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Abstract
The gastrointestinal tract represents the largest mucosal 
membrane surface in the human body. The immune 
system in the gut is the first line of host defense against 
mucosal microbial pathogens and it plays a crucial role 
in maintaining mucosal homeostasis. Membranous or 
microfold cells, commonly referred to as microfold cells, 
are specialized epithelial cells of the gut-associated 
lymphoid tissues (GALT) and they play a sentinel role for 
the intestinal immune system by delivering luminal antigens 
through the follicle-associated epithelium to the underlying 
immune cells. M cells sample and uptake antigens at their 
apical membrane, encase them in vesicles to transport 
them to the basolateral membrane of M cells, and from 
there deliver antigens to the nearby lymphocytes. On the 
flip side, some intestinal pathogens exploit M cells as their 
portal of entry to invade the host and cause infections. In 
this article, we briefly review our current knowledge on the 
morphology, development, and function of M cells, with 
an emphasis on their dual role in the pathogenesis of gut 
infection and in the development of host mucosal immunity.
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INTRODUCTION
The gastrointestinal (GI) tract, in addition to its role as an 

organ for nutrient absorption, represents a key interface 
between the host and its external environment. Since the 
GI tract has the highest recorded bacterial cell density 
of  any microbial ecosystem[1], it is not surprising that the 
GI immune system is both extensive and complex. The 
GI tract contains more antibody-producing cells than in 
the spleen and lymph nodes combined, and it contributes 
the majority of  the body’s immunoglobulin production 
in the form of  IgA secreted into the intestinal lumen[2,3]. 
The GI mucosa, due to its large surface area (200 times 
greater than the skin)[4], requires consistent monitoring 
for potentially harmful agents (such as pathogens) while 
discriminating these from harmless food and non-
pathogenic antigens. Gut-associated lymphoid tissue 
(GALT), consisting of  Peyer’s patches (PP), appendix, 
and other lymphoid aggregates in the large intestine, plays 
crucial roles in the maintenance of  homeostasis in the GI 
system. The membranous or microfold cell (M cell) in the 
Peyer’s patches is one of  the primary cell types responsible 
for the capability of  the intestinal immune system to 
mount both immunological and mucosal tolerogenic 
responses to foreign antigens.

This review wil l brief ly summarize the current 
knowledge on intestinal M cells, with the emphasis of  its 
potential role in GI infection and immunity. However, 
it is worth noting that M cells are also present in other 
mucosa-associated lymphoid tissues (MALT), such as the 
bronchus-associated lymphoid tissue (BALT) and nasal-
associated lymphoid tissue (NALT)[5].

MORPHOLOGY AND FUNCTIONS OF THE 
M CELL 
M cells are specialized epithelial cells forming part of  the 
follicle-associated epithelium (FAE) which overlies the PP 
and other lymphoid aggregates. The most striking feature 
of  the human M cell under light or electron microscopy is 
the absence of  surface microvilli which are characteristic 
of  the intestinal epithelial cells. Instead, the apical 
membrane of  the M cell has a microfold (or membranous) 
topography (Figure 1)[6-8], and hence the name M cell. 
Like other epithelial cells, M cells form tight junctions to 
maintain a barrier function, albeit with different structural 
features and adhesion protein expression[9]. The basolateral 
membrane of  M cells is invaginated, and forms many 
“pockets”, which harbor infiltrating lymphocytes[10]. 
The formation of  these “pockets” greatly reduces the 
intracellular distance that antigens have to travel and allows 
M cells to rapidly transport (within 10 to 15 min) antigenic 
materials to the basolateral membrane[11,12].
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The morphology of  M cells varies greatly amongst 
different animal species, and within anatomic sites 
of  a species. For instance, the microfold structure is 
present only in human M cells[7], and human M cells 
lack microvilli. In contrast, the microvilli are present on 
the surface of  murine M cells, but these are short and 
irregular[13] in contrast to the microvilli on the M cells of  
rabbit caecal lymphoid patches which are longer than the 
neighboring enterocytes[14]. The M cells express a wide 
range of  carbohydrate markers with diverse glycoconjugate 
profiles[15], which perhaps allows M cells to interact with 
a broad range of  microbes[16,17]. For example, while Ulex 
europaeus agglutinin-1 (UEA-1), an α-L-fucose residue- 
specific lectin which selectively labels fucose, recognizes M 
cells and goblet cells overlying the mouse PP[18,19], it fails 
to react with M cells on the mouse caecum or colon[15,20]. 
Conversely, UEA-1 does not bind to M cells of  rabbit PP 
but reacts with those in the caecal lymphoid patches[21]. 
As a result, studies of  rabbit M cells have frequently used 
vimentin, instead of  UEA-1, as histochemical markers[22-25]. 
On the other hand, human M cells are generally negative 
for specific lectin binding[26], but are positive for the 
sialyl Lewis A antigen[27]. M cells in rats, guinea pigs and 
cats share similar lectin-binding patterns to enterocytes, 
although the cytokeratins 8 and 18 are over-expressed 
in M cells of  rats and pigs, respectively, compared to 
neighboring enterocytes[28,29]. Because of  these variations 
and diversity in the morphology and lectin-binding 
patterns, multiple confirmatory characteristics are usually 
required for the positive identification and characterization 
of  M cells. Although glycosylation patterns and lectin-
binding properties remain commonly used identifiers 
of  M cells due to their relative ease of  analyses, electron 
microscopy currently remains the most definitive method 
for M cell identification[15,20,30,31]. 

One of  the major functions of  M cells is believed to be 
the uptake and transport of  antigens from the gut lumen 
to the underlying mucosal immune system (Figure 2)[32]. 
The apical membrane of  M cells is specialized for the 
uptake and transport of  antigens, featuring a reduced 
glycocalyx[33], and a general lack of  membrane hydrolytic 

enzymes[34]. Additionally, the dramatic reduction of  
lysosomes may allow M cells to transport microorganisms 
into the lymphoid follicles without altering their antigenic 
properties[35]. M cells have been shown to be able to 
transport proteins[36,37], bacteria[31,38,39], viruses[40] and 
non-infectious particles[41,42] from the apical membrane 
to the basolateral surface. Bacteria and large particle 
transport is accomplished by phagocytosis, accompanied 
by apical membrane ruffling and actin cytosketeton 
rear rangements [38,43]. Under e lectron microscopy 
observation, M cells appear to reach out and engulf  
these large particles. Viral, and small adherent particles 
are endocytosed in clathrin-coated vesicles[41], while non-
adherent antigens undergo fluid phase pinocytosis[6,11]. 
However, the role of  M cells in antigen processing 
and presentation per se remains unclear. Although there 
have been several reports of  M cells expressing major 
histocompatibility complex (MHC) class Ⅱ molecules[44-46], 
these findings could not be confirmed by others[32,47,48]. 
However, M cells do express cathepsin E, which is typically 
expressed on antigen-presenting cells[49], and M cells can 
also produce the pro-inflammatory cytokine interleukin 1 
(IL-1)[50]. In addition, M cells are the main producers of  
CC chemokine ligand (CCL) 9 and CCL20 in the FAE[51], 
and also produce CXC chemokine ligand (CXCL) 16[52].

Figure 2  Antigen uptake and recognition by CD4+ T cells in the intestine. Antigen 
may enter through the microfold (M) cells in the follicle-associated epithelium 
(FAE) (a), and after transfer to local dendritic cells (DCs), might then be presented 
directly to T cells in the Peyer’s patch (b). Alternatively, antigen or antigen-
loaded DCs from the Peyer’s patch may gain access to draining lymph (c), with 
subsequent T-cell recognition in the mesenteric lymph nodes (MLNs) (d). A similar 
process of antigen or antigen-presenting cell (APC) dissemination to MLNs may 
occur if antigen enters through the epithelium covering the villus lamina propria 
(e), but in this case, there is the further possibility that MHC class Ⅱ+ enterocytes 
may act as local APCs (f). In all cases, the antigen-responsive CD4+ T cells 
acquire expression of the α4β7 integrin and the chemokine receptor CCR9, leave 
the MLN in the efferent lymph (g) and after entering the bloodstream through 
the thoracic duct, exit into the mucosa through vessels in the lamina propria. T 
cells which have recognized antigen first in the MLN may also disseminate from 
the bloodstream throughout the peripheral immune system. Antigen may also 
gain direct access to the bloodstream from the gut (h) and interact with T cells in 
peripheral lymphoid tissues (i). (Adapted by permission from Macmillan Publishers 
Ltd: Nature Reviews Immunology[32], copyright 2003).

Peyer's patch M cell

Figure 1  Ultrastructure of the Peyer’s patches and FAE (Adapted by permission 
from Macmillan Publishers Ltd: Nature Reviews Immunology[32], copyright 2003). 
A: At low magnification, the dome shape of the Peyer’s patch protrudes between 
villi into the lumen of the intestine; B: At higher magnification, M cells can be seen 
as epithelial cells with surface microfolds rather than the microvilli that are seen 
on the surrounding conventional enterocytes; C: Antigen is taken up preferentially 
through M cells.
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DEVELOPMENT OF M CELLS
During embryonic and postnatal development, each crypt 
in the intestine is a clonal unit[53,54] whose cells differentiate 
into multiple types as they migrate. Cells on the villous 
side of  the crypt differentiate into absorptive enterocytes, 
goblet cells and enteroendocrine cells. The cells on the 
FAE side of  the crypt acquire the phenotype of  absorptive 
enterocytes, M cells and, rarely, goblet cells[12,55,56]. Within 
this framework, two hypotheses have been proposed 
for the development of  M cells. The first hypothesis 
suggests that M cells originate from a distinct cell lineage 
following an independent differentiation program. 
Evidence supporting this hypothesis includes that M cell 
development in the PP is restricted to specialized dome-
associated crypts, and that both M cell precursors and their 
developmental intermediates have been identified within 
these dome-associated crypts[34,57] with early commitment 
of  M cells observed in the mid-crypt area of  caecum, 
appendix and PP[58,59]. In addition, the arrangement of  
some M cells as radial strips on the FAE dome with a 
single, predominating glycosylation pattern also implies 
M cell commitment occurs in the dome-associated 
crypts[14,60,61]. However, even in this example, the M cell 
glycosylation pattern is heterogenous. 

The second hypothesis postulates that M cells develop 
from FAE enterocytes either as a developmental/
transient stage of  enterocytes, or in response to local 
signal stimulations (such as contact with lymphocytes and 
chemokines/cytokines). Indeed, Caco-2 cells, a human 
intestinal adenocarcinoma cell line, differentiate into an 
M cell-like morphology and phenotype after in vitro co-
culture with murine PP-derived lymphocytes[39] or human 
B lymphoma cell lines. Moreover, intravenous injection of  
PP lymphocytes or normal bone marrow transplantation 
into severe combined immunodeficient (SCID) mice 
correlates with the development of  M cells in the FAE[62,63]. 
The hypothesis that M cells are derived from enterocytes[64] 
is also supported by ultrastructural studies of  chicken 
caecal tonsils[65], and by cell division and apoptosis studies 
in mouse PP[66] and in rabbit ileal PP[61]. Furthermore, a 
possible intermediate M cell/enterocyte cell type has been 
recently identified in upper regions of  the dome in pigs[59]. 

Kerneis and Pringault have merged these diverse 
observations together into a single postulation that 
intestinal cell differentiation is largely determined by the 
crypt stem cells[67]. However, with the proper stimuli, 
alternate differentiation pathways could be followed (which 
they term “intestinal cell plasticity”)[67]. In the case of  M 
cells, enterocytes (perhaps immature) may convert into an 
M cell phenotype[67].

Although it is generally recognized that the mucosal 
lymphoid cells induce the development of  the overlying 
specialized FAE, and that cell-to-cell contact and/
or soluble factors provide important signals for the 
development of  M cells[12], the events and signaling 
pathways directly involved in M cell differentiation and 
development remain poorly understood. The tumor 
necrosis factor (TNF) family of  cytokines, particularly 
lymphotoxin (LT)-α，LT-β, and TNF-α produced by B 
cells, appear to play crucial roles in the development of  

Peyer's patches and FAE[68,69]. Their involvement in the 
development of  M cells per se is, however, less clear. In the 
absence of  LT-α and LT-β, the specialized areas of  PP 
anlagen in the embryonic intestine are not formed[70-72]. 
Also, LT-β receptor-knockout mice lack PP[69]. However, 
mice whose B cells do not express LT-β do have normal 
FAE and M cells, although with smaller PP. Recombinase-
activating gene (RAG)-1 -/- knockout mice, which lack 
mature B and T lymphocytes, have small PP-like aggregates 
having a normal M cell density[73]. When the LT-β receptor 
signaling is blocked by the antagonist lymphotoxin-β 
receptor-immunoglobulin G fusion protein in RAG-/- 
mice, the percentage of  M cells in the PP-like aggregates 
decreases, suggesting that the LT-β signaling is essential for 
the differentiation and development of  M cells, but LT-β 
signaling molecules could be supplied by other cell types 
in the absence of  mature B and T lymphocytes[73]. On the 
other hand, mice having defective CD40 or IL-4 signaling, 
defective B-cell proliferation, or deficient in signal 
transducer and activator of  transcription 6 (STAT6) have 
normal FAE and M cells[18,74]. Furthermore, although Toll-
like receptors (TLRs) are expressed by the M cells[75-78], and 
exposure to bacteria can trigger TLR signaling resulting 
in induction of  M cell proliferation[79] and up-regulation 
of  transcytosis[80], TLR signaling does not appear to be 
essential for the development of  M cells since MyD88-
knockout, TLR-2 or TLR-4-knockout mice have normal M 
cell populations[18,79,81].

The notch signaling system is a recently characterized, 
highly conser ved mechanism which regulates the 
differentiation, proliferation and apoptotic events at all 
stages of  cell development, including the differentiation 
and renewal of  intestinal epithelial cells and other types 
of  intestinal cells, such as goblet cells, enteroendocrine 
cells, and Paneth cells[18,82,83]. Therefore, notch and notch 
ligands may play an important role in M cell developmental 
signaling. Indeed, the expression of  Jagged-1 mRNA, 
a notch ligand, is increased in the in vitro M cell system 
compared to the parental epithelial cell line[84]. A subset of  
cells of  the FAE in mice with a mutated Delta-3 gene, a 
notch ligand, showed abnormal apical membranes (dubbed 
as ‘C cells’), and it has been suggested that these cells are 
precursor M cells[18]. This ‘C cell’ morphology has also 
been observed in normal mice[85].

DISTRIBUTION OF M CELLS IN THE GI 
TRACT
In the human GI system, M cells are mainly found on the 
FAE overlying the dome structure of  Peyer’s patches in the 
small intestine[85,86]. The FAE, aside from having M cells, 
is distinguished by a reduced number of  goblet cells and 
enterocytes[87,88]. Beneath the FAE lies the sub-epithelial 
dome (SED), a diffuse region of  dendritic cells (DCs), 
naive B cells, CD4+ and CD8+ T cells, and macrophages[55]. 
Particles transported by the M cells from the lumen can be 
captured in SED by immature DCs[89], which then migrate 
to B-cell follicles and parafollicular T-cell zones and 
become mature DCs[90]. 

However, M cells are also present over lymphoid 
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follicles in the colon and rectum[91]. These follicles in 
the colonic crypts have a specialized epithelium with a 
greater proportion of  goblet cells than PP, but fewer than 
the surrounding colonic regions. Similar to PP M cells, 
colonic M cells have transport vesicles, a thin glycocalyx, 
and a basolateral invagination containing pockets of  
lymphocytes[13].

The percentage of  M cells comprising FAE varies 
substantially among host species and their anatomical 
locations, ranging from 5% to 10% in the human and 
murine PP[92] to about 50% in the rabbit and human caecal 
lymphoid aggregates[27,93].

M CELLS AS SENTINELS OF THE GI IMMUNE 
SYSTEM
M cells and GI microbial infections
The accessibility of  M cells on the mucosal surface and 
their ability to transcytose particulate material make the M 
cells an ideal entry point for potential pathogens. Indeed, it 
has been demonstrated that M cells can transport a diverse 
array of  mucosal microorganisms across the intestinal 
epithelial barrier, including bacteria (Vibrio cholerae[94], 
Campylobacter jejuni[95], Mycobacterium tuberculosis[13], Shigella 
spp.[96,97], Salmonella spp.[98,99], Escherichia coli[100,101], Yersinia 
spp. [102]), viruses (MMTV virus[74,103], polioviruses[104], 
reoviruses[105-107], prions[108] and HIV[40,109]) and parasites 
(Cryptosporidium[110]). In fact, many pathogens exploit 
the M cells as a conduit to invade the host and establish 
an infection. In this regard, enteropathogens, such as 
Salmonella typhimurium, S. typhi, Shigella sp. and Yersinia spp., 
are capable of  directly invading and destroying M cells and 
spreading the infection to neighboring enterocytes. For 
example, S. typhimurium initially invades the M cells[98,99], and 
induces a spotty and diffuse infection pattern with small 
groups of  infected M cells[111]. Experimental infection 
in calves have shown that S. typhimurium is ingested 
by M cells within 5 min of  contact[99,112]. The process 
ends with the exfoliation of  majority of  the infected M 
cells within 30 min, and cell death within an hour. This 
disruption of  M cells allows the pathogen access to the 
neighboring enterocytes, and results in the sloughing off  
of  the FAE[113,114]. Although these results have not been 
directly confirmed in humans, ulcerations are nevertheless 
present in regions corresponding to PP in cases of  typhoid 
infection[115]. Similarly, free HIV particles use both, M cells 
and DCs, as conduits to infect local CD4+ T cells[40,109,116]. 
In addition, it has been shown that the success of  host 
adaptation of  Salmonella in pigs is closely associated 
with the increased number of  pathogens per M cell, as 
compared to the parental strain[117].

Other enteropathogens, such as Shigella species, are 
capable of  attaching and adhering to M cells, but do 
not necessarily induce any cytotoxicity to the infected 
cells[97,118,119]. Instead, it induces membrane ruffling[96], 
and the afflicted M cells increase in size, rather than 
proliferating, to accommodate increased numbers of  
mononuclear cells in their basolateral pocket[96].

The interaction between intestinal pathogens and M 
cells are likely influenced and controlled by factors deriving 

from both the pathogen and the host. In this regard, the 
long polar fimbria (LPF) produced by the lpf  operon and 
Salmonella pathogenicity island-1 (SPI-1) encoding the 
type Ⅲ secretory system play important roles in selective 
adherence of  Salmonella to M cells[120,121]. LpfC or SPI-1 
mutants of  Salmonella show reduced colonization, 
decreased virulence, are not cytotoxic to M cells and are 
not disruptive to the FAE[99,122]. Transformation of  the 
lpf  operon into non-piliated E coli increased their uptake 
in PP[120]. Similarly, the uptake of  Yersinia and Shigella by 
M cells is mediated by invasin or mechanisms encoded by 
a 30-kb virulence plasmid, respectively[102]. The presence 
or absence of  these M cell-targeting gene products in 
pathogens might explain the differences seen amongst 
different strains of  the pathogen in their attachment to M 
cells. For example, the rabbit diarrheagenic E. coli (RDEC)-1 
strain is selective for adherence to M cells[100,101], whereas 
enterohemorrhagic E. coli (EHEC), such as strain O157:
H7, has been found to attach to the FAE of  human PP[123]. 
On the other hand, enteropathogenic E. coli (EPEC) is not 
transcytosed by the M cells and remains in the gut lumen. 

It appears that most of  the bacterial genes and their 
products identified to date for their invasive role represent 
the primary, but not the exclusive, mechanism for the entry 
of  pathogens in M cells[124]. In Salmonella cases, some 
Salmonella serotypes, which are M cell selecting, lack the 
lpf  operon, and others with the lpf  operon do not target M 
cells[120,125]. Similarly, invasin-deficient Y. pseudotuberculosis 
mutants have delayed uptake of  3 to 5 d in vivo, but are 
nonetheless found in the spleen and liver at the same 
time and produce the same LD50 values, as the wild-
type strain[126]. Perhaps, M cells can also recognize other 
Yersinia adhesins, such as pH 6 antigen and the plasmid 
encoded YadA, but with less affinity than for invasin[127]. In 
addition, the expression of  the lpf  operon has been found 
to cycle between ‘off ’ and ‘on’, being referred to as phase 
variation[128,129]. It is probably an adaptation to avoid host 
defence. In this regard, cultivation in Lauria Bertani (LB) 
broth appears to increase the proportion of  S. typhimurium 
in the lpf  operon ‘on’phase[128]. 

It is now recognized that the entry of  M cells by 
intestinal pathogens is also mediated by a number of  
surface adhesion molecules, particularly those within 
the integrin family, of  the host cells. In this regard, 
enteropathogenic Y. pseudotuberculosis can attach and 
invade murine M cells via β1-integrins expressed by the 
apical M cell membranes[130-132]. Studies have postulated 
that β1-integrins were the receptor for Yersinia invasin 
protein[131]. In vitro studies have demonstrated that α2β1 
integrins are the exclusive heterodimer form found on 
the M cell apical membrane[133], although others have 
found that this heterodimer does not normally interact 
with invasin[134]. Other studies have shown that inhibition 
of  α5β1 integrin expression on the apical membranes 
of  Caco-2 cells and M cells in vitro abolished the abilities 
of  these cells to transport microbes[77,135]. In addition, 
lymphotropic (X4) HIV transport by M cells is CXC4 
receptor-mediated and is lactosyl cerebroside-dependent 
in vitro[109]. Finally, the variation of  M cell glycocalyx 
has led to speculation about its role in pathogen tissue 
tropism[19,136].
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Target M cells for mucosal immunization
Just as pathogens can exploit M cells as the portal of  
entry for infection, biomedical researchers have, for many 
years, investigated the potential of  using M cell-specific 
mechanisms for drug or vaccine delivery to the mucosal 
immune system[137-140]. Compared to parenteral routes, 
mucosal administration of  drugs and vaccines is relatively 
simple, safe and inexpensive[141]. An additional benefit of  
mucosal immunization is its capability of  priming and 
inducing both systemic and mucosal immune responses 
in the host[142,143]. Mucosal vaccination is necessary for 
protection against mucosal pathogens because parenteral 
immunization is generally ineffective for the development 
of  protect ive mucosal immunity [144], and opt imal 
vaccination strategies for many pathogens may require 
both mucosal and systemic delivery components[145].

Successful mucosal vaccines must circumvent the 
same barriers that mucosal pathogens have, i.e. mucus, 
proteases, nucleases, secreted antibodies, and the epithelial 
glycocalyx. Mucosal pathogens themselves have so far 
been the most effective models exploited for mucosal 
vaccination. The advantages of  attenuated, live vaccines 
include their ability to activate multiple, innate immune 
responses. Currently, most effective oral vaccines are live 
attenuated poliovirus and live attenuated S. typhi, both of  
which exhibit selective binding to M cells and exploit M 
cell transport to the mucosal lymphoid tissue[99,104]. For this 
reason, other recombinant bacteria, including attenuated 
Lactococcus spp., Listeria monocytogenes, and Yersinia spp., 
have been constructed as delivery vectors for heterologous 
antigens[146-148].

M cells actively transport microparticles up to 1 µm in 
size, and those that are adherent to M cells are effectively 
transcytosed[12,33,149]. Thus, formulations that are multimeric 
or particulate and adhere to the mucosal surfaces, 
especially if  there are some M cell specificities, seem most 
effective[145] while soluble, non-adherent antigens are 
frequently poorly internalized and hence generally induce 
weak immune responses or even immune tolerance[150]. 
The packaging of  drugs and antigen microparticles on 
polystyrene or latex mircospheres protects them from 
degradation within the GI tract as well as allows them to 
be transcytosed by M cells[42,151-155]. Chitosan microparticles 
have shown promise both for oral vaccines and intranasal 
application[156-158]. Others have examined the potential of  
using copolymeric microparticles[159], proteosomes[160], 
liposomes[161], virus-like particles[162,163], and viral vectors, 
such as poliovirus and adenovirus[164,165]. However, these 
formulations can also bind to enterocytes[161], and are 
readily taken up by mucosal DCs. In addition, small 
vesicles derived from outer membrane components of  
bacteria[160,166] are interesting because of  their uptake by 
M cells and DCs and their potential to induce an innate 
immune response through the activation of  TLR pathways. 
Unfortunately, their tendency to become trapped in mucus 
necessitates large doses[165]. There are also regulatory 
concerns regarding the use of  live, attenuated vectors for 
vaccine delivery, especially for use in immunocompromised 
population and the risk of  reversion of  the attenuated 
strain to full virulence.

Several recent studies have elegantly demonstrated 

the feasibility to specifically exploit M cells for mucosal 
vaccine development[167,168]. Manocha et al[167] have shown 
that HIV peptide bearing microparticles targeted to M 
cells, using UEA-1 lectins, are more immunogenic when 
administered mucosally than systemically. Wang et al[169] 
have used the adhesin protein sigma-1 from the enteric 
pathogen reovirus, which infects PP M cells, to direct 
DNA vaccines to the mucosal immune system[168]. Three 
expression plasmids encoding the genes for HIV gp160, 
cytoplasmic gp140, and secreted gp140 were conjugated to 
sigma-1 with poly-L-lysine and individually tested in mice. 
Intranasal immunization of  mice showed specific, long-
term CTL responses to gp160[168]. Upon challenge using a 
standard HIV surrogate test, these mice showed significant 
antiviral protection.

However, the relative importance of  M cells in 
the induction of  protective immunity by mucosal 
immunization remains unknown. For example, the 
antigen-specific immune responses as measured by IgG 
production is not substantially altered in the absence 
of  PP[31]. Although M cells are capable of  uptaking and 
transporting antigens, their role in antigen processing and 
presentation is less well characterized. In addition, M cells 
consist of  only a small percentage of  intestinal epithelial 
cells, raising the question of  their overall efficiency in 
antigen uptake in the GI system. Moreover, there are 
redundancies at multiple levels of  the mucosal immune 
system to ensure its continuing functionality. In this regard, 
intestinal DCs can migrate between mucosal epithelial 
cells, and directly sample the luminal antigens by forming 
transepithelial dendrites[170,171]. Other cell types, such as 
villous enterocytes, also express MHC class Ⅱ molecules 
and are capable of  sampling and presenting intestinal 
antigens[172,173]. The difficulty in determining the precise 
role of  M cells in the induction of  mucosal immune 
responses is further confounded by the lack of  availability 
of  animal models which are completely and specifically 
deficient in M cells, making studies of  intestinal antigen 
sampling by alternate cell types impossible.

INTESTINAL VILLOUS M CELLS
Although M cells were initially believed to be exclusively 
located within the FAE region in the GI tract, this 
notion has been challenged by the recent identification 
and characterization of  the intestinal villous M cells[31]. 
Intestinal villous M cells share all the known features 
of  traditional M cells, but are independent of  PP and 
not associated with the FAE. Instead, intestinal villous 
M cells lie on the intestinal villi either as small dense 
clusters (50 to 60 per animal) or diffusely. Intestinal 
villous M cells are more common in the terminal ileum 
than in other areas of  the small intestine. Although the 
role and potential significance of  these M cells remain 
to be elucidated, evidence to date indicates that they 
are functionally analogous to the PP M cells[31] and may 
compensate for PP M cell functions. Indeed, GALT-
deficient mice produce antigen-specific IgG comparable 
with that produced in wild-type animals upon non-
invasive bacterial challenge, and the population of  
UEA-1+ cells increased, perhaps the result of  villous M 
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cells developing from epithelial cells upon exposure to 
foreign antigens or pathogens, such as S. typhimurium[31].

PERSPECTIVES
More than three decades have passed since the first 
description of  the M cell as the antigen shuttle for the 
mucosal immune system[6,7]. Current knowledge has 
highlighted the dynamic and complex role that M cells 
play in entry/invasion of  pathogens, in antigen sampling, 
and in facilitating eliciting of  immunity to GI infections. 
The advent of  new technologies, such as confocal laser 
scanning microscopy and the intracellular visualization 
by use of  fluorescence techniques, have supplemented 
the initial static electron microscopy studies in the 
characterization of  M cells. The ability to cultivate M cells 
in vitro has complemented the in vivo models, and makes 
the molecular analysis of  M cell functionality possible. 
The host-pathogen interactions have shown the varying 
strategies of  the pathogen in exploiting M cells as conduits 
to initiate an infection, while at the same time evading 
or circumventing host immune surveillances. However, 
much work remains to be done to clarify the cellular 
and molecular mechanisms of  the attachment to and 
the uptake of  pathogens by M cells, and the interaction 
between the M cell and the pathogen, particularly the 
downstream events are evoked by the M cell antigen 
transport. Also, how does this transport lead to both 
mucosal and systemic immune responses? The presence 
of  functional redundancies in the mucosal immune system 
and the lack of  suitable animal models have further 
hindered the clarification of  the precise role of  M cells 
in the induction of  mucosal immune responses and the 
rationale of  targeting M cells for mucosal immunization. 
Further understanding and characterization of  the 
mechanisms involved in the interaction between M cells 
and microorganisms, in the development and activation of  
M cells, and in the development of  novel M cell targeting 
approaches will be needed for the development of  a new 
generation of  mucosal vaccines. In this regard, the recent 
identification of  intestinal villous M cells and the rapid 
progress in our understanding of  the role of  TLR in the 
regulation of  bacterial antigen uptake by M cells are likely 
to accelerate the development of  M cell-based mucosal 
vaccines.
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