
INTRODUCTION
Treatment of  tumor by radiation therapy faces a crucial 
dilemma that is delivering sufficient radiation rate for 
tumor cure, while limiting, as far as possible, normal tissue 
exposure and injury. Despite the recent sophisticated 
irradiation modalities development, as 3D-conformal or 
intensity-modulated radiation therapy, increased radiation 
ballistic performance in pelvic and abdominal cancer 
treatment[1], the intestine remains a major dose-limiting 
organ. Indeed, chronic gastro-intestinal side effects 
(diarrhea, fecal urgency, proctitis, bleeding, fistula, etc.) 
affect the daily quality of  life of  6% to 78% patients[2]. 
Moreover, 5% to 10% of  patients will develop severe 
intestinal toxicity mainly characterized by intestinal 
narrowing and transmural fibrosis leading to obstruction[3]. 
Excessive deposition of  collagens and extracellular 
matrix components in the submucosa induces the loss of  
compliance of  the mucosa over the muscularis propria required 
for aboral propulsion. In addition, thickening of  the 
intestinal wall contributes to stricture formation. Globally, 
this loss of  compliance and the stricture formation 
lead to intestinal obstruction[4]. Although antioxidant-
based anti-fibrotic treatments have been proposed to 
patients, including the combination of  pentoxifylline 
and tocopherol[5,6], their efficacy in delayed radiation-
induced intestinal toxicity is disputed[7] and surgical 
resection remains today the only therapeutic option 
for patients with delayed radiation enteropathy. These 
inconsistent clinical reports add confusion to the old, yet 
unresolved controversy about the reversibility of  radiation 
fibrosis[8]. Thus, one challenge for translational research in 
radiopathology/radiotherapy is to characterize the specific 
molecular mechanisms and cellular contributions involved 
in the maintenance of  fibrosis to define efficient curative 
strategies. We will see in the present review that contrary to 
the conventional wisdom, severe fibrotic lesions observed 
in human radiation enteropathy are highly dynamic[9,10], 
thus opening real perspective for therapeutic interventions. 
These curative strategies are particularly relevant in 
oncolology as they won’t interfere with anti-cancer 
treatments and would be applicable to treat established 
radiation injury in case of  radiation accidents or acts of  
terrorism[11].

 ������ ���������TOPIC HIGHLIGHT

Maintenance of radiation-induced intestinal fibrosis: Cellular 
and molecular features

Valérie Haydont�� ������������������ �������������,� ������������������ ������������� Marie-Catherine Vozenin-Brotons 

Valérie Haydont�� ������������������ ��������������, ������������������ ��������������Marie-Catherine Vozenin-Brotons�, ������UPRES 
EA 27-10 "Radiosensibilité des tumeurs et tissus sains", Institut de 
Radioprotection et de Sûreté Nucléaire/Institut Gustave Roussy. 
Villejuif �� ���������������  ������������������ ������������������� ; ���������������  ������������������ ������������������� Laboratoire de Radiopathologie. SRBE/DRPH. Institut 
de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, 
France
Correspondence to: MC Vozenin-Brotons, Laboratoire UPRES 
EA 27-10, Radiosensibilité des tumeurs et tissus sains. PR1, 39, 
Rue Camille Desmoulins, 94805 Villejuif cedex, 
France��.� vozenin@igr.fr
Telephone: +33-1-42114282  Fax: +33-1-42115236 
Received: 2006-12-28	  Accepted: 2007-02-25

Abstract
Recent advances in cell and molecular radiobiology 
clearly showed that tissue response to radiation injury 
cannot be restricted to a simple cell-killing process, but 
depends upon continuous and integrated pathogenic 
processes, involving cell differentiation and crosstalk 
between the various cellular components of the tissue 
within the extracellular matrix. Thus, the prior concept of 
primary cell target in which a single-cell type (whatever 
it’s epithelial or endothelial cells) dictates the whole 
tissue response to radiation injury has to be replaced 
by the occurrence of coordinated multicellular response 
that may either lead to tissue recovery or to sequel 
development. In this context, the present review will 
focus on the maintenance of the radiation-induced 
wound healing and fibrogenic signals triggered by and 
through the microenvironment toward the mesenchymal 
cell compartment, and will highlight how sequential and 
sustained modifications in cell phenotypes will in cascade 
modify cell-to-cell interactions and tissue composition. 
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RADIATION-INDUCED INTESTINAL 
FIBROSIS: THE PATHOLOGIST DEFINITION
The main pathological feature of  delayed radiation toxicity 
is the transmural fibrosis consisting of  severe deposition 
of  extracellular matrix component within the mucosa, 
submucosa, muscularis propria and subserosa (Figure 1). The 
number of  crypts is reduced and a collagenous infiltration 
in the lamina propria is observed. Around the microvessels, 
accumulation of  inf lammatory cells suggesting an 
increased vascular permeability likely caused by endothelial 
cell damages. The muscularis mucosa is thickened with zones 
of  complete disruption with infiltration of  muscular-like 
structures within the submucosa. Submucosal layers always 
exhibit an altered but heterogeneous morphology. Some 
zones are composed of  dense cords of  collagen fibers 
with few fibroblasts whereas others are edematous or 
contained fibrosis-related fibroblasts and inflammatory 
cells located around hyalinized vessels with interlaced 
fibers. The muscularis propria is thickened and dystrophic 
with infiltration of  connective septa. The Auerbach plexus, 
located between the circular and longitudinal muscular 
layers, are mostly hypertrophied. The subserosa also revealed 
a severe heterogeneous fibrosis containing newly formed 
microvessels, myofibroblasts, inflammatory cells, and 
paucicellular zones composed of  stromal accumulation.

More than 30 years ago the World Health Organization 
proposed to define fibrosis “as the presence of  excess 
collagen due to new fiber formation”[12]. The same is true 
for radiation fibrosis that was classically considered as a 
chronic and progressive process in which normal tissue is 
replaced by fixed and irreversible fibrotic tissue. This view 
has however been challenged and fibrosis has been recently 
redefined as a dynamic process resembling chronic wound 
healing[9,10,13]. 

THE INITIATION OF THE FIBROGENIC 
PROCESS: WHO IS GUILTY? OR THROUGH 
A MULTICOMPONENT AND INTEGRATED 
VISION OF THE PATHOGENESIS
The pathophysiological mechanisms of  acute intestinal 
lesions after irradiation have been well investigated but 
the mechanisms underlying delayed radiation-induced 
intestinal complications and the precise sequence of  
cellular and molecular events that initiates fibrogenesis 
are still discussed. Classical radiobiological views presents 
radiation-induced tissue injury as the direct consequence 
of  DNA damages and cell death induction in target cells, 
meaning that the severity of  tissue damages would be 
directly related to cell depletion during the acute phase. 

In murine models of  acute gastrointestinal syndromes, 
the injury has been mainly attributed to apoptosis and 
depletion of  both microvascular endothelial cells[14] and 
epithelial stem cells[15]. The primary role of  the vascular 
compartment in triggering radiation-induced normal tissue 
damages was introduced more than 40 years ago by Rubin 
and Casarett[16]. Endothelial cell dysfunctions precede 
other cell-type response as well as fibrin deposition. In 

addition, peri-vascular edema always precedes collagen 
accumulation[17]. This vascular hypothesis represents a 
matter of  debate because the endothelial compartment 
was seen as a single entity. The detractors of  the vascular 
hypothesis argued that if  endothelial cells were at the 
initiation of  late damages the relationship between 
radiation dose and tissue lesion should be similar in all 
organs[18]. Today, the progress made in cell biology clearly 
demonstrate that endothelial cell phenotype depends 
upon the vessel type (artery, veins, micro-vessels) and the 
tissue[19]. These observations suggest that the biological 
effects of  irradiation on endothelial cells might be tissue 
specific. Although specific responses of  endothelial cells 
isolated from various tissues to ionizing radiation remains 
to be studied, their role in normal tissue response to 
radiation-injury is today undisputable. 

In rodents, acute mucosal damage is required for the 
development of  delayed intestinal complications[20,21]. 
These observations suggest that acute mucosal lesions 
contributed to late toxicity[22] and lead to the idea that 
increasing the pool of  epithelial cells before irradiation 
would improve acute damages and inhibit the development 
of  late injury[22]. This hypothesis has been fully validated 
in experimental models using mucosal trophic growth 
factors like KGF[23,24] and GLP-2[25]. Yet, the use of  trophic 
factors faced a crucial problem in cancer patient related 
to their stimulatory action on tumor growth[26,27]. The 
functional consequences of  radiation-induced epithelial 
depletion are probably far beyond the barrier function. 
One indirect consequence of  the epithelial rupture is the 
exposure of  the intestinal stroma to luminal flora, involved 
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Figure 1  A: Resection of human intestine with radiation-induced fibrosis; B: Bright 
field photomicrograph showing transmural collagen accumulation as green stain in 
human radiation enteropathy after Masson’s trichrome staining.
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in specific lymphocyte T helper (TH) polarization. The 
role of  TH orientation and the local production of  specific 
cytokines associated with this polarization have been well 
investigated. On the one hand TH1 orientation, notably 
characterized by the secretion of  interferon γ, is associated 
with resolution of  the wound healing process. On the 
other hand TH2 orientation, characterized by the secretion 
of  IL-4, IL-13 and TGF-β1, triggers tissue response 
toward fibrosis probably mediated by the pro-fibrotic 
growth factor: TGF-β1[28-30]. Exposure of  intestinal stroma 
to bacteria is known to induce a TH1 polarization[29], but in 
the lung persistent exposure to bacterial antigens reorients 
TH1 polarization toward a TH2 profile suggesting that 
chronic epithelial depletion is fibrosis-prone[30]. In addition, 
seven days after γ-irradiation (10 Gy) a TH2 orientation has 
been described in rats[31], suggesting that a fibrosis-prone 
polarization occurs that remains to be fully characterized. 
The importance of  the immune compartment to intestinal 
response to ionizing radiation.

The extrapolation from observations obtained in 
rodents to patients probably has to be moderated. 
Indeed, whether the consequential component occurs 
in radiotherapy patients is more controversial. Whereas, 
fractionation protocols significantly minimizes mucosal 
damages[32], late toxicity does occur[33]. In addition, 
several clinical reports showed the absence of  correlation 
between the severity of  early lesions and the probability 
of  late effect development[34-37]. These data suggest 
that delayed tissue response to radiation injury depends 
upon continuous and integrated pathogenic processes, 
involving cell differentiation and crosstalk between the 
various cellular components of  the tissue, within the 
extracellular matrix[38]. In this context, the role of  the 
mesenchymal compartment (i.e. in the gut, smooth muscle 
cells, submucosa fibroblasts, subepithelial myofibroblasts and 
the extracellular matrix) is probably the most indubitable 
for the development and the maintenance of  fibrosis as 
these cells are responsible of  the pathological extracellular 
matrix accumulation observed in fibrosis.

WHAT DIFFERENTIATION STATUS FOR 
THE MESENCHYMAL CELLS IN RADIA-
TION-INDUCED INTESTINAL FIBROSIS?
Radiation-induced intestinal fibrosis is characterized by 
the accumulation of  extracellular matrix due to a global 
deregulation of  the synthesis/degradation balance[9,10]. 
Whether this dynamic remodeling process is a cause 
or a consequence of  the phenotypic alteration of  the 
resident mesenchymal cells is not known[33]. However, this 
pathological differentiation contributes to the intestinal 
loss of  function and obstruction. After injury, tissue 
regeneration relies on the differentiation capacity of  
its resident cells. Thus, understanding the mechanisms 
involved in the differentiation of  intestinal mesenchymal 
cells would provide new insight to design new therapeutic 
strategies. 
Normal wound healing and fibrosis: the skin as “model 
system”
After injury, the loss of  dermal homeostasis induces 
mechanical tension in the clot. This contractile stress added 

to the secretion of  cytokines, such as PDGF, triggers 
fibroblast recruitment and their morphological change[39] 
into proto-myofibroblasts[40]. Then, the mechanical tension 
associated with ED-A fibronectin and TGF‑β1 deposition 
induce the differentiation of  proto-myofibroblasts into 
myofibroblasts. The latters are mainly characterized 
by altered cytoskeleton with prominent stress fibers 
(composed of  α‑Sm actin, myosin, tropomyosin, α-actinin 
and filamin), anchored at the cytoplasmic membrane by 
molecular complex named the focal adhesion point in-
vitro and the fibronexus in-vivo[41]. These focal adhesion 
points connect the actin cytoskeleton to the extracellular 
matrix via integrin receptors and control the mechanical 
exchanges between the myofibroblats and the extracellular 
matrix. Subsequently, contraction of  the granulation tissue 
occurs and leads to wound healing closure[42,43]. In addition, 
myofibroblasts are connected directly to each other 
through gap junctions, composed of  several hemichannels 
containing distinct but functionally related proteins called 
connexins[44]. Thus, myofibroblasts might form a syncytial 
structure composed of  multicellular contractile units. 
In summary, the myofibroblastic differentiation is an 
intermediate differentiation between fibroblast and smooth 
muscle cells and ensured the contraction of  the granulation 
tissue and the neo-synthesis of  the extracellular matrix.

What is known about the mesenchymal cell differentiation 
in the intestine?
In the intestine, the mesenchymal compartment is 
composed of  3 cell types: the sub-epithelial myofibroblasts, 
the submucosal fibroblasts and the smooth muscle cells 
of  muscularis mucosa and muscularis propria. The respective 
contribution of  these 3 cell types to fibrosis is not clearly 
defined, but the pathological collagen deposition seemed 
mainly achieved by smooth muscle cells[45], and their 
differentiation profile seemed comparable at the molecular 
level[46]. 

After injury, the differentiation of  smooth muscle cells 
is characterized by a phenotypic switch from a contractile 
function to a secretory activity[47]. This switch is associated 
with cytoskeleton modifications defined using the VDA 
classification proposed by Gabbiani : Vimentin-Desmin-α-
sm Actin[48]. In human intestinal radiation-induced fibrosis, 
an overall increase in the relative number of  cells defined 
as fibroblasts/myofibroblasts were detected in the mucosa 
(V+/D-/A+) and submucosa (V+/D-/A-/+), differentiated 
smooth muscle cells are also found in the hyalinized vessel 
wall (V+/D-/A+) and in the dystrophic muscularis propria 
(V-/D+/A+)33. The strong plasticity of  smooth muscle 
cells allowed profound alterations in their phenotype in 
response to changes in local environment[47,49] and in return 
these differentiated smooth muscle cells controlled tissue 
response. 

Terminal differentiation versus immature phenotype
For a long time, the conventional wisdom presented 
mesenchymal cell differentiation in radiation-induced 
fibrosis as terminal and thus ir reversible[50,51]. This 
hypothesis was based on phenotypical characterizations 
performed on fibroblasts irradiated in vitro, which exhibit 
a premature senescent and pro-secretory phenotype 
(extracellular matrix secretion). Thus, necrosis or apoptosis 
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of  these fibrosis-activated mesenchymal cells were the 
unique solution conceivable to cure fibrosis[13,52]. 

Further investigation on the characterization of  the 
fibrogenic differentiation of  intestinal smooth muscle cells 
isolated from radiation enteropathy suggested another 
hypothesis, in which fibrosis-derived intestinal smooth 
muscle cells (RE‑SMC) seemed more immature than their 
normal counterpart (N‑SMC). The first evidence was 
given by cytoskeleton analysis since an alteration of  the 
γ‑Sm actin/α‑Sm actin ratio was found. Indeed, RE‑SMCs 
exhibit higher expression level of  the α‑Sm actin than 
their normal counterparts whereas the level γ‑Sm actin 
remained stable[53]. Because this ratio is an indicator 
of  intestinal smooth muscle cell differentiation[54] i.e. 
increased ratio indicates a differentiated phenotype 
whereas decreased ratio reveals immaturity, the profile 
found in RE-SMC suggests the maintenance of  an 
immature phenotype (Figure 2). This immaturity is further 
supported by the comparison study by Beqaj et al[55], who 
demonstrated an inverse correlation between smooth 
muscle cell differentiation during bronchial myogenesis 
and Rho activity: i.e. Rho activity decreased when cells 
became mature. In RE-SMC, a global profiling approach 
performed by cDNA array revealed a deregulation of  the 
genes coding for Rho pathway as compared to N‑SMC[53]. 
Furthermore the Rho pathway is preferentially activated 
upon TGF‑β1 stimulation in RE‑SMC[56]. The last evidence 
is related to the extracellular matrix composition and in 
particular to the secretion of  fibronectin. Fibronectin is 
known to control the differentiation of  smooth muscle 
cells in the lung. Indeed, Bequaj et al[55] have been able to 
isolate a specific cell-type that spreads on fibronectin and 
exhibits an intermediate differentiation status between 
mesenchyme precursors and bronchial smooth muscle 
cells. These intermediate cells are larger and more spread 
than the differentiated lung smooth muscle cells (Figure 2).  
Similarly RE‑SMC are more spread and larger than their 
normal counterparts (Figure 3A) and secrete high level 

of  fibronectin (Figure 3B). This immaturity concept has 
important clinical implications as it suggests that fibrotic 
tissue has high regenerative potential and imply that 
fibrosis might be reversible. 

MEDIATORS TRIGGERING THE 
MAINTENANCE OF MESENCHYMAL 
DIFFERENTIATION IN FIBROSIS
If  defining the differentiation status of  fibrosis-related 
cells is essential to investigate the regenerative potential of  
irradiated tissue, another important issue is to characterize 
the mediators involved in the maintenance of  this 
pathological phenotype. Numerous actors are involved, yet 
we choose to focus on important mediators involved in 
the criss-cross relationship between mesenchymal cells and 
their micro-environment leading to the establishment of  
sequential and chronic activation loops.

TGF‑β1 is a pleïotropic cytokine involved in the 
regulation of  various biological processes including 
matura t ion of  the immune ce l l s , p ro l i f e r a t ion , 
differentiation, apoptosis as well as normal and patholo-
gical wound healing response[57]. In the context of  the 
maintenance of  fibrosis, one relevant function of  TGF-β1 
is related to its self-induction ability[58-62]. This auto-
induction, mainly triggered by the transcription factor 
AP-1, probably constitutes one of  the first fibrogenic 
activation loops contributing to fibrosis maintenance by 
persistent extracellular matrix production and continuous 
induction of  the fibrogenic differentiation of  mesenchymal 
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Figure 2  Differentiation of the smooth muscle cells during myogenesis is 
correlated with increased gSm actin/aSm actin ratio in the intestine[54] and with 
decreased Rho activity in the lung. In addition in the lung Beqaj et al[55] isolated a 
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cells (Figure 4A). 
CCN2 (also called CTGF) is another relevant growth 

factor involved in the maintenance of  the fibrogenic 
differentiation and in the control of  the extracellular matrix 
remodeling. In normal tissue, CCN2 is absent or expressed 
at extremely low concentration, whereas it is highly and 
specifically expressed in established fibrotic tissue[63] 
including Crohn disease[64] and intestinal radiation-induced 
fibrosis[33]. As TGF‑β1, CCN2 exhibits auto-induction 
properties constituting another chronic activation loop 
particularly relevant for the maintenance of  fibrosis as it 
seems restricted to fibrosis-derived cells[65] (Figure 4A). 
The cooperation between CCN2 and TGF‑β1 constitutes 
an additional chronic activation loop: TGF‑β1 is one 
of  the primary inductor of  CCN2[66,67] which in return 
enhances TGF‑β1 binding to the TGF‑β-type Ⅱ receptor 
and increases Smad pathway activation[68] (Figure 4A). Yet, 
the mechanisms involved in the sustained and constitutive 
expression of  CCN2 found in long-term established 
fibrosis is rather obscure. Thereby, in delayed radiation 
enteropathy[33] and scleroderma[69,70], a paradoxal situation 
occurs as in-situ TGF‑β1 deposition is low, whereas CCN2 
is highly expressed and correlates with the severity of  the 
pathology. To explain this paradox, Grotendorst et al[71] 
proposed that transient TGF‑β1 induction might trigger 
long-term mesenchymal cell differentiation and CCN2 
expression, that perpetuates in time without TGF‑β1, but 
additional cooperative signals between the cells and their 
microenvironment might be involved. 

First, the mechanical stress produced by wound 
contraction triggered the chronic production of  CCN2 
by direct transactivation of  the CCN2 gene expression[72] 
via the stretch-responsive element located in its promoter. 
This mechanical stress-induced CCN2 activation occurs 
through Rho/Rho kinase (ROCK) pathway activation 
and stress fibers polymerization[73] thus generating novel 
mechanical stress and subsequent CCN2 activation 
(Figure 4B). Second, CCN2 triggers fibronectin over-
secretion by fibrosis-derived cells[74]. In return, fibronectin 
has a crucial role in the maintenance of  f ibrosis, 
acting in combination with CCN2 to sustain CCN2 

own expression[75], controlling the extracellular matrix 
sequestration of  TGF‑β1 through its latent complex 
LTBP-1/TGF‑β1[76] and playing an essential structural 
role in collagen network formation (i.e. polymerization 
of  the fibrillar collagens type I and Ⅲ).[77,78] Beyond 
these direct fibrogenic actions, fibronectin binding to the 
α5β1 and αvβ3 integrins activates the Rho pathway[79], 
 thus increasing the proliferation and differentiation of  
the smooth muscle cells[80] and regulating the cytoskeleton 
polymerization (Figure 4C). These structural actions 
of  f ibronectin rely on its integrity, that might be 
damaged by the reactive oxygen species produced upon 
irradiation (H2O2) and might thus triggered the fibrogenic 
differentiation of  human lung fibroblasts[81,82]. 

Interestingly these various chronic activation loops 
involved in the sustained expression of  CCN2, depend 
upon the Rho pathway. Furthermore, despite the high 
constitutive expression of  CCN2 in fibrosis-derived 
cells[46,53,56], the canonical TGF‑β/Smad3/4 pathway is only 
poorly activated after stimulation with TGF-β1 in dermal 
myofibroblasts[83] and intestinal smooth muscle cells 
isolated from radiation fibrosis[56]. Indeed the Smad3/4 
pathway is activated in cells derived from normal tissue, 
whereas in the fibrosis-derived cells the TGF-β1 signal 
is mainly transduced by the Rho/ROCK pathway[56]. The 
Rho proteins are small GTPases (from “Ras homologous”) 
acting as molecular switches to control a wide range of  
cellular functions like cell adhesion, formation of  stress 
fibers, and cellular contractility through the reorganization 
of  actin-based cytoskeletal structures. These functions 
are accomplished specifically via their effectors, the 
ROCKs[84-87], after Rho anchorage to the cell membrane 
by prenylation[88]. The anchorage allows cycling between 
the inactivated GDP-bound form to the activated GTP-
bound, also controlled by specific activators/inhibitors: the 
GEFs (Guanosine nucleotide exchange factor), the GDI 
(Guanine dissociation inhibitors) and the GAP (GTPase 
Activating Protein) (for review[84,89,90]). Thus, Rho activity 
might be controlled by inhibitors of  HMG-CoA reductase 
including the statins, that might provide safe and efficient 
tools for the development of  anti-fibrotic strategies.
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THERAPEUTIC PERSPECTIVES
The development of  curative anti-fibrotic strategy 
is nowadays highly expected by both patients and 
physicians[8]. Indeed, the high efficacy of  the current anti-
cancer treatments increases patient’s overall survival, but 
also increases late complications occurrence especially in 
the gut[2]. The development of  high-throughput biological 
approaches highlighted by the recent concept of  cellular 
plasticity helps answering this difficult question by the 
identification of  biologically-based therapeutic targets. 
Thus, targeting one central pathway involved in vascular, 
immune, and stromal pathogenic response would provide 
an efficient anti-fibrotic strategy and thus we propose that 
targeting the Rho/ROCK pathway may help to achieve 
this aim (Figure 5)[53,56,91,94]. 

The Rho pathway is known to control vascular 
functions[94] mediating endothelial barrier functions, 
inflammation and transendothelial leukocyte migration, 
platelet activation, thrombosis, and oxidative stress, as well 
as the homeostasis of  vascular smooth muscle cells[93,95-97]. 
It also controls immune functions[92] as pharmacological 
inhibitors of  Rho including the stat ins modulate 
the TH1/TH2 balance thus interfering with chronic 
inflammation[92,98]. Consistently, statins (lovastatin) displays 
an anti-fibrotic efficacy in a mice model of  radiation-
induced pulmonary fibrosis[99]. In addition, reversion of  
the fibrogenic phenotype of  intestinal smooth muscle 
cells isolated from human radiation enteropathy was 

shown using Rho (pravastatin)[56] and ROCK (Y-27632) 
inhibitors[53]. These observations open new perspective for 
anti-fibrotic therapies by specific inhibition of  the Rho/
ROCK pathway.

CONCLUSION
In light of  several investigations on the differentiation 
status of  mesenchymal cells during fibrosis, it appeared 
that the secretory phenotype of  pathological cells would 
be associated to a less maturation compared to such 
in normal cells. Thus, the biochemical maintenance of  
radiation fibrosis is a complex process that depends upon 
continuous and integrated activation loops involving 
cell differentiation, and crosstalk between the various 
cellular components of  the tissue within the matrix[38]. 
However, the time and kinetic notion has never been 
evoked to explain the maintenance of  fibrosis. Yet, fibrotic 
pathogenesis is progressive and results from successive and 
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translational modification come from cholesterol metabolism, and may be inhibited 
by statins.
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Figure 6   A: Fibrosis is a progressive pathology that involves sequential 
activation of chronic molecular loops. Gradation of fibrosis severity correlates with 
a decreased number of resident cells and decreased the potential of recovery; B: 
Impact of prophylactic treatment on the development of fibrosis: early inhibition of 
one or few molecular loops would help to preserve the regenerative potential of 
the tissue; C: Impact of curative treatment on fibrosis maintenance: inhibition of 
one or few chronic loop would help to preserve the regenerative potential of the 
tissue thus leading to tissue recovery.
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sequential induction of  chronic molecular activation loops. 
The evolution of  the pathology during time correlates with 
a decrease in the cell number present within the tissue[5] 
and with a progressive loss of  regenerating potential. In 
this context, when a new molecular loop is activated, the 
severity of  fibrosis increases and correlates to decreased 
number in the resident cell number (Figure 6A). As a 
consequence, both preventive (Figure 6B) and curative 
(Figure 6C) therapeutic strategies might be efficient since 
inhibition of  one or several steps would inhibit fibrosis 
evolution and preserve tissue-regenerating potential. 
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