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Abstract
The completely assembled human genome has made 
it possible for modern medicine to step into an era rich 
in genetic information and high-throughput genomic 
analysis. These novel and readily available genetic 
resources and analytical tools may be the key to unravel 
the molecular basis of hepatocellular carcinoma (HCC). 
Moreover, since an efficient treatment for this disease is 
lacking, further understanding of the genetic background 
of HCC will be crucial in order to develop new therapies 
aimed at selected targets. We report on the current 
status and recent developments in HCC genetics. Special 
emphasis is given to the genetics and regulation of major 
signalling pathways involved in HCC such as p53, Wnt-
signalling, TGFβ, Ras, and Rb pathways. Furthermore, 
we describe the influence of chromosomal aberrations 
as well as of DNA methylation. Finally, we report on the 
rapidly developing field of genomic expression profiling 
in HCC, mainly by microarray analysis.
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INTRODUCTION
Hepatoce l lu la r  carc inoma (HCC) i s  among the 
most common malignancies worldwide. At present, 
approximately 550 000 new patients are diagnosed with 
HCC each year worldwide. However, regional differences 
in the incidence of  HCC are significant. The highest 

prevalence is found in Southeast Asia and the sub-saharan 
Africa, mostly due to the high rates of  chronic viral 
hepatitis, a high risk factor for HCC. Additional causes 
leading to HCC are alcohol, toxins such as aflatoxin, 
hemochromatosis, α1-antitrypsin deficiency, and non-
alcoholic fatty liver disease (NAFLD)[1-5].

Despite major efforts to improve diagnosis and 
treatment of  HCC, therapeutic options remain limited. 
The main therapeutic strategies are surgical resection of  
the tumor or liver transplantation. However, most patients, 
especially in Asia and sub-saharan Africa, present at late 
stages of  the disease or with underlying liver cirrhosis 
and consequently surgical options may no longer be 
indicated. Although palliative treatments are needed, they 
remain very limited. Efforts to establish efficient systemic 
chemotherapy regimens have not succeeded and Best 
Supportive Care is still considered standard of  treatment. 
Thus, the need for novel therapeutic agents and strategies 
is obvious.

Lately, genomic targets and networks have increasingly 
gained attention due to the efforts of  the Human Genome 
Project. As a result, human and many other genomic 
sequences are publicly available. This vast amount of  
newly available genomic data provides a rich source to 
identify novel genomic targets for therapeutic intervention. 
However, to screen these novel genomic data for new 
targets, a profound knowledge of  the genetic basis of  
HCC is essential. We therefore provide a summary on 
the current status of  known genetic influences on HCC 
and on current hypotheses of  genetic aspects to the 
development of  liver cancer. This article reports on the 
genetics of  major molecular pathways involved in HCC 
and their differential regulation in HCC. Furthermore, 
we discuss major structural aberrations of  chromosomes 
and DNA methylation as well as current data on high 
throughput approaches to investigate on the genetic basis 
of  HCC, essentially using microarray analysis.

CHROMOSOMAL ABERRATIONS
Chromosoma l  aber ra t ions  have  been  repor ted 
frequently in HCC. Moinzadeh and colleagues have 
recently performed a meta-analysis of  available data on 
chromosomal aberrations and genomic hybridisation 
analyses. They found amplifications of  the chromosomes 
1q, 8q, 6p, and 17q to be the most prominent ones. 
Among the chromosomes most frequently lost in HCC 
were 8p, 16q, 4q, 17p, and 13q. Furthermore, in poorly 
differentiated HCCs, 13q and 4q were significantly under-
represented[6]. These chromosomal regions contain key 



players in hepatocarcinogenesis such as p53 (chromosome 
17p) or Rb (chromosome 13q).

However, data on correlation of  these chromosomal 
aberrations with the clinical course of  the disease are not 
available, mostly due to the limited overall number of  the 
comparatively large chromosomal aberrations and to the 
especially low occurence of  the same aberration within the 
same collective patients.

p53
Originally identified in 1979, p53 was initially believed to be 
an oncogene. In the late 1980s, however, it was discovered 
that only missense mutations of  the p53 gene had been 
studied instead of  the wild-type gene. And yet, studying 
the missense mutation found in original p53 cDNA clones 
was a main factor for understanding the pathobiological 
activity of  p53[7]. The p53 protein is able to form tetramers 
allowing acting in a dominant negative fashion. The 
allele-producing p53 mutants heterodimerize with wild-
type p53, which results in a conformational change that 
prevents binding to p53 regulated elements. Thus, mutant 
p53 suppresses the activity of  wild-type p53[8]. And in 
fact, certain missense p53 mutants can gain “oncogenic 
activity”[7]. About ten years later, in the early 1990s, p53 
was recognized as a tumor suppressor gene and the most 
frequently mutated gene in human cancer with a mutation 
rate of  over 50% in human cancer cases. During the 1990s 
interest in p53 research increased after it was shown that 
p53 knock-out mice spontaneously developed tumors and 
patients with the cancer prone Li-Fraumeni syndrome had 
germ-line p53 mutations[9,10]. Our understanding of  the 
role of  p53 in tumorigenesis improved after it was shown 
that p53 can also act as a transcription factor involved 
in cell-cycle regulation and apoptosis. This was followed 
by the discovery of  its multiple roles in development, 
differentiation, gene amplification, DNA recombination, 
chromosomal segregation, and cellular senescence[11,12]. 
In the late 1990s, p53’s role in DNA repair by facilitating 
nucleotide excision repair and base excision repair was 
demonstrated. Most recently, p53 was shown to accelerate 
aging in mice when expressed constitutively[7]. A series 
of  additional reviews and publications describes the role 
of  p53 at the crossroads of  the cellular stress response 
pathway[7,13,14]. Along with these functions, p53 has been 
described as “the guardian of  the genome”, referring to its 
role in conserving genetic stability by preventing genome 
mutation.��������������������������������������������       From these multiple and highly coordinated 
functions by which p53, once activated in response to 
cellular stress or DNA damage, tries to prevent further 
cellular damage, e.g. by either inducing cell cycle arrest 
to permit DNA repair or apoptosis, it can be realized 
why p53 is the most frequently mutated gene in human 
carcinogenesis.

A variety of  studies in recent years provided evidence 
that the p53 tumor suppressor gene plays a major role 
in hepatocarcinogenesis irrespective of  the etiology[15]. 
However, the frequency of  p53 mutations and its mutation 
spectrum with 75% missense mutations are exceptionally 
diverse in their position and nature, affecting over 200 
codons scattered mainly throughout the central portion of  

the gene[16]. In HCC, p53 mutations also vary in different 
geographic areas, presumably reflecting differences in 
both etiological agents and host susceptibility factors[17]. 
In some geographical areas, such as sub-Saharan Africa 
and China, Aflatoxin B1 exposure and chronic viral 
hepatitis are responsible for a very high incidence of  
HCC (with up to 100/100 000 cases per year). In these 
areas, there is a high proportion of  a p53 point mutation 
at the third position of  codon 249 resulting in a G:C to T:
A transversion[18-20]. Furthermore, it was shown that cells 
with an increasing 249ser mutation load in non-tumorous 
liver reflect the AFB1 exposure in a dose dependent 
manner[21], indicating that this is an early mutational event 
in hepatocarcinogenesis. In addition, this may also offer a 
chance to screen for patients at higher risk for developing 
HCC. A number of  studies clearly support the findings of  
a positive correlation between the 249ser p53 gene mutation 
and the AFB1 exposure[22-25]. These studies also point out 
that the analysis of  HCC in areas of  hardly any AFB1 
intake, e.g. USA and Western Europe, revealed a different 
mutational spectrum with no particular hotspot.

On the background of  an enhanced cell proliferation, 
e.g. in chronic hepatitis B or C, promutagenic N7dG 
(N7-deoxyguanosine) adduct formation from AFB1 in 
hepatocytes may allow the fixation of  the G:C to T:A 
transversion at the p53 codon 249, which might lead to 
the selection of  an expansive cell clone within the affected 
hepatocytes. However, the high incidence of  HCC in 
countries with a high AFB1 intake is not necessarily 
dependent on genomic HBV integration. This has 
been shown in vitro by demonstrating that exposure of  
human liver cell lines to AFB1 results in the same 249ser 
mutation even without the presence of  HBV[26]. A possible 
explanation came from further studies demonstrating 
that the third base at the codon 249 had an unusual high 
mutation rate in the presence of  AFB1[25]. Alternatively, 
there might be a growth and/or survival advantage of  liver 
cells with the 249ser mutant p53[17,27].

Thus, analysis of  serum for the codon 249ser mutation 
may be useful as a biomarker for AFB1 exposure and 
possibly early HCC stages.

In contrast, p53 mutation may occur as a late event in 
carcinogenesis without a typical mutational pattern in areas 
with low AFB1 intake[28-30]. A series of  studies support 
this hypothesis: dedifferentiated cellular subpopulations 
developed after p53 mutations occurred within HCC[31], 
different p53 mutations have been found in nodule-in-
nodule HCCs leading to HCC progression[32], more severe 
cellular atypia exists in areas with loss of  heterozygosity 
(LOH) of  p53 within HCC[30], and finally, p53 mutations 
preferentially occur in moderately to poorly differentiated 
HCC along with or after p53 LOH[23], while LOH at p53 
has not been shown in cirrhotic nodules[33].

Compared to these non-specific p53 mutational 
patterns, only a few more specific p53 mutations correlated 
to other etiological factors have been described. Among 
these factors is the exposure to vinyl chloride (VC). The 
intrahepatic generation of  chloroethylene oxide as the 
ultimate alkylating, mutagenic, and carcinogenic metabolite 
of  VC leads to the generation of  highly reactive etheno 
adducts[34,35].
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For these etheno adducts, A:T to T:A transversions 
at the codons 179, 249, and 255 have been described as 
a typical base-pair substitution mutation in VC triggered 
hepatic angiosarcoma[36,37]. These data are supported by 
findings in rat angiosarcoma with 44% of  p53 mutations 
with most of  them occurring at the A:T base pairs[17]. 
Compared with these data, an association of  VC with 
the development of  HCC is less conclusive. Only a few 
epidemiological studies report an association of  VC 
exposure and HCC[38,39], while a more recent report did not 
find any A:T to T:A transversion among the p53 mutation 
of  VC exposed worker[40]. This report described CpG site 
mutation, which occurred at hotspot codons 175, 248, and 
273 and also common in HCC following alcohol or HBV 
exposure.

A number of  studies have demonstrated the effects 
of  oxidative stress in liver carcinogenesis associated with 
typical p53 mutations. Among several oxyradical overload 
diseases are hemochromatosis and Wilson disease (WD). 
This results in the development of  cirrhosis with a 
200-fold risk for HCC in hemochromatosis and a lower 
incidence in WD[41]. It has been shown for both diseases 
that oxidative stress with a subsequent generation of  
reactive species occurs[42] and, in fact, leads to G:C to T:A 
transversions at codon 249 as well as to C:T to A:T and C:
G to T:A transversions at codon 250[41]. In this study, an 
elevated level of  inducible nitric oxide synthase (iNOS) 
has been described, which might be at least one source of  
increased oxidative stress resulting in p53 mutations. These 
results are supported by a number of  in vitro data that have 
been reviewed elsewhere[17].

Two further major risk factors for developing HCC 
are HBV and HCV infection. HBV infection is associated 
with about 40% of  all HCC cases worldwide. A detailed 
overview of  the multilayered interactions between HBV 
and its host’s genome is beyond the scope of  this article 
and has been reviewed before[17]. As most of  the HBV-
related HCCs contain HBV DNA sequences, following 
a variable and random integration, a number of  genomic 
consequences have been described, e.g. translocations, 
inverted duplications, and recombinations. As a result 
of  these chromosomal alterations, cellular regulatory 
genes, e.g. tumor suppressor genes such as p53, may 
get lost. Among the different HBV genes, the HBx 
gene seems to play a more causal role in HBV-related 
HCC because it is the most commonly integrated viral 
gene[17,43]. Among the pathobiological effects of  HBx are: 
transcriptional coactivation of  cellular and viral genes, 
e.g. by transcriptional alteration through modulation of  
RNA polymerase Ⅱ and Ⅲ; action as cotranscription 
factor for the major histocompatibility complex (MHC), 
epidermal growth factor receptor, and oncogenes like 
c-myc, c-jun/fos or ras-signalling pathway; decrease of  
nucleotide excision repair and interaction with the cellular 
DNA repair system; deregulation of  cell cycle checkpoint 
controls. These HBx-related effects provide many different 
ways as to how HBV contributes to HCC development. 
However, there are also several more direct interactions 
between HBx and p53 functions. By decreasing p53’s 
binding to XBP, HBx indirectly reduces nucleotide excision 
repair[44] and XBP functions as a basic transcription 

factor[45]. Furthermore, HBx binds to p53 and suppresses a 
number of  p53-dependend functions: p53 sequence-specific 
DNA-binding activity in vitro p53-mediated transcriptional 
activation in vivo[44], p53 transcription[46]. HBx is capable 
of  blocking p53-mediated apoptosis. Especially the latter 
function provides a selective cellular growth advantage for 
preneoplastic or neoplastic hepatocytes[47-49].

Compared to HBV-related heptocarcinogenesis, 
much less is known about the pathophysiology leading 
to HCV-related cirrhosis (70% in HCV vs 50% in HBV) 
and HCC (75% in HCV vs 29% in HBV)[50]. None of  the 
different parts of  the HCV genome is integrated into 
the host genome. As for HBV there are several HCV-
related protein interactions known possibly involved in 
hepatocarcinogenesis, which mainly concern the core 
protein including indirect activation of  the TNF-α 
receptor, the Raf-1 kinase, and NF-κB pathways leading 
to inhibition of  TNF-α-induced and Fas-mediated 
apoptosis[51-53]. Depending on the cellular background 
contradictory data exist[54]. This is also true for the known 
interaction between HCV and p53: using different cell lines 
these studies provided data demonstrating suppression 
of  p53 promoter transcriptional activity[55,56]. To gain 
better insight into HCV-related hepatocarcinogenesis, the 
microarray technology has been used in several studies. 
Honda et al[57] and Shackel et al[58] analyzed HCV cirrhosis 
and showed an upregulation of  pro-inflammatory, pro-
apoptotic, and pro-proliferative genes, which might reflect 
groups of  genes being involved in HCV-related cirrhosis 
during progression to HCC. Dou et al analyzed gene 
expression profiles of  the HCV genotypes 1b, 2a, and 4d 
core proteins in HepG2 and Huh-7 cells and identified 
that each core protein has its own expression profile 
and that each of  them seems to be implicated in HCV 
replication and oncogenesis[59,60]. In another study based 
on the transient expression of  the HCV core protein 
transfected into Huh-7 cells by Fukutomi et al[61] most 
transcriptionally changed genes were involved in cell 
growth or oncogenic signalling. Of  particular interest were 
growth-related genes like the wnt-1 pathway. In primary 
human hepatocytes the HCV core gene was induced after 
senescence, immortalization, and anchor-independent 
growth passages of  the cells. Reflecting the HCV core 
gene introduction into these three distinct HCV-related 
hepatocytic stages, the following cellular pathways have 
been identified: cell growth regulation, immune regulation, 
oxidative stress, and apoptosis. Finally, to further focus 
on the role of  p53 in HCC, a number of  p53 mutant and 
p53 wild type HCC cases were analyzed by microarrays 
identifying 83 p53-related genes in p53 mutant HCCs 
when compared with wild type p53 HCCs[62]. Among these 
genes, an overexpression (among others) was described 
for cell cycle-related genes (CCNG2, BZAP45) and cell 
proliferation-related genes (SSR1, ANXA2, S100A10, 
and PTMA). Based on their results the authors assume 
that mutant p53 tumors have higher malignant potentials 
than those with wild type p53. This concept is supported 
by previous reports demonstrating that p53 mutations 
constitute an unfavorable prognostic factor related to 
recurrence in HCC[60,61].

Together, genomic data support a substantial role for 

Teufel A et al . Genetics of HCC                                                                                                                       2273

www.wjgnet.com



p53 in development and differentiation of  HCC.

Wnt SIGNALLING PATHWAY
Originally identified in Drosophila melanogaster and 
subsequently described in several other organisms, 
members of  the wingless gene family are secreted 
morphogenic ligands, essential to establishing body 
patterning and axis formation during embryonic 
development, cell/cell interaction and regulation of  
proliferation. Lately, the Wnt pathway has also been 
demonstrated to function as a key regulator in tumor 
development and differentiation.

Members of  the Wnt protein family initiate signalling 
through binding to cell-surface receptors of  the Frizzled 
(Fz) family and their co-receptors, the LRP 5/6 proteins. 
Binding finally results in an increasing amount of  
β-catenin reaching the nucleus. Wnt/frizzled binding leads 
to activation of  Dishevelled (Dsh), a component of  a 
membrane-associated Wnt receptor complex, subsequently 
inhibiting a complex of  proteins including Axin, GSK-3, 
and APC. This complex normally promotes the proteolytic 
degradation of  the β-catenin intracellular signalling 
molecule. However, if  inhibited by Dsh, cytoplasmatic 
degradation of  β-catenin is decreased and an increasing 
amount of  β-catenin is able to enter the nucleus and 
interact with TCF/LEF family transcription factors to 
promote specific gene expression[63].

Besides its role in embryonic development, the Wnt 
signalling pathway has been studied extensively with 
respect to cancer development and differentiation[64-67]. 
Several lines of  evidence support an essential role of  
the Wnt/b-catenin singnaling pathway in HCC. These 
include an increased expression and nuclear accumulation 
of  β-catenin as a feature of  an activated Wnt signalling 
pathway[66,68,69]. Up to 62% of  all HCC were shown to 
display such a disregulation of  β-catenin. In addition, a 
multivariate analysis has demonstrated poorer prognosis 
and higher rate of  tumor recurrence in patients with 
nuclear accumulation of  β-catenin[68,69].

Further attention was drawn to Wnt-/β-catenin-
signalling when oncogenic β-catenin mutations were 
demonstrated to promote also the development of  
HCC. These mutations prevent β-catenin from being 
phosphorylated and thus prevent degradation, resulting 
in activation of  Wnt-/β-catenin signalling. Prevalence of  
the mutations has been estimated from several reports to 
be within 26% and 41%[70-73] and some reports describe a 
high association of  the mutations with high exposure to 
aflatoxin B1 and HCV infection[74,75]. In addition, mutations 
of  Axin1, a negative regulator of  the Wnt signalling 
pathway, have also been reported to be highly prevalent in 
human HCC and transfection of  wildtype Axin1 lead to 
reconstitution of  Wnt signalling and apoptosis in cancer 
cells[76,77]. At a lower frequency, Axin2 mutations may 
contribute to HCC as well[77]. In contrast to other tumor 
entities, like colorectal carcinoma, no mutations of  the 
Adenoma Polyposis Coli (APC) gene have been identified 
in HCC[78]. However, a liver-specific disruption of  the 
APC gene in mice resulted in an activation of  the Wnt/
β-catenin pathway and also in the development of  HCC[79].

Furthermore, the course of  disease of  patients with 
HCC harboring β-catenin mutations was demonstrated 
to be clinically distinct since, on average, they display a 
less aggressive and less invasive tumor progression and 
better prognosis compared to patients without β-catenin 
mutations[69,71-73].

Besides mutations of  Wnt-/β-catenin signalling 
associated genes, differential expression of  Frizzled-
receptors and secreted inihibitors of  the pathway have 
been repeatedly demonstrated to contribute to HCC 
development. Overexpression of  Frizzled-7 (FDZ7) was 
predominant in most HCC and was regarded an early 
event in hepatocarcinogenesis[80,81]. The Wnt inhibitor 
HDPR1, the human homologue of  Dapper (Dpr), was 
observed in 43% of  HCC likely due to methylation of  
a CpG island in the promoter region and exon1 of  the 
HDPR1 gene[82]. Methylation of  the secreted Frizzled-
related protein 1 promoter gene (SFRP1) was found in 
75% of  HCC samples and methylation of  the promoter 
was demonstrated to correlate with downregulation of  
SFRP1 expression, suggesting SFRP1 expression to be 
regulated by methylation of  the gene promoter[83].

Together, an essential role of  the Wnt signalling 
pathway in hepatocarcinogenesis has been established in 
several ways and targeting the pathway may be promising 
for therapeutic options. First attempts to target Wnt 
signalling showed promising results as in vitro RNA 
interference against β-catenin inhibited the proliferation 
of  pediatric hepatic tumor cells suggesting β-catenin to be 
a possible target of  further in vivo studies[84].

TGFβ PATHWAY
The transforming growth factor (TGF) signalling pathway 
is essential to many cellular processes such as cell growth, 
cell differentiation, and apoptosis. In the liver, a major 
function of  TGF-β, which is normally produced by 
nonparenchymal stellate cells, is to limit regenerative 
growth of  hepatocytes in response to injury by inhibiting 
DNA synthesis and inducing apoptosis[85,86]. TGFβs have 
three mammalian isoforms, TGFβ1, TGFβ-2 and TGFβ-3 
each with distinct functions in vivo. All three TGFβs use 
the same receptor signalling system[87]. TGFβ has three 
receptors, typeⅠ(RⅠ), type Ⅱ (RⅡ) and type Ⅲ (RⅢ). 
TGFβR3 is the most abundant of  the TGFβ receptors yet, 
it has no known signalling domain. However, it may serve 
to enhance the binding of  TGFβ ligands to TGFβ type Ⅱ 
receptors by binding TGFβ and presenting it to TGFβR2.

Type RⅢ (also called betaglycan) binds two TGFβ 
polypeptides, recruits TGFβ to RⅡ and intensifies 
TGFβ signalling. Binding of  a TGFβ ligand[87-89] to a type 
Ⅱ receptor results in the recruitment of  and complex 
formation with a typeⅠreceptor and its phosphorylation. 
Together these proteins form a hetero-tetrameric complex 
with the ligand. After activation of  the TGFβ type Ⅱ
/TGFβ typeⅠ(TGFβRⅡ/TGFβRⅠ) receptor complex, 
the signal is transmitted mostly through the Smad proteins. 
However, the activated receptor complex may also 
transduce the TGFβ signal through phosphatidylinositol 
3-kinase (PI3K), protein phosphatase 2A/p70 S6 kinase 
(PP2A/p70S6K), and various mitogen-activated protein 
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kinase (MAPK) pathways. The later pathways are not 
dependent on Smad function. If  bound by TGF/RⅡ and 
phosphorylated, RⅠ subsequently phosphorylates Smad2 
and Smad3, subsequently forming a complex with Smad4. 
These Smad4 bound complexes translocate to the nucleus 
where they bind to specific DNA sequences and act to 
repress or activate transcription.

TGFβ has repeatedly been demonstrated to be 
overexpressed in HCC. Elevated expression levels of  
TGFβ in HCC tissue have been found by means of  
Northern blot and immunohistochemistry[90-92]. Expression 
of  TGF-β1 in HCC tissue was correlated with poorer 
histological differentiation[91]. In addition, serum and 
urin TGFβ levels have been shown to correlate with 
poorer prognosis and increased tumor angiogenesis[93-96]. 
Furthermore, it has recently been described in several 
tumor entities that during tumor progression[87-89,97] TGFβ 
activity continues to be increased due to autostimulation 
of  the Tgfb1 gene and due to transcriptional activation 
by Ras and other effectors, as well as by the action of  
proteases that activate the latent TGFβ in the extracellular 
matrix[98,99]. Also, attenuation of  TGF-β signalling was 
observed as a result of  downregulation of  TGF-βRⅡ
[100,101]. 

The stimulation of  neoplastic growth of  liver cancer 
despite an overexpression of  TGFβ and a generally growth 
limiting function of  TGFβ is not fully understood, but 
has lately been explained partly by evidence for resistance 
of  the tumor to TGFβ function on the one hand site and 
a switch of  TGFβ function towards a growth stimulating 
function during later stage tumor growth on the other 
hand site. Significant evidence that evasion from TGFβ 
may play a role during early HCC development comes 
from mice heterozygous for a target-inactivated TGFβ1 
allele or a TGFβ type Ⅱ receptor. These animals show 
enhanced susceptibility to chemical carcinogens such 
as N-diethylnitrocosamine  compared to their wild-type 
littermates, indicating a haploinsufficiency of  tumor 
suppression[102-104]. This hypothesis was further supported 
by in vitro and clinical data. Expression of  TGFβR-Ⅱ in 
liver tissues was significantly decreased in patients with 
HCC compared to patients with chronic hepatitis or liver 
cirrhosis. Conversely, transfection of  TGFβR-Ⅱ cDNA 
into the hepatoma cell line Huh7 induced cell arrest and 
apoptosis[105].

In several tissues, an active involvement of  TGFβ in 
tumor progression and metastasis has been suggested. 
For example, mice inoculated with prostate cancer cells 
overexpressing TGFβ-1 have tumors that are 50% 
larger than controls and are significantly more likely to 
develop metastases[106]. As consequence of  these findings 
a hypothesis of  a switch of  TGFβ action from a tumor 
suppressing effect to a tumor promoting function during 
cancerogenesis in several cancers has been proposed[107]. 
However, such a tumor promoting effect has not yet been 
demonstrated in HCC.

Besides disruption of  the TGFβ pathway at the 
TGFβ/TGFβR level, the signalling pathway may be also 
disregulated further downstream at the level of  Smad 
proteins. Smad7 expression was found highly elevated in 
HCC tissue, especially in patients with elevated TGFβ or 

normal TGFβRⅡ levels suggesting that Smad7 may be 
one of  the resistance mechanisms to TGFβ in late stage 
HCC[108]. At present, only a few data are available on Smad 
mutations. In a small cohort of  35 patients, three were 
identified to have mutations of  either Smad 2 or Smad 
4[109]. In contrast, levels of  Smad 5 were rather found 
upregulated than downregulated and therefore Smad 5 was 
excluded to play a significant role in HCC development[110]. 
Finally, in vitro experiments suggested that ability to 
repress the activity of  Smad proteins of  Ski and SnoN by 
interacting with Smad 2, Smad 3, and Smad 4 accounted 
for their transforming activity and resistance to TGFβ 
induced growth arrest[111].

Ras SIGNALLING
The three human ras genes (H-ras, N-ras and K-ras) 
encode for four proteins that function as small guanosine 
triphsophate (GTP) binding proteins, H-Ras, N-Ras, 
K-Ras4A and K-Ras4B[112-115]. The two forms of  K-Ras 
only differ in their C-terminal 25 amino acids due to 
alternate splicing. Ras proteins are positioned at the inner 
surface of  the plasma membrane, where they serve as 
molecular switches to transduce extracellular signals into 
the cytoplasm to control signal transduction pathways that 
influence cell growth, differentiation and apoptosis[116]. Ras 
proteins can be activated by a wide range of  extracellular 
proteins. For example, Ras proteins become activated 
following triggering of  receptor tyrosine kinases such as 
the epidermal growth factor receptor (EGFR)[117].

Single amino acid substitutions at N-ras codon 12, 
H-ras codon 13 or K-ras codon 61, that unmask Ras 
transforming potential, create mutant proteins that are 
insensitive to GAP (Ras p120 GTPase activation protein) 
stimulation[118]. Consequently, these oncogenic Ras mutant 
proteins are locked in the active, GTP-bound state, leading 
to constitutive, deregulated activation of  Ras function.

Activated Ras relays its signals downstream through 
a cascade of  cytoplasmic proteins. Substantial biological, 
biochemical and genetic evidence has implicated the 
Raf-1 serine/threonine kinase as a critical effector of  Ras 
function[119]. A key observation was that only biologically 
active Ras forms a high affinity complex with Raf-1[120-124]. 
The Ras-Raf  association promotes a translocation of  
the cytoplasmic Raf  protein to the plasma membrane, 
where subsequent events lead to the activation of  its 
kinase function. These events are complex and remain 
to be fully understood[125]. Upon activation, Raf  then 
phosphorylates and activates the MAPK kinases (MKKs) 
MEK1 and MEK2. MEK1 and 2 are dual specificity 
kinases which catalyze the phosphorylation of  Erk1 
and 2 on both tyrosine and threonine residues after 
translocation to the nucleus. Erk1 and 2 in turn activate 
numerous downstream targets such as transcription factors 
(e.g. Elk-1 and c-Jun[126,����127]), other kinases (e.g. p90rsk S6 
kinase), upstream regulators (e.g. Sos Ras exchange factor) 
and other regulatory enzymes (e.g. phospholipase A2). 
These downstream targets then control cellular responses 
including growth, differentiation and apoptosis.

Overexpression of  Ras and members of  the signalling 
pathway such as p21 have been demonstrated in HCC 
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in multiple studies[128,129]. Likewise, inhibitors of  the Ras 
pathway were reported to be downregulated in HCC[130]. 
Besides overexpression of  Ras in HCC, mutations of  
the Ras proto-oncogenes, locking Ras in the active state, 
have been identified. The most commonly investigated 
mutations were the N-Ras codon 61[131-133] , the H-Ras 
codon 12[134] and the K-Ras codon 12 mutation[135-137]. 
However, the absolute numbers of  HCC investigated 
were rather low in these studies. Ras mutations were 
continuously observed in HCC induced by various 
chemical agents in rats. These chemicals inducing HCC 
were N-nitrosomorpholine (NNM[138]), a combination of  
bleomycin and 1-nitropyrene[137], methyl (acetoxymethyl) 
nitrosamine[139], acetylaminofluorene (AAF)[140], 3-methyl-
(dimethylamino) azobenzene[139], and nitroglycerine[141]. In 
accordance with these data originating from murine HCC 
models, tumor tissue of  workers exposed to vinyl chloride 
were demonstrated to contain a significant level of  Ras 
mutations, supporting evidence for a role of  Ras mutations 
in HCC[142,143].

As a consequence of  overexpression of  the Ras 
pathway in HCC and in order to identify novel therapeutic 
targets for the treatment of  HCC, various groups have 
lately studied regulation of  the pathway by antisense 
RNA. Thereby, it has repeatedly been reported that 
antisense treatment for H-Ras significantly inhibited 
hepatocarcinogenesis and was able to reconstitute 
apoptosis in respective cells/tissues[138,144,145]. In addition, 
novel treatment approaches with multikinase inhibitors 
such as sorafenib targeting the Raf  kinase in patients with 
advanced HCC have displayed a moderate therapeutic 
efficacy as a single-agent and may now be evaluated for 
combination treatment with other anticancer agents[146].

Rb
The tumor suppressor protein retinoblastoma protein 
(Rb), is critical for the development of  several cancer 
types. Rb is the target for phosphorylation by several 
kinases as described below. In normal cell signalling, 
Rb prevents cell division and cell cycle progression. In 
particular, Rb prevents the cell from replicating damaged 
DNA, by preventing its progression through the cell cycle 
into S phase or progressing through G1[147]. Bound to the 
transcription factor E2F, Rb acts as a growth suppressor 
and prevents progression through the cell cycle[148]. Rb only 
inhibits cell cycle progression in a dephosphorylated state. 
Before entering S-phase, complexes of  a cyclin-dependent 
kinases (CDK) and cyclins phosphorylate Rb[147-151]. 
Dephosphorylated Rb binds to the transcription factor 
E2F[148]. Subsequently, phosphorylation of  Rb results in 
the dissociation of  E2F-DP from Rb[147,��������148,152]. Free E2F 
may then activate cell cycle activating factors like cyclins 
(e.g. Cyclin E and A), leading to progression of  the cell 
cycle. Thus, cells with mutated Rb are subject to reduced 
control in cell cycle progression subsequently resulting in 
the development of  cancer.

In addition, the Rb-E2F/DP complex also binds 
a protein called histone deacetylase (HDAC) which 
when associated to chromatin, further suppresses DNA 
synthesis. HDAC inihibitors have recently attracted 

increasing attention as therapeutic agents. Furthermore, 
oncoproteins of  several viruses can bind and inactivate Rb, 
possibly leading to cancer development[153-156].

Although a vast amount of  data has been accumulated 
on the role of  Rb in cancer differentiation for several 
cancer entities, only limited insight is available on a role 
of  Rb in HCC differentiation. Rb has been demonstrated 
to be inactivated in human HCC cell lines and in 28% of  
HCCs[157,158]. Simultaneously, additional members in the 
Rb network also have significantly aberrant expression 
in HCC. For example cyclin D1/Cdk4, phosphorylating 
and inactivating Rb, is overexpressed in 58% of  HCCs[159]. 
Furthermore, the p16 protein, also a regulator of  Rb 
activity through inhibition against Cdk4, is absent in 34% 
of  HCCs[160]. Together, these data suggest that disruption 
of  the Rb regulatory network is common in HCC 
carcinogenesis.

GENOME-SCALE ANALYSIS OF GENE 
EXPRESSION IN HCC
In recent years multiple data sets of  microarray data 
from genome wide expression analysis of  HCC have 
been published. Most of  these have reported novel 
involvements of  individual genes in differentation 
or development of  HCC. In order to identify gene 
clusters, individual genes, and pathways crucial to HCC 
development in general[161-163], solitary or multinodular 
development[164,165], metastasis[166] and tumor recurrence� 
after surgical resection[167] multiple microarray experiments 
have been performed. These experiments revealed several 
gene cluster and multiple genes to perform essential roles 
in HCC differentiation. However, comparison between 
these different microarray experiments remains difficult 
as these experiments all defined diverse clusters of  genes 
essential to tumor development, metastasis or recurrence. 
Thus, the challenge remains to identify a small subset of  
key regulatory genes, which may subsequently be chosen 
for evaluation as novel regulatory targets interfering with 
tumor development.

The most valuable perception from genome-wide 
expression profiles of  HCC was that HCC must not be 
regarded as a single tumor entity but rather represents 
several distinct subtypes of  liver cancer defined by distinct 
gene expression profiles. Groups of  HCC selected with 
respect to clinical outcome and distinct survival of  
patients varied significantly in their expression profile. 
However, these two tumor expression profiles were more 
closely related compared to normal tissue[168]. These data 
were in accordance with expression studies performed 
in murine HCC. By means of  molecular biology, Stahl et 
al[169]  confirmed that HCC contains at least two subtypes, 
which may be distinguished by expression of  β-catenin 

Similarly, HCCs induced by chronic HBV or chronic HCV 
infection were demonstrated to display clearly distinct 
expression profiles and thus the conclusion was drawn that 
hepatocarcinogenesis due to HBV or HCV is driven by 
different pathophysiological mechanisms[170]. Furthermore, 
the expression profile of  HCCs was suggested to differ 
according to distinct histological tumor types[171].
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Besides the gene clusters identified to be essential to 
HCC development, differentiation of  subtypes and clinical 
outcome, HCC expression profiles of  multiple genes 
and genetic networks was demonstrated to be critical 
to response of  HCC cell lines to treatment with several 
chemotherapeutic agents in vitro[172]. The pharmacogenetic 
relevance has been evaluated in multiple studies revealing 
individual clusters of  genes crucial to treatment response 
with 5FU and cisplatin[173], 5FU plus interferon alpha[174], 
interferon alpha alone[175], and histone deacetylase 
inhibitors[176,177]. Although these data certainly contributed 
new insights to the pharmacogenetics of  HCC treatment, 
the number of  individual genes identified correlated 
with treatment response is still too large to be routinely 
tested for each individual patient before initiation of  
treatment. Thus, the future challenge remains to focus 
on a small subset of  highly predictive genes which may 
be investigated more easily and rapidly and not at least 
cheaper in order to establish a personal prediction of  
chemotherapy response.

ALTERED DNA METHYLATION IN HCC
In contrast to somatic mutations, changes in methylation, 
especially in promoter regions of  individual genes, are 
capable of  regulating gene expression without changes 
in DNA sequence. Methylation may occur on cytosine 
nucleotides, predominantly in CpG nucleotides, and the 
methyl group can be added to the pyrimidine ring by either 
one of  the three methyltransferases (DNMT 1, DNMT3a 
and DNMT3b). These methylations are passed through 
cell division. Methylation of  promoters may interfere with 
the binding of  transcription factors and other regulatory 
mechanisms. Subsequently, progressive methylation of  
promoter regions may result in decreased expression of  
the corresponding gene.

In cancer, a “methylation imbalance” was frequently 
observed, where a genome-wide hypomethylation is 
accompanied by localized hypermethylation and an 
increase in expression of  DNA methyltransferase.

T he  inves t i g a t ion  of  a l t e red  methy l a t ion  in 
pathogenesis of  HCC remains limited to individual genes 
being investigated due to the lack of  high throughput 
techniques for analysis of  methylation. In a study on 
133 genes investigated for changes in methylation in 
HCC, 32 were mostly hypermethylated, only a few 
hypomethylated. Wether these altered methylation profiles 
lead to significant changes in expression profiles and the 
function of  genetic networks or whether these changes 
just indicate severe epigenetic disturbances remains to 
be investigated. However, as these genes were selected 
prior to analysis with respect to differential expression 
in HCC, altered methylation was suggested to contribute 
significantly to the differentiation of  HCC. Besides this 
comparatively large set of  genes, only a few genes have 
repeatedly been investigated individually and reported to 
be hypermethylated in HCC. Thus, the SFRP1, RUNX3, 
RASSF1, OCT6, AR, p73, MYOD1, and p16INK4a gene 
were reported hypermethylated in more than half  of  all 
HCC[178,179].

Changes of  methylation were not only observed in 
tumor tissue but also in peripheral blood[180]. In addition, 
DNA methylation was demonstrated to be significantly 
decreased after surgery. These findings certainly represent 
initial, preliminary studies and need to be further 
confirmed. However, if  confirmed, analyzing DNA 
methylation may develop into an additional aid in diagnosis 
and follow up of  HCC.
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