-G1 
fraction, confirming our previous results of  pro-apoptotic 
effects of  hydroxymethylglutaryl coenzyme A reductase 
inhibitors[28].

Next, we asked how IFNs affect the myofibroblastic 
phenotype of  activated PSCs. IFN-γ incubation for  
9 d (starting immediately after isolation) was associated 
with a dose-dependent reduction of  α-SMA protein 
expression (Figure 3), while the effect of  IFN-β (at  
106 U/L) remained questionable and IFN‑α did not display 
any inhibitory effect at all. Further studies revealed that 
IFN-γ (at ≥1 µg/L) and IFN-β (at ≥104 U/L), but not 
IFN-α (at 106 U/L) significantly diminished collagen 
synthesis by PSCs (Figure 4). A further increase of  IFN-γ 
and IFN-β concentrations had no additional effect (data 
not shown).

To correlate the biological effects of  the three IFNs 
with their molecular action, we analyzed STAT protein 
activation in IFN-stimulated PSCs (Figure 5). IFN-β and 
IFN-γ induced a rapid and strong increase of  STAT1 and 
STAT3 tyrosine phosphorylation, while IFN-α was much 
less effective.

In subsequent experiments, we further studied the 
role of  STAT1 in the mediation of  IFN-γ effects on 
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Figure 1 Effects of interferons on PSC proliferation. PSCs growing in primary 
culture were harvested, replated at equal seeding densities in 96-well plates and 
treated with IFN-α, IFN-β and IFN-γ at the indicated concentrations for 48 h, the 
time when the fastest-growing cultures were almost confluent. Cell proliferation 
was assessed with the BrdU DNA-incorporation assay. One hundred percent cell 
proliferation corresponds to untreated PSCs. Data are presented as mean ± SE 
(n = 6 separate cell preparations from one rat). aP < 0.05 vs control cultures. The 
results shown are representative of three experiments using cells from different 
rats.
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Figure 3 IFN-γ inhibits expression of α-SMA in PSCs. Freshly isolated PSCs 
growing in 6-well plates were treated with IFN for 9 d as indicated. Cell lysates 
were normalized for protein concentration and resolved by SDS-PAGE. A: 
Expression of α SMA assayed by immunoblotting; B: Blot stripped and reprobed 
with an anti-ERK 1/2 protein-specific antibody to control loading. Results are 
representative of three independent experiments.
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91 
kDa

PSC growth. As shown in Figure 6A (upper panel), 
STAT1 siRNA treatment caused a marked decrease of  
the STAT1 protein level. Expression of  ERK 1 and 2 
remained unchanged (lower panel), suggesting that the 
siRNA inhibited STAT1 expression in a specific manner. 
Downregulation of  the STAT1 protein level was associated 
with a significant attenuation of  the growth-inhibitory 
effect of  IFN-γ (Figure 6B).

DISCUSSION
Chronic pancreatitis is associated with an extended fibrosis 
that contributes to the development of  an exocrine and 
endocrine insufficiency of  the gland. Excessive deposition 
of  connective tissue is also typical of  pancreatic cancer 
and has been implicated in the acceleration of  tumor 
progression[29]. In both cases, activated PSCs have been 
identified as the principle ECM-producing cell type[3,7,30]. 
PSCs are therefore considered as a promising target for 
the development of  adjuvant therapies aimed at inhibiting 
pancreatic fibrogenesis.

The results of  this study showed that IFNs displayed 
direct inhibitory effects on key effector functions of  
activated PSCs. While both IFN-γ and IFN-β diminished 
PSC proliferation and collagen synthesis, only IFN-γ 
efficiently reduced the expression of  α-SMA, an indicator 
of  myofibroblastic transdifferentiation. The effects 
of  IFN-α remained insignificant. Whether the latter 
observation could reflect a peculiarity of  the in vitro model 
used in this study, or a general phenomenon of  PSC 
biology, is currently unclear.

The findings described here are largely in agreement 
with the results of  studies on hepatic stellate cells which 
also showed direct, but distinct inhibitory effects of  
different IFNs on stellate cell activation. Shen et al[21] 
observed that HSC proliferation is attenuated by IFN-β 
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cultures. The results shown are representative of three experiments using cells 
from different rats.

-      5      20    60      5      20    60      5      20     60       -
A

←

1        2       3      4      5       6     7      8       9      10     11

B

IFN-a                     IFN-b                    IFN-g

←

←91 
kDa

Phospho-
STAT 1

←STAT 1

Time (min)

-        5      20     60      5      20     60      5      20     60
IFN-a                      IFN-b                      IFN-g

Time (min)

92 
kDa

←

←Phospho-
STAT 3

←STAT 3
92 
kDa

←

Figure 5 Tyrosine phosphorylation of STAT1 and STAT3 in PSCs induced by 
IFN. PSCs growing in 6-well plates (one passage) were treated with IFN-a 
(106 U/L), IFN-b (106 U/L) and IFN-g (100 mg/L) as indicated. Cell lysates were 
normalized for protein concentration and resolved by SDS-PAGE. A: Tyrosine 
phosphorylation of STAT1 assayed by immunoblotting using an antibody specific 
for the tyrosine-phosphorylated protein (upper panel). To control loading, the blot 
was stripped and reprobed with an anti-STAT1 protein-specific antibody (lower 
panel); B: Immunoblot analysis performed using an antibody specific for tyrosine-
phosphorylated STAT3 (upper panel) and the blot stripped and reprobed with an 
anti-STAT3 protein-specific antibody (lower panel). Results are representative of 
three independent experiments.
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and IFN-γ, but not by IFN-α. On the other hand, 
under the experimental conditions used in this study no 
significant effects of  IFNs on cell survival were detected, 
while in HSCs pro-apoptotic effects of  IFN-γ and an anti-
apoptotic action of  IFN-α have been reported[23].

Targeted gene disruption studies have shown that 
the transcription factor STAT1 plays an essential, non-
redundant role in IFN-mediated innate immunity to 
viral diseases[31,32]. Analyzing possible functions of  STAT 
proteins in PSCs, we found a correlation between the 
efficiency of  the different IFNs to inhibit stellate cell 
functions and their potential to activate STAT1 (as well as 
STAT3). Further experiments using an siRNA approach 
to block STAT1 expression revealed a direct involvement 
of  the transcription factor in PSC growth inhibition by 
IFN-γ. The precise functions of  STAT3 in PSCs remain to 
be characterized.

Previous studies in our laboratory have shown that 
IFN-γ in PSCs stimulates the expression of  interleukin 
( IL) -15 . In a co-cu l ture mode l of  ra t PSCs and 
lymphocytes, a suppression of  spontaneous lymphocyte 
apoptosis has been observed, which is at least in part 
mediated by IL-15[33]. Together, these data and the results 
of  this study suggest a complex role of  IFN-γ in the 
modulation of  pancreatic inflammation and fibrosis. It 
is conceivable that IFN-γ displays distinct net effects on 
the progression of  chronic pancreatitis, depending on 
the activation of  auto-reactive lymphocytes and possibly 
the stage of  the disease. To further elucidate the effects 
of  IFN-γ on pancreatic fibrogenesis, in vivo studies using 
animal models of  pancreatic fibrosis are required.

In summary, the discovery of  direct inhibitory IFN-
effects on PSC activation encourages further studies with 
respect to IFN efficiency in chronic pancreatitis. Currently, 
we are also focusing on a systematic evaluation of  IFN 
target genes in stellate cells.
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