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Abstract
Reduction of cancer treatment-induced mucosal 
injury has been recognized as an important target for 
improving the therapeutic ratio as well as reducing the 
economic burden associated with these treatment related 
sequellae. Clinical studies addressing this issue are 
hampered by the fact that specific objective parameters, 
which enable monitoring of damage in routine clinical 
practice, are lacking. This review summarizes pros and 
cons of currently available endpoints for intestinal injury. 
The metabolic background and characteristics of plasma 
citrulline, a recently investigated biomarker specifically 
for small intestinal injury, are discussed in more detail.
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INTRODUCTION
An increase in the use of  multiple treatment modalities is 
characteristic for current developments in curative cancer 
treatment. Whereas this strategy has yielded superior 
treatment results in a variety of  solid tumors, treatment 
related acute toxicity has increased as well[1-6]. Severe 
radiation induced intestinal injury occurring during a 
treatment course has a detrimental effect on treatment 

outcome in cancer patients due to necessary reductions 
in treatment intensity and/or treatment interruption. 
In addition, this acute type of  epithelial gut damage 
has also been suggested as one of  several mechanisms 
contributing to late treatment related sequellae[7]. Cancer 
treatments related epithelial gastrointestinal toxicity has 
also been recognized as a significant economic burden[8]. 
Hence, prevention and/or reduction of  epithelial gut 
damage is expected to have a significant clinical and socio-
economic impact. However, clinical studies addressing 
treatment induced gut damage are hampered by the fact 
that objective parameters, which enable monitoring of  
damage in routine clinical practice, are lacking. In case of  
radiation treatment for pelvic and/or abdominal cancers 
the small bowel is an important dose-limiting organ with 
regard to both early and late treatment related morbidity. 
The clonogenic crypt cell is a central target of  intestinal 
epithelial radiation damage[9-12]. Radiation will result in an 
impairment or loss of  cell production and eventually in 
the loss of  functional cells, becoming manifest within days 
or weeks following single dose or fractionated radiation[9]. 
A wide diversity of  functional disorders has been observed 
following ionizing radiation such as changes in trans-
epithelial transport processes[13,14], gut barrier function[15], 
motility dysfunction[16,17], or the absorption of  various 
nutrients such as carbohydrates, amino acids, proteins, 
vitamins and bile acid[18-26]. Some of  these functional 
changes have been correlated with the epithelial cell mass 
available for absorption[23-26] suggesting a cellular basis in at 
least part of  radiation induced functional disorders. 

BIOMARKERS FOR EPITHELIAL 
INTESTINAL DAMAGE  
Clinical symptoms 
Clinical symptoms are most commonly used as a surrogate 
endpoint during and following treatment. Clinical 
symptoms of  acute radiation enteritis include anorexia, 
nausea, vomiting, abdominal cramps and diarrhea. These 
symptoms may occur immediately following the start 
of  treatment, although more usually, radiation sequellae 
become manifest during the 2nd or 3rd wk of  fractionated 
treatment and lasting 2-6 wk following treatment. 
Whereas very early symptoms are attributable to altered 
intestinal motor activity, mucosal injury is the prominent 
feature underlying symptoms later on during the course 
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of  treatment, although altered intestinal motor activity 
is another contributing factor throughout the treatment 
course and following treatment[27-29]. Beside the fact 
that toxicity-grading systems are not used uniformly by 
investigators[30], they are being adjusted on a regular basis. 
More importantly however, clinical symptoms correlate 
poorly with objective parameters of  gut damage such as 
altered morphology[28,31], sugar permeability tests[32-34] or 
treatment related parameters[30], illustrating the complexity 
of  the pathophysiology of  clinical symptoms related to 
cytotoxic treatment induced small bowel damage[35-37]. 

Because of  the limitations related to the assessment 
of  morphological endpoints in patients, investigators have 
used several surrogate endpoints for measuring small 
bowel dysfunction. 

Mucosal transport and barrier function 
Mucosal transport and barrier function is another 
f requent ly used i tem for measur ing smal l bowel 
dysfunction. Surrogate endpoints are the assessment of  
gut barrier function through measuring absorption of  
test markers[38,39] or tests for nutrient malabsorption[20,40], 
bile acid or vitamin B12 absorption[19,22,41-43]. These 
function tests are qualitative tests mainly suited for 
diagnostic purposes. The endpoints used do not address 
damage to target cells. Consequently, they lack a dose 
response relationship. Although not as troublesome as 
taking mucosal biopsies, these tests are impractical for 
monitoring purposes during and following radiation 
treatment. Enterocyte transport has been used as a 
surrogate endpoint for epithelial cell mass. Overgaard et al[23] 
demonstrated a dose response relationship for jejunal 
glucose absorption in mice following single dose upper 
abdominal irradiation. A linear correlation was observed 
between jejunal glucose absorption and the absorptive 
surface. Kirichenko et al[26] used a nuclear scintigraphic 
technique to quantify active enterocyte transport in mice. 
At 3.5 d after single dose whole body irradiation (WBI) 
absorption of  the isotope correlated significantly with a 
surrogate endpoint for the jejunal absorptive surface, i.e. 
the number of  cells per villus. A strong correlation was 
observed between absorption and radiation dose at this 
time point. For the dose points used in these experiments, 
i.e. 4, 6, 8 and 12.5 Gy, no correlation was seen between 
jejunal crypt regeneration, radiation dose and absorption. 
The results of  both experiments[23,26] indicate a cellular 
basis for the absorptive function and a correlation with 
the absorptive area. Both function tests were investigated 
for their applicability as a clinical assay for radiation-
induced epithelial cell loss in the gut and indirectly for 
quantification of  radiation damage to the target cell for 
epithelial small bowel damage. To date none of  these 
assays have been introduced in clinical practice for routine 
use during and following fractionated treatment, mainly 
for practical reasons. 

Diamine oxidase 
Diamine ox idase (DAO), a cy top lasmic enzyme 
found in almost all organs is present in a particularly 
high concentration in the epithelial cells of  the small 

intestine[44-46]. Following injury to intestinal epithelial 
cells DAO is released into the intestinal lumen and 
intercellular space where it is taken up by lymphatics and 
blood vessels[45]. Circulating DAO is rapidly cleared by the 
liver[47]. The plasma DAO activity has been suggested as 
a candidate marker for measuring ischemic small bowel 
injury[48-50]. Ely et al[51] demonstrated a radiation dose-
dependent decline of  ileal tissue and plasma DAO activity 
in rats. Nadir values were observed at 3 d after radiation. 
At this time point a linear dose-response relationship was 
demonstrated for plasma and tissue DAO activity at a dose 
range of  0-6 Gy and 2-8 Gy, respectively. DeBell et al[52] 
investigated the time course of  tissue and plasma DAO 
activity changes following irradiation. They found that the 
decline of  plasma DAO activity preceded the decline of  
jejunal tissue DAO activity. In addition, the calculated RBE 
values for both parameters were not the same. These data 
do not support a direct correlation between the changes 
of  plasma DAO activity and intestinal tissue DAO activity 
as was in fact also the case for the observation made by 
Bounous et al[49] These authors observed a 7.5 and 1.4 -fold 
increase in serum DAO activity 24 and 30 h following 
the onset of  symptoms in a patient with a lethal acute 
intestinal ischemia. 

Fatty acid-binding proteins 
Fatty acid-binding proteins (FABP) are small (15 kDa) 
cytoplasmic proteins. Intestinal-type FABP (I-FABP) 
and liver-type FABP (L-FABP) are produced in small 
intestinal enterocytes, mainly in the villi, not in the 
crypt[53,54]. I-FABP has been demonstrated to be a sensitive 
biomarker for intestinal disease associated with tissue 
necrosis. Upon small bowel enterocyte necrosis I-FABP 
and L-FABP are readily shed into the circulation[53]. In 
ischemic bowel disease a rapid increase in plasma and 
urinary I-FABP concentration is observed[55,56]. In contrast, 
I-FABP and L-FABP were not elevated in patients with 
intestinal disease not associated with a significant degree 
of  tissue necrosis[57]. In transplant recipients histologic 
graft rejection was not preceded by increased levels of  
serum I-FABP[58]. Taken together, I-FABP and L-FABP 
seem to be sensitive biomarkers for ischemic bowel 
disease. However, its use for intestinal damage initially 
targeting clonogenic crypt cells, as in radiation induced 
intestinal damage[9-12] and transplant rejection[59], has been 
disappointing so far. 

Calprotectin 
Calprotectin is a protein abundant in neutrophils. The 
fecal concentration of  calprotectin has been identified 
as a sensitive biomarker of  intestinal inflammation[60]. 
In patients with Crohn’s disease the marker correlates 
with changes in intestinal permeability[61]. The test is 
highly sensitive. The marker was tested in a validated 
animal model for late intestinal radiation injury[62,63]. 
Fecal excretion of  transferrin, the rodent analogue of  
calprotectin, the first 2 wk after treatment correlated with 
validated endpoints for acute and late intestinal radiation 
injury. Interestingly, the high sensitivity of  the test allows 
treatment of  a limited volume of  small bowel. However, in 
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contrast to these experimental conditions the marker does 
not allow discrimination of  anatomical sites of  intestinal 
injury due to a low specificity[64].

CITRULLINE: A BIOMARKER FOR VIABLE 
SMALL BOWEL ENTEROCYTES
While radiation-induced tissue damage is unlikely to 
be expressed or quantified by a single functional or 
morphological parameter[36], an assay measuring damage 
to relevant target cells involved in the initiation of  tissue 
damage is of  great importance for both experimental and 
clinical research. Ideally, such an assay must be tissue-
specific, display a dose-response relationship and in 
case of  the small intestinal epithelium also a volume-
response relationship. In addition, the assay must be 
easily accessible in clinical practice and independent of  
experimental conditions such as concurrent medical 
conditions, medication and nutritional status. Citrulline 
is a candidate biomarker fulfilling most of  these criteria. 
The assay assesses radiation-induced epithelial cell loss, 
an important initiating factor in the pathogenesis of  
acute and chronic intestinal radiation injury and one of  
several pathophysiological mechanisms underlying clinical 
symptoms. Citrulline is a nitrogen end product of  small 
bowel enterocyte metabolism. Plasma citrulline has been 
identified as a biomarker for functional small bowel 
enterocyte mass under various clinical and experimental 
conditions. In addition to surgery[65-68], celiac and non-celiac 
diseases[69], viral enteritis[70] and acute cellular rejection 
following small bowel transplantation[70-75], cytotoxic 
treatments was identified as another event associated 
with decreased plasma citrulline level due to epithelial 
cell loss[30,76-79]. As a whole, plasma citrulline seems to be 
a quantitative parameter independent of  the underlying 
cause for epithelial cell loss. 

Small intestinal intermediary metabolism 
The small bowel epithelium plays an important role in 
the intermediary metabolism of  amino acids, particularly 
glutamine, citrulline and arginine[80,81] thereby conditioning 
the availability of  dietary amino acids to extra-intestinal 
organs[82]. Intestinal dysfunction resulting from intestinal 
diseases or injuries affect intermediary and inter-organ 
metabolism[83-85]. Hence, any factor affecting the intestinal 
mucosal cell mass will have an impact on protein and 
amino acid metabolism[83,86-90]. Since the pioneering work 
of  Windmueller and Spaeth during the 1970’s many 
research groups have demonstrated that amino acids are 
the major fuel for the small bowel epithelium, both under 
conditions of  fasting and feeding[91-97]. Windmueller and 
Spaeth identified glutamine as the quantitatively most 
important arterial energy source[91,98-100] for the rat jejunum 
in fasted animals. Measurements in different species 
consistently demonstrated a concentration dependent high 
rate of  intestinal glutamine extraction from the blood. 
Thus, 25%-33% of  the total plasma glutamine is extracted 
by the small bowel in each single pass[98]. Glutamine is the 
most abundant amino acid in plasma and plays a key role 
in whole body protein and amino acid metabolism[98,101]. 

Organs may be classified as glutamine producers and 
as glutamine consumers[102]. Skeletal muscle is by far 
the most important producer and the small bowel the 
most important consumer. The gut epithelium has been 
identified as the predominant site of  glutamine uptake and 
metabolism[98]. Of  all epithelial cells, enterocytes are the 
cells mostly responsible for glutamine utilization[103,104]. The 
first step in enteral glutamine catabolism is the conversion 
to glutamate and ammonia by the mitochondrial enzyme 
glutaminase in a non-reversible reaction[105]. The intestinal 
uptake of  glutamine from the blood varies with the 
availability of  substrate in the lumen. However, the 
intestinal metabolism of  plasma glutamine is sustained 
during competitive luminal substrate provision, even under 
conditions of  luminal overloading with glutamate[91,98]. The 
gut epithelial cell has access to glutamine from the arterial 
blood supply and the gut lumen[98]. The metabolic fate of  
glutamine from both routes is nearly identical indicating 
a common metabolic pool[91]. Major glutamine carbon 
products are CO2 (55%-65%), lactate (8%-16%), citrate 
(2%-7%), citrulline (4%-6%), proline (5%-6%), alanine 
(0.5%-4%) and ornithine (0.5%-2%). Major glutamine 
nitrogen products are ammonia (23%-36%), alanine 
(33%-36%), citrulline (10%-34%) and proline (7%-10%).

An endproduct of glutamine metabolism
Citrulline was identified as an endproduct of  nitrogen 
glutamine metabolism in the rat intestine accounting for 
27.6% of  metabolised glutamine[96,98,99]. Citrulline is an 
intermediate in the urea cycle[106,107], which is comprised 
of  5 enzymes, 2 being  mitochondrial [(CPSI) and 
(OCT)] and 3 being cytosolic enzymes (arginino succinate 
synthethase (ASS), arginino succinate lyase (ASL) and 
arginase). Windmueller and Spaeth[80] did not detect any 
urea-cycle intermediate following luminal administration 
of  citrulline to the intestinal mucosal cells and concluded 
that intestinal mucosal cells contain an incomplete urea 
cycle. However, others suggested a complete urea cycle 
in rodent enteroctyes[108,109]. Wu finally demonstrated urea 
synthesis in porcine enterocytes from ammonia, glutamine 
and arginine in a dose-dependent manner, thus providing 
the evidence that, in addition to periportal hepatocytes[106], 
small intestinal enterocytes[104,110] contain a complete urea 
cycle. Whereas an activity was observed of  all urea cycle 
enzymes, the activity of  OCT was by far the highest of  all 
(i.e. a factor 10-20)[110]. In contrast to hepatocytes in which 
CPSI and ASS are considered the regulatory enzymes due 
to an exceedingly high arginase activity, in enterocytes the 
arginase activity seems to be the limiting factor for urea 
synthesis[110]. Given the high rate of  glutamine/glutamate 
metabolism[91,93,96,111] and the relative abundant OCT 
activity[110] in small intestinal enterocytes, the majority 
of  citrulline produced from glutamine/glutamate[80,104] 
will not be further metabolised in the urea cycle but 
instead released in the portal circulation. Thus only 5% 
of  the glutamine-derived ammonia was converted to 
urea indicating the low capacity of  urea synthesis from 
glutamine (or ammonia) in enterocytes[110]. Hence, although 
the small intestinal mucosa contains a metabolically 
significant urea cycle, the liver is without doubt the major 
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organ for urea synthesis in mammals[106,112]. Furthermore, 
citrulline can be effectively regarded as an endproduct of  
glutamine/glutamate metabolism of  intestinal enterocytes 
as suggested by Windmueller and Spaeth[80,98] and 
confirmed in many studies since then[66,69,83,86-88,90,104,111,113-115].

Pathways for citrulline synthesis 
The synthesis of  citrulline from glutamine involves 5 
mitochondrial enzymes; phosphate-dependent glutaminase 
(PDG), pyrroline-5-carboxylate synthase (P5CS), ornithine 
aminotransferase (OAT), OCT and CPSI with P5CS 
being the key regulatory enzyme[104,116-118]. P5CS is unique 
to small intestinal enterocytes[116,119-121]. PDG converts 
glutamine to glutamate and ammonia. Glutamate is then 
converted to pyrroline-5 carboxylate by P5CS. Pyrroline-
5-carboxylate is then converted to ornithine by OAT. 
Glutamine derived ammonia plus HCO3

- are converted 
to carbamoyl phosphate by CPSI. Carbamoyl phosphate 
and ornithine are finally converted to citrulline by OCT. 
Pyrroline-5-carboxylate is a common precursor of  both 
ornithine and proline. For a long time, glutamine and 
glutamate have been considered the only precursor for 
pyrroline-5-carboxylate. Wu et al[122] have demonstrated 
proline oxidase (PROox) activity in porcine enterocytes 
with the synthesis of  citrulline and arginine from proline 
being another important pathway for citrulline synthesis. 
This pathway involves 4 mitochondrial enzymes, being 
PROox[123], OAT, OCT and PCSI. Proline is converted 
to pyrroline-5-carboxylate by PROox[124]. The subsequent 
metabolic steps are the same as for citrulline synthesis 
from glutamine, involving OAT, CPSI and OCT. As a 
consequence, glutamine-derived nitrogen intermediates 
such as glutamate and ammonia are necessary for the 
synthesis of  citrulline from proline[122]. Based on the 
relative enzyme activities[104,125] PROox and CPSI are 
suggested key regulatory enzymes in citrulline synthesis 
from proline[122]. Small intestinal PROox activity is relatively 
high, i.e. 10- and 6-fold greater than the activity in the liver 
and the kidney of  piglets, respectively[123]. Furthermore, 
the total cell mass of  small intestine is relatively large 
compared to the liver and kidneys, respectively, i.e. 162% 
(liver) and 970% (kidneys) in 6 wk old pigs[126]. Hence, the 
small intestine may be a major site of  proline degradation 
and subsequent synthesis of  citrulline from proline[122]. In 
contrast to glutamine, the luminal proline derived from the 
diet is the most important source of  proline for citrulline 
synthesis[98,122]. 

Metabolic fate of citrulline released into the portal vein
Under physiologic conditions there is no appreciable 
uptake of  citrulline by the liver[80]. Labelled citrulline 
was supplied to the liver by a continuous portal infusion 
at a concentration 1.5 times the usual portal blood 
concentration. Less than 10% of  the labelled citrulline 
had disappeared from the perfusate after about 40 passes 
clearly indicating that very little citrulline in the portal 
blood released by the intestine is metabolised by the 
liver[80]. Thus citrulline produced and released by the small 
intestine simply passes through the liver and reaches the 
systemic circulation. Subsequently the kidney is the major 

consumer of  circulating citrulline extracting about 35% of  
arterial citrulline in each pass[80,86]. The relevance of  this 
pathway is demonstrated quantitatively by the increase of  
the plasma citrulline level observed in patients with renal 
failure[127].

Source of circulating citrulline
It is now generally accepted that the small intestinal 
absorptive epithelial cell is the major source of  circulating 
citrulline[104,122,128]. Windmueller and Spaeth investigated the 
existence of  alternative sources of  circulating citrulline[80]. 
Within 5 min after exclusion of  either the intestine 
alone or all portal drained viscera from the circulation, 
plasma citrulline concentration fell by only 27% and 
20%, respectively. Hence, more than 70% of  the plasma 
citrulline concentration is sustained. Based on the high 
rate of  citrulline uptake by the kidney accounting for 
83% of  the citrulline released by the small bowel, it can 
be estimated that clearance of  citrulline from the plasma 
should be complete after 4.3 min in the rat in the absence 
of  any input[80]. These findings indicate the existence of  
extra-splanchnic production sites and/or storage sites 
of  citrulline. The cerebrospinal fluid[129] and skeletal 
muscle[130] are known sites with citrulline concentrations 
exceeding that of  plasma but could not be identified as 
citrulline releasing sites[80]. Measurement of  arteriovenous 
concentration differences across the hindquarter after 
complete removal of  the portal drained viscera revealed 
a small net release of  citrulline accounting for only 24% 
of  citrulline uptake by the kidney under physiological 
conditions. Hence, whereas skeletal muscle may be 
considered a storage site for citrulline, it is not a substantial 
source for circulating citrulline under normal physiological 
circumstances[80]. The liver does not release citrulline 
unless provided with un-physiologically high doses of  
ammonium in conjunction with high concentrations of  
ornithine or proline in the perfusate, indicating that all the 
citrulline formed from ornithine or proline is converted to 
arginine[80]. This is probably due to the efficient metabolic 
channelling of  citrulline to ASS and the high activity of  
typeⅠarginase in hepatocytes leading to a subsequent 
rapid hydrolysis of  arginine into urea and ornithine[131]. 
Hence, despite the results observed with the organ 
exclusion experiments performed by Windmueller and 
Spaeth, no other site but the intestine has been identified 
so far that releases significant amounts of  citrulline under 
physiological conditions. The role of  the small intestine as 
the major source for circulating citrulline is demonstrated 
by experiments in which the plasma citrulline concen-
tration is reduced by means of  small bowel targeted 
interventions such as specific inhibitors of  OAT[116] or 
OCT[132], yielding a similar decrease of  plasma citrulline 
concentration as observed after small bowel resecti-
on[83,86,113,114]. Furthermore, strong lines of  evidence have 
been obtained since then through clinical observations 
which are in agreement with this concept[66,69,71,73,87,90,133,134]. 
Experimental and clinical data suggest a non-homogenous 
distribution of  citrulline production. The distribution 
of  P5CS activity in rats was 26%, 31%, 33% and 10% in 
the duodenum, upper jejunum, lower jejunum and ileum, 
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respectively[120]. The release of  citrulline measured as 
venous minus arterial concentration in patients admitted 
for elective gastrointestinal surgery was 30.4 ± 4.0 
μmol/L and 8.4 ± 1.7 μmol/L for the jejunum and ileum, 
respectively[111]. 

Determinants of intestinal citrulline synthesis and plasma 
citrulline level
The activity of  intestinal citrulline-synthesizing enzymes 
changes as a function of  the feeding regimen, i.e. during 
the suckling and (post) weaning period. Weaning-
induced changes in plasma cortisol levels are suggested 
to play a role in the difference observed between 
suckling and weaning animals, rather than developmental 
changes related to age[135-138]. Except for the interaction 
of  metabolites with specific enzymes[137-141], substrate 
availability is another determinant of  the citrulline 
production by enterocytes[104,122,140,142]. Several inborn 
errors[143-148] may give rise to specific changes in citrulline 
concentration. Enhanced NO synthase activity in patients 
with SLE has been associated with hypercitrullinemia[149]. 
Taken the central role of  glutamine metabolism in the 
small intestinal citrulline synthesis[104,122], any metabolic 
condition substantially influencing intestinal glutamine 
metabolism is likely to have a major impact on citrulline 
synthesis as well. In this respect cumulative data indicate 
an important role for glucose metabolism[140,141,150]. A 
major determinant, however, under steady state conditions 
for the rate of  citrulline released into the portal and 
subsequently the systemic circulation is the actual number 
of  functional enterocytes[65-69,83,86,87,90,113,114,134,151]. This was 
further demonstrated by clinical data on small bowel trans-
plantation[70-75,152]. In addition to a variation in citrulline 
synthesis, alterations in citrulline utilization will have an 
influence on the plasma citrulline concentration[80,119,127].

Plasma citrulline a surrogate endpoint for enterocyte mass
Effectively, citrulline can be regarded as an endproduct 
of  glutamine and/or proline metabolism of  intestinal 
enterocytes[80,98,104,110,122]. Several enzymes are involved 
in the synthesis of  citrulline from glutamine and/or 
proline[104,110,122]. Whereas OAT[116,121] can be categorized 
as a ubiquitous enzyme, OCT, CPSI, PROox are highly 
polarized and P5CS is extremely polarized[119]. Thus high 
activities of  OCT[153], CPSI[153] and PROox[121,123] are found 
in the small intestine and liver. P5CS activity is almost 
exclusively found in small intestinal enterocytes[116,120,121]. 
This unique enzymatic profile, the unique role of  the small 
intestine in whole body glutamine metabolism[96,154] and the 
relatively high small bowel enterocyte cell mass[126] make 
the small bowel epithelium the most important source 
of  circulating citrulline[128,131]. Taken together these data 
indicate a high specificity for circulating citrulline, i.e. small 
intestinal enterocytes. Thus under steady state conditions, 
citrulline can be considered a marker for the functional 
epithelial cell mass of  the small bowel, a concept amply 
demonstrated in experimental and clinical studies[65-75,80, 

83,86-88,90,104,111,113-116,132-134,152]. Of  notice, the lower plasma 
citrulline level observed in short bowel patients was 
sustained up to one year after treatment[66] emphasizing 
its strict dependence on the epithelial cell mass. As such, 

plasma citrulline concentration has been proposed as a 
biological marker for viable small bowel epithelium[65-67,

69,71,73-75,152]. Crenn et al[69] have recently correlated plasma 
citrulline concentration with histologically graded villous 
atrophy in 42 patients with celiac and 10 patients with 
non-celiac villous atrophy disease. These authors identified 
a threshold value of  10 μmol/L (25% of  the mean normal 
baseline value) to be predictive for severe and extensive 
villous atrophy and 20 μmol/L to be predictive for 
severe villous atrophy, whatever the extent. The plasma 
level of  citrulline was thus indicative for the degree of  
villous atrophy. This finding is indicative for a possible 
volume effect. Crenn et al[69] demonstrated the use of  
plasma citrulline for monitoring treatment response in 
patients with celiac disease, indicating the simplicity of  
the marker in clinical practice. The accuracy of  the assay 
has been assessed for various clinical settings. Crenn 
et al[66] measured plasma citrulline level in 57 patients 
with nonmalignant short bowel syndrome defined by a 
postduodenal remnant small bowel length of  less than 200 
cm. Minimal follow up was 2 years after definite digestive 
circuit modification. The threshold of  plasma citrulline 
that best discriminated short bowel patients from controls 
was 30 μmol/L yielding a sensitivity, specificity, PPV 
and NPV of  77%, 75%, 76% and 77%, respectively. The 
best threshold of  plasma citrulline for discrimination of  
transient from permanent intestinal failure was 20 μmol/L 
yielding a sensitivity, specificity, PPV and NPV of  92%, 
90%, 95% and 85%, respectively. In a series of  52 patients 
with celiac and nonceliac villous atrophy Crenn et al[69] 
correlated plasma citrulline and mucosal atrophy assessed 
by endoscopic mucosal biopsies. The threshold of  plasma 
citrulline for discrimination between nondestructive and 
destructive mucosal lesions (modified Marsh classification) 
was 20 μmol/L yielding a sensitivity, specificity, PPV and 
NPV of  95%, 90%, 88% and 96%, respectively. Gondolesi  
et al[75] measured plasma citrulline in 49 intestinal transplant 
recipients within 12 h before or after endoscopic biopsies 
taken according to a protocol (i.e. twice weekly for 6 
wk, once weekly until 6 mo and monthly until 1 year 
postintestinal transplant). The sensitivity and specificity of  
the citrulline assay for diagnosing transplant rejection in 
adults was 80% and 58%, respectively.

PLASMA CITRULLINE: A SURROGATE 
ENDPOINT FOR RADIATION INDUCED 
EPITHELIAL CELL LOSS
Taken together, plasma citrulline is a candidate marker 
for measuring radiation-induced epithelial small bowel 
damage. The data indicate that this biomarker is tissue-
specific, i.e. small intestinal epithelium. The biomarker 
corresponds with an important morpholocal endpoint, i.e. 
mucosal atrophy, and is easily accessible in clinical practice. 
Although experimental[120] and clinical data[111] suggest a 
non-homogenous distribution of  citrulline production, a 
volume effect is suggested by the data provided by Crenn 
et al[66,69].

A decrease of  intestinal absorptive function follo-
wing irradiation has been correlated to the loss of  
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functionally active enterocytes constituting the absorptive 
mucosal surface[23-26]. The correlation between radiation-
induced epithelial cell loss and plasma citrulline level 
was demonstrated in mice by Lutgens et al[76] Following 
treatment with a single whole body irradiation (WBI) (dose 
range 0-14.9 Gy) blood and jejunal tissue were sampled 
for analysis. At 84 h and 4 d after WBI a dose response 
relationship was observed for plasma citrulline level. At 
this time point plasma citrulline correlated with mucosal 
surface, a surrogate endpoint for functional enterocyte 
mass. Plasma citrulline level decreased as a function of  
dose and time after WBI. Whereas the time effect was 
significant for all dose levels used, a significant dose-
response relationship was observed only at d 4 after 
WBI. Remarkably, a rapid decline of  plasma citrulline 
was observed at the first 2 d after WBI independent of  
the WBI doses used whereas recovery was more rapid 
for the lowest dose (i.e. 8 Gy) and incomplete during the 
observation period for the highest dose levels used (i.e. 11 
and 12 Gy). This time and dose pattern is in agreement 
with the radiation effect on the hierarchically structured 
intestinal epithelium[155]. Interestingly, using the epithelial 
surface lining as a parameter did not yield significant 
changes except for the 4 d time point for the highest 
dose levels (i.e. 11 and 12 Gy) whereas for citrullinemia 
significant changes were observed for all dose levels used 
at the 4 d time point. Furthermore, plasma citrulline 
levels remained significantly decreased at the 11 d time 
point. For the dose range used in our experiments, mean 
values for mucosal surface lining ranged between 56% 
and 130% of  control values, whereas for citrullinemia 
mean values ranged between 6% and 121% of  control 
values. Thus citrullinemia seems to be more sensitive for 
detecting and monitoring small bowel radiation-induced 
epithelial cell loss than the representative morphologic 
endpoint used in these experiments. After WBI doses of  
1-3 Gy no effect on citrullinemia could be demonstrated 
whereas this parameter was inversely proportional to WBI 
doses of  3-12 Gy. The threshold dose for the citrulline 
assay (about 3 Gy) is significantly lower as compared 
to the microcolony assay (about 8 Gy). Furthermore, 
in contrast to the microcolony assay the citrulline assay 
permits repeated measurements within the same animal. 
Therefore the citrulline assay and the microcolony assay 
are supplementary, both with regard to the dose range as 
with regard to their applicability.

The use of  plasma citrulline as an assay for acute 
small bowel epithelial radiation injury was demonstrated 
by Lutgens et al[76] Amifostine was administered to mice 
as a radioprotective agent with a consistently found dose 
modification factor (DMF) of  1.6 using the microcolony 
assay as endpoint[156]. The DMF observed for citrulline (1.5) 
was in complete agreement with literature data. Vanclee 
et al [79] have used the citrulline assay to demonstrate 
a protective effect of  keratinocyte growth factor on 
cytotoxic treatment induced intestinal injury.

The feasibility of  plasma citrulline as a surrogate 
marker for radiation-induced small bowel injury was 
demonstrated by Lutgens et al[30] in a prospective clinical 
study in patients treated with fractionated radiotherapy 

for abdominal and/or pelvic cancer sites. A dose and 
volume effect was observed using dose volume histogram 
parameters and plasma citrulline levels as endpoints. 
Median nadir citrulline levels were observed during the 
3rd wk of  fractionated radiotherapy. This time course of  
plasma citrulline was further established in two clinical 
studies using archive material of  patients treated with 
intensive myeloablative therapy[77,78]. Following conditioning 
treatment with high dose chemotherapy and fractionated 
WBI nadir plasma citrulline levels were observed around 7 
d after hematopoietic stem cell transplant. Sensitivity and 
specificity of  the citrulline assay were better compared to 
standard endpoints used for assessment of  gut damage[77]. 

CONCLUSION
Radiation-induced small bowel damage is unlikely 
to be expressed or quantified by a single functional 
or morphological parameter. Several biomarkers are 
currently available differing with respect to kinetics, 
related target cells and pathophysiological processes 
involved and the convenience for clinical use. It is thus 
challenging to choose a (set of) biomarker(s) that is 
best suited to a specific experimental or clinical setting. 
Citrulline is a promising candidate biomarker. A dose-
response relationship[76] and a correlation with epithelial 
cel l mass[76,79] have been recently demonstrated in 
experimental studies. The time course of  plasma citrulline 
following radiation[30,76,78] is in agreement with well known 
radiation effects on the hierarchically structured intestinal 
epithelium[155] and clinical observations of  acute intestinal 
injury. The feasibility of  the marker was demonstrated in 
a series of  patients treated with fractionated radiotherapy 
for pelvic and/or abdominal cancers[30]. Unlike most other 
used endpoints, the citrulline assay can be applied to both 
experimental and clinical settings facilitating translational 
research. Also citrulline can be repeatedly measured 
enabling monitoring of  treatment effects. Finally, the assay 
is simple to apply and relatively cheap. Like surgery[65-68], 
celiac and non-celiac disease[69] and acute cellular rejection 
following small bowel transplantation[70-73,75,152], ionizing 
irradiation has been demonstrated to be an additional 
event associated with reduced small bowel epithelial cell 
mass that can be monitored by plasma citrulline[30,76-79].
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