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minigene in the Kunming albino mouse and the 
transgene can be passed to subsequent generation. 
These findings also indicate that TyBS can be a useful 
visual marker gene in the co-transgenic experiments.
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INTRODUCTION
Visible pigmentation in the mammals results from the 
synthesis and distribution of  melanin in skin, hair bulbs 
and eyes[1-3]. Tyrosinase is the first and rate-limiting enzyme 
in the pathway for melanin production in melanocytes of  
the skin and eyes[1-3]. Mutation of  the tyrosinase gene is a 
common cause of  a similar phenotype in all vertebrates, 
known as albinism, due to a lack of  melanin pigment[1,3]. 
In mouse, the albino phenotype is characterized by a total 
absence of  pigmentation due to a mutation in the tyrosinase 
gene; several point mutations within the tyrosinase gene 
have been found, which can inactivate its function to 
result in oculocutaneous albinism (OCA)[1,3]. In mouse, the 
classical albino (c) mutation corresponds to a single-point 
mutation in the first exon of  the tyrosinase gene, which 
brings about an amino acid mutation Cys103Ser, leading 
to the accumulation of  a non-functional protein[4,5]. When 
mice are homozygous (c/c) for mutations that inactivate the 
tyrosinase gene, mice are albino regardless of  the genotype 
at the other loci[1,3]. The entire common albino inbred 
strains of  laboratory mice, such as FVB/N, BALB/c, etc, 
belonging to OCA, have the same point mutation in the 
tyrosinase gene, indicating that these strains are derived 
from a common ancestor[5]. The albino phenotype has been 
successfully corrected through the tyrosinase transgene, 
which can express the active tyrosinase in transgenic 
mice[5-18], rabbits [19], fish[20-22] and other vertebrates 
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Abstract
AIM: To use the tyrosinase minigene as a visual marker 
to perform microinjection training and improve the 
techniques related with transgene to greatly elevate the 
efficiency of gene transfer.

METHODS: A mouse tyrosinase minigene, i.e., TyBS, 
in which the 2.25-kb authentic genomic 5’ non-coding 
flanking sequence of mouse tyrosinase was fused to 
a mouse tyrosinase cDNA, was introduced into the 
fertilized eggs of outbred Kunming albino mice. 

RESULTS: Of the 11 animals that developed from 
the injected eggs, two mice (P1 and #8) exhibited 
pigmented hair (P1) and eyes (P1 and #8), as confirmed 
by PCR analysis for the tyrosinase minigene integrated 
into the genome. When founder P1 was bred to Kunming 
male mouse, six progeny out of 11 offspring inherited 
the transgene and the pigmented-eye phenotype. 

CONCLUSION: Taken together, these results suggest 
that this minigene encodes the active tyrosinase protein 
and that its 5’ flanking region contains the sequences 
regulating the expression of mouse tyrosinase gene as 
expected. We have rescued the albino phenotype by 
introduction and expression of a functional tyrosinase 
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expressing tyrosinase functional transgenes[23]. 
The Human and Model Organism Genome Projects 

have revealed the sequence information of  many genes. 
A significant challenge for scientists over the next few 
decades is to annotate the human and model organism 
genomes with functional information. Genetically 
engineered mice will play a vital role in the study of  the 
functional genome.

The production of  transgenic mice, involving an 
intensive sequence of  procedures in genetics, molecular 
biology, embryology and animal science, is usually time-
consuming and labor-consuming. One problem with 
learning to do microinjections is that it can be a long 
wait between the time the microinjections are done and 
the time that the results are known, particularly if  one 
waits until the microinjected embryos have developed 
into weaning age mice before screening. How to easily 
and rapidly assay for a successful pronuclear? There are 
a number of  constructs that are particularly useful when 
learning to do microinjections. Among them, tyrosinase 
can be used to allow the visual identification of  transgenic 
mice at birth in the first and all subsequent generations. 
Microinjection of  a tyrosinase minigene into embryos 
from an albino mouse strain can result in gene cure of  the 
albino defect and the pigment synthesis[5,6,18]. Pigmented 
mice with dark eyes can be easily identified by simply 
visible inspection at birth. In fact, the pigment epithelial 
cells of  the retina begin to synthesize melanin by P10.5 of  
embryonic development[8,26] so that transgenic mice can 
be typically identified by visual inspection of  the fetuses 2 
wk after microinjection. The microinjection can be done 
using albino inbred strains (such as FVB/N and BALB/c) 
and inexpensive outbred albino strains (such as ICR and 
Kunming mice). Another advantage of  the tyrosinase 
minigene is the fact that it is not detrimental to the health 
of  the transgenic animals.

Therefore, we decided to use the tyrosinase minigene 
as a visual marker to perform microinjection training and 
improve the techniques related with transgene to greatly 
elevate the efficiency of  gene transfer in our center.

MATERIALS AND METHODS
Production of the tyrosinase minigene transgenic mice
The tyrosinase minigene TyBS[5] used for microinjection 
was generously provided by Dr. P.A. Overbeek (Howard 
Hughes Medical Institute, Department of  Cell Biology, 
Baylor College of  Medicine, Houston, TX, USA) and Dr. 
F Beermann (Swiss Institute for Experimental Cancer 
Research, Switzerland). 

Transgenic mice were generated by microinjection 
of  single cell embryos using standard techniques[27]. 
The Kunming mouse strain, supplied by Center of  
Experimental Animals, Sun Yat-Sen University, was used 
as the source of  embryos for the micromanipulation and 
for the subsequent breeding trials. For microinjection, the 
4.1-kb fragment of  tyrosinase minigene (Figure 1) was 
released free from the vector backbone of  pTyBS[5] via 
digestion with EcoR I and Kpn I, thereafter isolated and 
purified using the QIA quick gel extraction kit (Qiagen, 
Hilden, Germany), diluted to a final concentration of  2 

µg/mL DNA in injection buffer (10 mmol/L Tris/0.1 
mmol/L EDTA, pH 7.4), and then microinjected into the 
pronuclear of  one cell-stage fertilized embryos [Kunming 
mouse (♀) × Kunming mouse (♂)]. About 20-25 DNA-
injected fertilized eggs that survived microinjection 
were implanted into the oviducts of  one recipient 
pseudopregnant Kunming mouse 2-3 h after injection 
or the next day as previously described[27]. Potential 
transgenic founders were weaned at 3 wk of  age. The 
offsprings were firstly screened for the presence of  the 
transgene via pigmentation phenotypes derived from the 
existence of  the functional tyrosinase minigene, followed 
by PCR analysis performed on the tail genomic DNA 
prepared with standard protocols[28]. All animal care and 
experimentation were performed according to the Study 
and Ethical Guidelines for Animal Care, handling and 
termination established by the Subcommittee of  Sun Yat-
Sen University on laboratory animal care. The presented 
work was approved by the ethical committee of  Sun 
Yat-sen University and is covered by Chinese animal 
husbandary legislation.

Genotype analysis by PCR
PCR was performed on tail genomic DNA to further 
identify which mice have tyrosinase minigene integrated 
into their genome. The sequences of  the forward primer 
(FP) within exon 1 and reverse primer (RP) within exon 
4 used to amplify a 767-bp fragment of  the tyrosinase 
minigene were: 5’-GGTTTCAACTGCGGAAACTG-3’ 
(forward) and 5’-TGTGAGTGGACTGGCAAATC-3’ 
(reverse) (Figure 1). PCR conditions were as follows: 
pre-denaturation at 94℃ for 7 min, followed by 30 
amplification cycles of  denaturation at 94℃ for 1 min, 
primer annealing at 58℃ for 1 min, and extension at 72℃ 
for 1 min 30 s, and finally an additional extension at 72℃ 
for 10 min. TyBS construct DNA was used as the positive 
control for each PCR reaction, and genomic DNA from 
normal Kunming mice was employed as a negative control 
for each PCR test. DNA samples were considered positive 
for a particular transgene if  a band of  the predicted size 
in the test samples was present with no amplification 
occurring in the control sample. Endogenous genomic 

← →

←→

K

4.1 kb

ATG     Cys               Gly
            103	              346

767 bp

E

Figure 1  The structure of tyrosinase minigene construct TyBS used for 
microinjection. The construct contains a 2.25-kb tyrosinase promoter, i.e., 5’ non-
coding flanking sequence of mouse tyrosinase, as a single thick line plus 65 bp of 
tyrosinase exon I (to the Xho I site) and 1.785-kb Xho I-EcoR I fragment (shaded) 
(derived from Tyrs-J) containing tyrosinase cDNA and 3’ non-coding flanking 
sequence. TyBS encodes cysteine at amino acid 103 and glycine at amino acid 
346. The 4.1-kb injected fragment was obtained by pTyBS digestion with Kpn I and 
EcoR I. The restriction sites are: E, EcoR I; K, Kpn I. The primers specific for TyBS 
used in PCR reaction (small arrows) and the expected size of PCR products are 
indicated.



tyrosinase sequence was not amplified under this PCR 
conditions chosen here. 
 

Mouse propagation and transmission 
At 6-8 wk of  age, founders shown to be transgenic for the 
tyrosinase minigene were mated with normal Kunming 
mice to generate F1. Pigmented F1 animals derived from 
founder, as well as albino non-transgenic littermates were 
further analyzed for the inheritance of  the tyrosinase 
transgene by PCR using tyrosinase-FP/RP primers. PCR 
protocols for TyBS were noted above.

RESULTS
Rescue of the albino phenotype by tyrosinase transgene 
Within the coding sequences of  the tyrosinase gene, a G 
to C transversion at nucleotide 308, leading to a cysteine 
(Cys) to serine (Ser) mutation at amino acid 103, is 
sufficient to abrogate pigment production in mice[5]. This 
same base pair change is fully conserved in the classical 
albino strains of  laboratory mice, such as FVB/N and 
BALB/c[5]. Albino Kunming mice are an outbred mouse 
strain that is homozygous mutant at the albino (c) locus. 
An albino mutation carried in the Kunming mouse strain 
should be also the result of  a base substitution from G 
to C in exon I. It is, therefore, reasonable to expect that 
the albino phenotype can be rescued by introducing a 
functional tyrosinase minigene, such as TyBS, into albino 
embryos. 

The tyrosinase minigene TyBS construct[5] used for 
microinjection is illustrated in Figure 1. As the expression 
of  the tyrosinase minigene is easily detected by the 
pigmented phenotype, this gene can be used as a visual 
marker for the production of  transgenic animals. 

Of  the 45 embryos transferred to the recipient females, 
11 embryos developed to term. Two individuals of  11 
siblings were transgenic, as demonstrated by pigmentation 
phenotype in the eyes (Figure 2A-D, F and G) and coat 
(Figure 2C, D and F), and PCR analyses (Figures 3A and B). 

Furthermore, two TyBS transgenic mice, i.e. P1 
(Figure 2A and B) and #8 (Figure 2G) which died 48 h 
after birth, had dark eyes at birth, and were immediately 
identifiable as transgenic mice. Although the extent of  
the coat pigmentation was non-standard like the wild-type 
phenotype, founder P1 exhibited the partially pigmented 
phenotype (Figure 2C, D and F). Over time, the coat 
of  P1 with nearly black eyes (Figure 2A-D, F) became 
more heavily pigmented (light grey to dark grey) (Figure 
2C, D and F), while the eye and fur phenotypes of  non-
transgenic littermate controls remained pink and albino 
throughout life (Figure 2C-E), respectively. 

Transmissibility of the foreign transgene 
To determine whether the TyBS transgene was transmitted 
to the next generation, at 6 wk of  age female P1 was back-
crossed to the parental mouse strain to give F1 generation. 
The progeny of  P1 was analyzed for the inheritance of  the 
transgene by eye phenotype, coat pigmentation and PCR.

From the cross between P1 and normal Kunming 
mouse, 11 offspring were obtained. Although all of  
littermates from P1 died immediately at birth, it was found 

that six out of  the 11 siblings exhibited the pigmented eyes 
at birth (Figure 2H), as verified by PCR (Figure 3C).

Non-mosaic transgenic mice with one s i te of  
integration should transmit the transgenic DNA in a 
Mendelian fashion to about 50% of  their offspring, 
whereas mosaic mice generally show a frequency of  
transmission of  25% or less. Note that founder mice 
that have more than one site of  integration can produce 
litters where 75% or more of  the offspring are transgenic, 
although the percent transmission for any one site of  
integration is expected to be average 50% or less[29,30]. It 
was concluded that founder P1, successfully transmitting 
the transgene in a Mendelian fashion to about 55% (6/11) 
of  its progeny, is non-mosaic transgenic mouse.

Taken together, these data demonstrate that founder 
P1 can transmit the transgene to subsequent generation 
and its progeny show an inherited characteristic phenotype 
of  pigmented eyes.

DISCUSSION
Coat color of the tyrosinase transgenic mice
Pigmentary genes are the first mammalian genes to be 
studied, mostly because of  the obvious phenotypes 
associated with their mutations[23]. In this study, founder 
P1, harboring the tyrosinase minigene TyBS, exhibited light 
pigmentation, but non-standard wild-type coat color in 
the skin, although over time, P1 coat became more heavily 
pigmented. Similarly, the transgenic mice carrying TyBS 
construct showed considerable variation in the intensity of  
pigmentation, the coat colors were found to range from 
grayish to brownish, and none of  the mice were black[5]. 

Actually, all these standard tyrosinase constructs, 
including TyBS, driven by the limited amount of  5’ 
tyrosinase upstream regulatory sequences (ranging from 
270- to 5500-bp promoter sequences) displayed a high 
degree of  variability in coat pigmentation between 
independent lines[14,30-34], and the coat pigmentation did 
not reach the normal levels observed in the wild-type 
phenotype[6,18,30-32,35,36]. For example, in an evaluation of  
39 transgenic founder animals and 44 transgenic lines, 5 
phenotypic patterns of  pigmentation were consistently 
observed, including albino, dark, light, mottled and 
Himalayan[32]. In fact, the tyrosinase minigene which is 
sufficient to produce normal levels of  both eumelanin 
and phaeomelanin can give normal black or brown 
pigmentation on the appropriate non-agouti genetic 
backgrounds[5,32]. These abnormally expressional patterns 
might have been explained by position effects. In summary, 
these findings demonstrate that other regulatory regions 
within the tyrosinase gene are required to sustain the 
faithful expression of  tyrosinase transgene, independent 
of  integration site.

By flanking a tyrosinase minigene with tandem copies 
of  the chicken β-globin 5' HS4 insulator, there is a 
significant reduction in variability among transgenic lines, 
with the resulting mice exhibiting the similar levels of  
coat pigmentation, which, in turn, improves the yield of  
phenotypically expected transgenic founders resulting from 
each microinjection session, and consequently reduces 

246          ISSN 1007-9327       CN 14-1219/R     World J Gastroenterol      January 14, 2007    Volume 13     Number 2

www.wjgnet.com



Figure 2  Eye and coat colors of tyrosinase minigene transgenic Kunming albino mice. One foster mother gave birth to six F0 pups (A-F); among the littermates, only one 
mouse (referred to as P1) had the pigmented eyes at birth. On July 15, another foster mother produced three F0 pups (G); of three siblings, only one mouse (referred to as 
#8) indicated the pigmented eyes at birth. P1 (♀) was crossed with normal Kunming albino mouse to give birth to 11 F1 offspring (H). All of the common albino strains of 
laboratory mice, such as FVB/N, BALB/c, and Kunming mouse (in China), have pink eyes and albino skin. (A and B) The 2-d-old littermates. At birth, one pigmented mouse 
(P1) with dark eyes could be easily and immediately identified as a transgenic mouse by simple visual inspection. (C) The 4-wk-old littermates and Kunming albino foster 
mother. Founder P1 exhibited black eyes and light grey fur when compared to the non-transgenic littermate controls and Kunming albino foster mother with pink eyes and 
albino skin. No differences in phenotypes between transgenic mouse and the controls and foster mother except for melanization in eyes and hairs. Actually, the Kunming 
albino mouse was also used as a recipient strain for TyBS transgene in this project. (D) Eye color of the 4-wk-old P1 mouse compared with one of the non-transgenic 
littermates. One of the non-transgenic littermates (right of the middle map) had pink eyes, while at this age the heterozygote P1 (left of the middle map, upper and lower) 
had nearly black eyes. (E and F) The 8-wk-old non-transgenic littermate control and the adult P1 mouse (8-wk old), respectively. The non-transgenic littermate control 
(E, left) had pink eyes and albino coat, while at this age the heterozygote P1 mouse (F, right) had nearly black eyes and dark grey coat. Over time, the coat of P1 mouse 
became more heavily pigmented, while the eye and fur phenotypes of non-transgenic littermate control remained pink and albino throughout the life, respectively. (G) Eye 
color of the 1.5-d old #8 compared with its littermates. At birth, #8 with dark eyes could be easily and immediately identified as transgenic mice by simple visual inspection. 
Unfortunately, #8 as well as non-transgenic littermates without dark eyes were killed by foster mother 1.5 d after birth. (H) Eye color of F1 offspring (11) developed from 
mating of P1 and normal Kunming albino mouse. Founder P1 (♀) was back-crossed to normal Kunming albino mouse to produce eleven F1 generation. Unluckily, all of F1 
offspring (11), born on September 8, died immediately at birth. P1 also deceased one month after delivery as it did not recover from giving birth to pubs. Of the 11 animals 
that developed from the mating aforementioned, six mice exhibited pigmented eyes. → and → indicate the pigmented eyes and non-pigmented eyes (pink), respectively.
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animal requirements for transgenic production[37].

Co-injection strategy for visually identifying the transgenic 
mice
Screening transgenic animals is usually time-consuming and 
labor-consuming. It would be very helpful if  the transgenic 
animals could be identified by the visible inspection at 
birth. The functional tyrosinase gene introduced into an 
albino mouse strain leads to pigmentation in eyes and skin 
with high penetrance, and pigmented mice with dark eyes 
can be immediately identified by simply visible inspection 
at birth[23], as further confirmed by this study. 

When two or several transgenic constructs are co-
injected into single-cell fertilized embryos, the co-
injected constructs typically co-integrate into the genome, 
where the transgene can independently express[38]. 
Theoretically, co-injection of  tyrosinase transgenic 
construct with any other construct(s) should result in 
a certain percentage of  transgenic mice carrying both 
transgenes at a single chromosomal site[23]. Additionally, 
co-injection experiments with the agouti transgenes and 
other transgenes demonstrated co-integration of  the two 
constructs at the same chromosomal site in approximately 
95% of  F1 progeny, allowing transgene inheritance to 
be visibly detected[39]. The direct and visual detection of  
pigmentation in tyrosinase transgenic animals generated in 
the albino genetic backgrounds was repeatedly proposed 
by independent teams as a visual marker in co-injection 
strategies for the rapid detection of  the successful tran
sgenesis[12,30-33,35] and by our practices (data not shown). 
The utility of  tyrosinase minigene co-injection with other 
construct(s) of  interest is a useful adjunct to allow rapidly 
visual identification of  transgenic mice at birth.

Moreover, another advantage of  co-injection strategy 
is the fact that homozygous mice in most families can 

be identified by simply visual inspection, since the 
homozygous mice have darker coat colors, reflecting the 
increased gene dosage[32]. 

The co-injection strategy improves the yield of  
phenotypically desirable transgenic founder mice resulting 
from each microinjection session, and consequently 
reduces animal requirements for the transgenic production 
and routine genetic validation of  transgenic lines.

In summary, we have successfully rescued the albino 
phenotype by introducing a functional tyrosinase gene 
into Kunming albino mouse. It should be pointed out here 
that TyBS and other tyrosinase transgenic constructs can 
be fused with any of  the other genes and microinjected 
into fertilized eggs from albino murine strains in order to 
produce melanin pigments as an excellently visible marker 
for the generation and breeding of  transgenic mice.
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Figure 3  PCR detection of TyBS gene from genomic DNA of the potential transgenic founders (A and B) and subsequent generation(s) (C). Lane M1: DL 2000 DNA Marker 
(TaKaRa); lane PC: positive control (TyBS as template); lane NC: negative control using genomic DNA from normal Kunming mice as template. The arrows indicate the 
positions of PCR products amplified by the primers shown in Figure 1. (A) Littermates (F0, six mice) were verified for the transgene presence by PCR analysis. Lanes 1-6: 
genomic DNA from the potential founder(s) of 6 littermates; Lane 2: 767-bp band amplified from genomic DNA of P1 with pigmentation in the eyes. (B) Littermates (F0, three 
mice) were confirmed for the transgene presence by PCR analysis. Lanes 1-3: genomic DNA from the potential founder(s) of three siblings. Lane 1: 767-bp band amplified 
from genomic DNA of #8 with pigmentation in the eyes. Other details are as in Figure 2G. (C) Littermates (F1, 11 mice) were examined for the transgene presence by PCR 
analysis. The founder P1 (♀) was crossed with normal Kunming mouse to produce 11 littermates (F1) with six mice with pigmented eyes. Lanes 1-11: genomic DNA from 
F1 offspring derived from P1; Lanes 1, 3-5, 7, 10: 767-bp specific band amplified from genomic DNA of F1 offspring exhibiting pigmented eyes.
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