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INTRODUCTION
The liver is an organ with considerable regenerative 
capacity[1]. After partial hepatectomy (PH)[2], about 95% 
of  quiescent hepatocytes re-enter synchronously into the 
cell cycle to replenish the missing hepatocytes[3,4]. Whereas 
excessive liver mass is regulated by apoptosis[5], this process 
is called liver regeneration (LR)[3]. The regeneration process, 
which according to cellular physiological and biochemical 
activities is divided into the following parts: initiation (0.5- 
4 h after PH), transition from G0 to G1 (4-6 h after PH), 
cell proliferation (6-66 h after PH), and cell differentiation 
and reorganization of  the structure-function (72-168 h 
after PH)[6], or according to time course, into forepart 
(0.5-4 h after PH), prophase (6-12 h after PH), metaphase 
(16-66 h after PH) and anaphase (72-168 h after PH), 
involves various physiological and biochemical activities 
such as cell activation, de-differentiation, proliferation 
and its regulation, re-differentiation, and rebuilding of  
the structure and function[7,8]. Actually, some biological 
activities in LR including cell proliferation and growth are 
also observed in liver tumor (LT). It is usually thought 
that tumorigenesis is mainly ascribed to the anomalous 
activation of  the genes having positive effects on LT cell 
proliferation, growth, invasion and LT angiogenesis, as 
well as the genes suppressing LT cell apoptosis, and/or 
inactivation of  the inhibitory genes related to LT cell 
proliferation, growth, invasion and LT angiogenesis[9], 
and the promotive genes of  LT cell differentiation and 
apoptosis. To elucidate the intrinsic differences between 
the two events at transcriptional level, we checked the 
expression profiles of  above genes in regenerating livers 
following 2/3 hepatectomy utilizing the Rat Genome 
230 2.0 Array containing 249 LT-associated genes, and 
primarily analyzed their expression changes and actions in 
LR, as well as their relevance with LR.

MATERIALS AND METHODS
Regenerating liver preparation
Healthy Sprague-Dawley rats weighing 200-250 g were 
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Abstract
AIM: To study at transcriptional level the similarities and 
differences of the physiological and biochemical activities 
between liver tumor (LT) and regenerating liver cells.

METHODS: LT-associated genes and their expression 
changes in LT were obtained from databases and 
scientific articles, and their expression profiles in rat liver 
regeneration (LR) were detected using Rat Genome 230 
2.0 array. Subsequently their expression changes in LT 
and LR were compared and analyzed.

RESULTS: One hundred and twenty one LT-associated 
genes were found to be LR-associated. Thirty four genes 
were up-regulated, and 14 genes were down-regulated 
in both LT and regenerating liver; 20 genes up-regulated 
in LT were down-regulated in regenerating liver; 21 
up-regulated genes and 16 down-regulated genes in 
LT were up-regulated at some time points and down-
regulated at others during LR.

CONCLUSION: Results suggested that apoptosis activity 
suppressed in LT was still active in regenerating liver, and 
there are lots of similarities and differences between the 
LT and regenerating liver at the aspects of cell growth, 
proliferation, differentiation, migration and angiogenesis.
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obtained from the Animal Center of  Henan Normal 
University. The 276 rats were separated into 46 groups 
randomly, 23 hepatectomized groups and 23 sham-
operation (SO) groups，and each group included 6 rats. 
PH was performed according to Higgins and Anderson[2], 
by which the left and middle lobes of  liver were removed. 
Rats were killed by cervical vertebra dislocation at 0, 0.5, 
1, 2, 4, 6, 8, 12, 16, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 96, 
120, 144 and 168 h after PH and the regenerating livers 
were observed at corresponding time point. The livers 
were rinsed three times in PBS at 4℃, and then total 1-2 g 
livers (100-200 mg livers from middle parts of  right lobe 
of  each sample, 6 samples per group) were gathered and 
mixed together, then stored at -80℃. The SO group was 
the same as hepatectomized group except the liver lobes 
were not removed. The laws of  animal protection of  
China were enforced strictly.

RNA isolation and purification
Total RNA was isolated from frozen livers according to 
the manual of  Trizol reagent (Invitrogen Corporation, 
Carlsbad, California, USA)[10] and then purified base on 
the guide of  RNeasy mini kit (Qiagen, Inc, Valencia, CA, 
USA)[11]. Total RNA samples were checked to exhibit a 
2:1 ratio of  28S rRNA to 18S rRNA intensities by agarose 
electrophoresis (180 V, 0.5 h). Total RNA concentration 
and purity were estimated by optical density measurements 
at 260/280 nm[12].

cDNA, cRNA synthesis and purification
One to eight gram total RNA as template was used for 
cDNA synthesis. cDNA purification was based on the way 
established by Affymetrix[13]. cRNA labeled with biotin 
was synthesized using cDNA as the template, and cDNA 
and cRNA were purified according to the purification 
procedure of  GeneChip Analysis[13]. Measurement of  
cDNA, cRNA concentration and purity were the same as 
above.

cRNA fragmentation and microarray detection
F i f t y μL (1 μg/μL) cRNA incuba t ed w i th 5 × 
fragmentation buffer at 94℃ for 35 min was digested into 
35-200 bp fragments. The hybridization buffer prepared 
according to the way Affymetrix provided was added to 
the prehybridized Rat Genome 230 2.0 array produced 
by Affymetrix, then hybridization was carried out at 45℃ 
for 16 h on a rotary mixer at 60 rpm. The microarray 
was washed and stained by GeneChip fluidics station 450 
(Affymetrix Inc., Santa Clara, CA , USA). The chips were 
scanned by GeneChip Scan 3000 (Affymetrix Inc., Santa 
Clara, CA, USA), and the signal values of  gene expression 
were observed[14].

Microarray data analysis
The normalized signal values, signal detections (P, A, M) 
and experiment/control (Ri) were obtained by quantifying 
and normalizing the signal values using GCOS (GeneChip 
operating software) 1.2[14].

Normalization of the microarray data
To minimize the technical error from the microarray 

analysis, each sample was hybridized three times to the 
gene chips. The average value of  three measurements 
was normalized, and statistics and cluster analyses were 
conducted on these values with GeneMath, GeneSpring 
(Silicon Genetics, San Carlos, CA) and Microsoft Excel 
Software (Microsoft, Redmond, WA)[14-16].

Verification of array results by RT-PCR
Primer and probe sequences were designed by primer 
express 2.0 software according to mRNA sequences of  
three target genes jun, myc, tp53 and internal control ®- 
actin gene (GenBank number: BC078738, NM_012603, 
AY009504 and NM_031144) and synthesized by Shanghai 
GeneCore BioTechnologies Co. Ltd (Table 1).

Identification of genes associated with LR
Nomenclatures such as LT, hepatoma, hepatocellular 
carcinoma, hepatocarcinogenesis, cholangiocarcinoma 
and so on were input into the databases at NCBI (www. 
ncbi.nlm.nih.gov) and RGD (rgd. mcw.edu) to identify rat, 
mouse and human genes associated with LT. Then these 
LT-associated genes were reconfirmed through literature 
searches of  the pertinent articles. Besides the rat genes, 
other genes, that are now thought existing in mouse and/or 
human and showed a greater than two-fold change in the 
rat regenerating livers, were referred to as rat homologous 
genes. Genes that displayed reproducible results with three 
independent analyses using Rat Genome 230 2.0 array and 
that showed a greater than two-fold change in expression 
at least at one time point as a significant difference (P ≤ 
0.05) or an extremely significant difference (P ≤ 0.01) 
between PH and SO, were included as being associated 
with LR.

RESULTS
Comparison between the quantitative RT-PCR results and 
the microarray results
The quantitative RT-PCR results of  three chosen genes 
jun, myc and tp53 at 0, 0.5, 2, 4, 6, 12, 24, 30, 36 and 96 h  
after partial hepatectemy (PH) were compared with Rat 
Genome 230 2.0 Array results (Figure 1) in order to verify 
validity of  this chip. According to quantitative RT-PCR 

Table 1  Primer and probe sequences used to validate the 
microarray analysis by quantitative RT-PCR

Genes Primer sequences                                                 Tm Amplified 
products

β-actin FP: CCTGGCACCCAGCACAAT 58℃ 221 bp 
RP: GCTGATCCACATCTGCTGGAA 58℃
Probe: ATCAAGATCATTGCTCCTCCTGAGCGC 68℃

jun FP: TGCAAAGATGGAAACGACCTT 58℃   76 bp
RP: GCCGTAGGCGCCACTCT 59℃
Probe: TACGACGATGCCCTCAACGCCTC 68℃

myc FP: CCCCTAGTGCTGCATGAAGAG 59℃   95 bp
RP: TCCACAGACACCACATCAATTTC 58℃
Probe: CACCAGCAGCGACTCTGAAGAAGAACA 68℃

tp53 FP: ATGAGGCCTTGGAATTAAAGGAT 58℃   98 bp
RP: CGTAGACTGGCCCTTCTTGGT 59℃
Probe: CAGGGCTCACTCCAGCTACCCGAA 68℃

FP: forward primer; RP: reverse primer.
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results, myc was up-regulated at 0.5-12 and 30-96 h after 
PH with the highest point of  10.33 folds higher than 
control at 4 h; jun expression was significantly up-regulated 
at 0.5-4 h after PH, showing the greatest abundance of  
4.28-fold of  control at 0.5 h; and tp53 was up-regulated 
at 96 h after PH. The result of  RT-PCR suggested that 
expression profiles of  these three genes were basically 
similar to that of  array, which indicated that Rat Genome 
230 2.0 Array had great reliability.

Expression changes of the associated-genes in LT and LR
Among 252 genes associated with LT obtained by 
searching the related data in databases such as NCBI, 
RGD etc., 249 genes were contained in the Rat Genome 
230 2.0 Array. 121 of  249 genes yielded meaningful 
expression changes on at least single time point after PH, 
showed significant or extremely significant difference 
between PH and SO, and displayed reproducible results 
with three independent analyses with Rat Genome 230 
2.0 Array, suggesting that these genes were associated 
with LR. The data listed below indicated that expression 
trends of  48 genes in LT was similar to that in LR, 
whereas expression of  34 genes in the former underwent 
opposite trend comparing with in the latter, and expression 
changes of  39 genes in LT were similar to that in some 
time point of  LR. Specifically, the same trend towards up 
regulation of  34 genes and down regulation of  14 genes 
were exhibited in both LT and LR; 20 up-regulated genes 
in LT showed down-regulation during LR, and 14 down-
regulated genes in LT revealed up-regulation during LR; 
23 up-regulated genes and 16 down-regulated genes in LT 
were up-regulated at some time points and down-regulated 
at others during LR (Table 2).

The relationship of LT-associated genes with LR
According to function feature and expression profiles of  
total 121 LT-associated genes in LR, they were divided 
into six classes and twenty-nine subclasses (Figure 2), 
and their expression changes in LR were present. Genes 
up-regulated in both LT and regenerating liver include 
nine cell proliferation-associated genes (1), four cell 
growth-associated genes (2), one apoptosis-associated 
gene (3), nine cell migration-associated genes (4), three 
angiogenesis-associated genes (5), and eight genes 
involved in other biological processes (6); Genes down-

regulated in both LT and regenerating liver include six 
cell proliferation-associated genes (7), three apoptosis-
associated genes (8), two differentiation-associated genes 
(9), and three genes with other functions (10); Genes 
down-regulated in LT but up-regulated in LR include two 
cell proliferation-associated genes (11), four cell growth-
associated genes (12), three apoptosis-associated gene (13), 
and another five genes having other biological activities 
(14); Genes up-regulated in LT but down-regulated in 
LR include six cell proliferation-associated genes (15), 
two cell growth-associated genes (16), one apoptosis-
associated gene (17), three cell migration-associated gene 
(18), three angiogenesis-associated genes (19), and five 
genes with other functions (20); Genes up-regulated in LT 
but up-regulated at some time points and down-regulated 
at others in LR include four cell proliferation-associated 
genes (21), three cell growth-associated genes (22), two 
telomerase-associated genes (23), five cell migration-
associated genes (24), and nine genes participating in other 
actions (25). Genes down-regulated in LT but up-regulated 
at some time points and down-regulated at others during 
LR include two cell proliferation-associated genes (26), six 
cell growth-associated genes (27), one apoptosis-associated 
gene (28), and seven genes related to biological events 
differed from the above-mentioned actions (29).

DISCUSSION
Generally, cell proliferation and growth was done in 
both LT and LR, but the former are malignant, and the 
latter are controlled stringently. According to our data, 
proliferation-promoting genes pcna, ccne1, cdk4, ahr, 
wee1, ccna2, pin1, nek6 and smo[17-22] were up-regulated 
in both LT and LR, and proliferation-inhibiting genes 
creb3l3, pten, kit, gjb1, tff1 and csda[23-28], were down-
regulated in both, indicating that these genes promote cell 
proliferation in the two events. Notably, the abundance 
of  CCNA2 mRNA in LT was approximately five-fold 
higher than that in normal liver[17], and it reached its peak 
with 45 folds of  control at 66 h after PH, which might be 
associated with an increased proportion of  regenerated 
hepatocytes. Growth-promoting genes hspb1, grn, tgfb1 
and serpine1[29-31], whose expression levels were elevated 
in LT, were up-regulated at metaphase of  LR. Among 
these four genes, serpine1 having the highest expression 
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Figure 1  Comparison of relative mRNA levels in regenerating liver detected by Affymetrix Rat Genome 230 2.0 microarray and real-time PCR analysis  A: myc; B: jun; C: 
tp53; Real line represents quantitative real time PCR results; broken line indicates Rat Genome 230 2.0 microarray results.
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Table 2  Expression abundance of 121 liver tumor-associated genes during liver regeneration

Name Gene                 Associated   Fold Comparison

Abbr.                      to    difference   LT. RRL.

The same in gene expression trend 
Cyclin A2 *Ccna2    2 45.1 ↑ ↑
WEE1 homolog Wee1    2 20.9 ↑ ↑
Cyclin E1 Ccne1    2 18.5 ↑ ↑
Proliferating cell nuclear antigen Pcna    2 10.6 ↑ ↑
Smoothened homolog Smo    1,2   3 ↑ ↑
Protein NIMA-interacting 1 Pin1    2   2.5 ↑ ↑
Cyclin-dependent kinase 4 Cdk4    2   2.5 ↑ ↑
NIMA (never in mitosis gene a)-related kinase 6 Nek6    2   2.3 ↑ ↑
Aryl-hydrocarbon receptor Ahr    1   2.2 ↑ ↑
Serpin peptidase inhibitor, clade E, member 1 Serpine1    2 16.7 ↑ ↑
Heat shock 27 kDa protein 1 Hspb1    2 11 ↑ ↑
Transforming growth factor, beta 1 Tgfb1    2   4 ↑ ↑
Granulin Grn    2   2.3 ↑ ↑
Myeloid cell leukemia sequence 1 Mcl1    2,3   4.3 ↑ ↑
WNT1 inducible signaling pathway protein 1 Wisp1    2,3 14.9 ↑ ↑
Selectin E Sele    2 12.9 ↑ ↑
Metastasis associated 1 Mta1    2   9.6 ↑ ↑
TIMP metallopeptidase inhibitor 1 Timp1    2   8.6 ↑ ↑
Integrin, alpha V Itgav    2   5.2 ↑ ↑
Discs, large homolog 7 Dlg7    2   4.3 ↑ ↑
Lectin, galactoside-binding, soluble, 1 Lgals1    2   3.7 ↑ ↑
ADAM metallopeptidase domain 17 Adam17    2   2.7 ↑ ↑
Integrin, beta 1 Itgb1    2   2.6 ↑ ↑
Calponin 1, basic, smooth muscle Cnn1    2   7 ↑ ↑
Macrophage migration inhibitory factor Mif    2   3.2 ↑ ↑
Collagen, type XVIII, alpha 1 Col18a1    2   3.1 ↑ ↑
Connective tissue growth factor *Ctgf    2 13.9 ↑ ↑
Hexokinase 2 Hk2    2   8.9 ↑ ↑
Chemokine (C-C motif) ligand 20 Ccl20    2   8 ↑ ↑
v-jun sarcoma virus 17 oncogene homolog *Jun    2   6.9 ↑ ↑
Methyl-CpG binding domain protein 2 Mbd2    2   3 ↑ ↑
TERF1 (TRF1)-interacting nuclear factor 2 Tinf2    1   2.8 ↑ ↑
FMS-like tyrosine kinase 1 *Flt1    2   2.3 ↑ ↑
Proteasome 26S subunit, non-ATPase, 10 Psmd10    2   2 ↑ ↑
Phosphatase and tensin homolog Pten    1,2   0.5 ↓ ↓
Cold shock domain protein A Csda    1   0.5 ↓ ↓
cAMP responsive element binding protein 3-like 3 Creb3l3    1   0.4 ↓ ↓

v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kit    2   0.4 ↓ ↓

Gap junction protein, beta 1, 32 kDa Gjb1    1,2   0.2 ↓ ↓

Trefoil factor 1 Tff1    3   0.1 ↓ ↓
Caspase 9, apoptosis-related cysteine peptidase Casp9    2   0.5 ↓ ↓
Deleted in liver cancer 1 Dlc1    1,2   0.5 ↓ ↓
B-cell CLL/lymphoma 2 Bcl2    2   0.3 ↓ ↓
Inhibitor of DNA binding 1 Id1    1,2   0.3 ↓ ↓
Protein tyrosine phosphatase, receptor type, H Ptprh    2   0.2 ↓ ↓

CD74 molecule, major histocompatibility complex, class II invariant chain Cd74    2   0.4 ↓ ↓

Hepatocyte growth factor *Hgf    1,2   0.4 ↓ ↓

Mannose-binding lectin (protein C) 2, soluble Mbl2    2   0.2 ↓ ↓

The contrary in gene expression trend
Myelocytomatosis oncogene Myc   1,2 19.7 ↓ ↑

Sprouty homolog 2 Spry2   2   8.1 ↓ ↑

Growth arrest and DNA-damage-inducible, beta Gadd45b   2 55.7 ↓ ↑
Serine peptidase inhibitor, Kunitz type, 2 Spint2   2   7.2 ↓ ↑

MAD homolog 4 Smad4   1,2   3 ↓ ↑
Fibrinogen-like 1 Fgl1   2   2.2 ↓ ↑

Caspase 8, apoptosis-related cysteine peptidase Casp8   2 10.6 ↓ ↑
Interferon gamma Ifng   1,2   6.5 ↓ ↑
Tumor protein p53 Tp53   1,2,3   2.9 ↓ ↑

Early growth response 1 *Egr1   2 18.6 ↓ ↑

Transcription factor 1, hepatic Tcf1   2   6.8 ↓ ↑
O-6-methylguanine-DNA methyltransferase Mgmt   2   4.3 ↓ ↑
Glutathione S-transferase theta 1 Gstt1   2   3.2 ↓ ↑
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Glutathione S-transferase M1 Gstm1   2 2.2 ↓ ↑
Wingless-type MMTV integration site family, member 1 Wnt1   2 0.5 ↑ ↓
SHC (Src homology 2 domain containing) Shc1   2 0.5 ↑ ↓
Transforming protein 1 
Inhibitor of kappaB kinase beta Ikbkb   1,2 0.3 ↑ ↓
FK506 binding protein 4, 59 kDa Fkbp4   2 0.3 ↑ ↓
Transcription factor 7-like 2 Tcf7l2   2 0.2 ↑ ↓
v-erb-b2 erythroblastic leukemia viral oncogene Erbb2   3 0.1 ↑ ↓
Homolog 2
Heat shock 70kDa protein 1A Hspa1a   2 0.2 ↑ ↓
Heat shock 70kDa protein 5 Hspa5   1,2 0.1 ↑ ↓
High mobility group AT-hook 1 Hmga1   2 0.4 ↑ ↓
Ras homolog gene family, member C Rhoc   2 0.3 ↑ ↓
Cortactin Cttn   2 0.1 ↑ ↓
Serpin peptidase inhibitor, clade B, member 3 Serpinb3   2 0.1 ↑ ↓
Ephrin-B1 Efnb1   2 0.4 ↑ ↓
Coagulation factor II F2   1,2 0.3 ↑ ↓
Trefoil factor 3 Tff3   2 0.3 ↑ ↓
Forkhead box A2 Foxa2   2 0.4 ↑ ↓
Glycogen synthase kinase 3 beta Gsk3b   1,2 0.4 ↑ ↓
ATP-binding cassette, sub-family B, member 1A *Abcb1a   1 0.2 ↑ ↓
Solute carrier family 2 , member 1 *Slc2a1   2 0.2 ↑ ↓
Apolipoprotein E *Apoe   2 0.1 ↑ ↓

The comparable in gene expression trend 
Lysosomal-associated protein transmembrane 4B Laptm4b    2 2.3,0.5 ↑ ↑↓
Met proto-oncogene *Met    1,2,3 2.3,0.4 ↑ ↑↓
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105) Nfkb1    2 2.3,0.4 ↑ ↑↓
Acyl-CoA synthetase long-chain family member 4 Acsl4    2 2.1,0.4 ↑ ↑↓
X-box binding protein 1 Xbp1    1 4.3,0.3 ↑ ↑↓
Nerve growth factor, beta polypeptide Ngfb    2 3.7,0.5 ↑ ↑↓
Stearoyl-Coenzyme A desaturase 1 Scd1    1,2 3.5,0.3 ↑ ↑↓
Telomerase reverse transcriptase Tert    1,2,3 5.3,0.3 ↑ ↑↓
Telomeric repeat binding factor (NIMA-interacting) 1 Terf1    1 2.2,0.4 ↑ ↑↓
Cadherin 17 Cdh17    2 26.1,0.2 ↑ ↑↓
Glycoprotein (transmembrane) nmb Gpnmb    2 9.2,0.3 ↑ ↑↓
Claudin 10 Cldn10    2 6.5,0.3 ↑ ↑↓
Plasminogen activator, urokinase Plau    2 3,0.4 ↑ ↑↓
Secreted phosphoprotein 1 Spp1    2,3 2.7,0.5 ↑ ↑↓
Alpha-2-macroglobulin *A2m    2 46.2,0.4 ↑ ↑↓
Chemokine (C-C motif) receptor 1 Ccr1    2 27.9,0.4 ↑ ↑↓
Matrix metallopeptidase 9 Mmp9    1,2 9.5,0.5 ↑ ↑↓
Angiopoietin 1 *Angpt1    2 9.2,0.2 ↑ ↑↓
Mucin 1, cell surface associated Muc1    2,3 6.8,0.2 ↑ ↑↓
Heparanase *Hpse    2 6.3,0.3 ↑ ↑↓
Megalencephalic leukoencephalopathy with subcortical cysts 1 Mlc1    2 4.3,0.4 ↑ ↑↓
Kinase insert domain protein receptor *Kdr    2 2.4,0.4 ↑ ↑↓
Prostaglandin-endoperoxide synthase 2 Ptgs2    1,2,3 2.1,0.1 ↑ ↑↓
Dual specificity phosphatase 1 Dusp1    2 6,0.4 ↓ ↑↓
Cyclin-dependent kinase inhibitor 1C Cdkn1c    2 2.8,0.1 ↓ ↑↓
Growth arrest and DNA-damage-inducible, gamma Gadd45g    2 8,0.4 ↓ ↑↓
Hepatic nuclear factor 4, alpha Hnf4a    2 4.5,0.1 ↓ ↑↓
Runt-related transcription factor 3 Runx3    1,2 4.3,0.5 ↓ ↑↓
Insulin-like growth factor binding protein 3 Igfbp3    1,2 2.7,0.4 ↓ ↑↓
Suppressor of cytokine signaling 3 *Socs3    2 2.5,0.1 ↓ ↑↓
Suppressor of cytokine signaling 1 *Socs1    1,2 2.4,0.5 ↓ ↑↓
Fibroblast growth factor 2 Fgf2    1,2 2.1,0.5 ↓ ↑↓
Fragile histidine triad gene Fhit    1,2 7.8,0.1 ↓ ↑↓
Gamma-glutamyltransferase 1 Ggt1    2 3.4,0.2 ↓ ↑↓
Bone morphogenetic protein 7 Bmp7    2 3,0.4 ↓ ↑↓
E74-like factor 1 (ets domain transcription factor) Elf1    2 3,0.4 ↓ ↑↓
CD80 molecule Cd80    2 3,0.3 ↓ ↑↓
Glycine N-methyltransferase Gnmt    2 2.5,0.4 ↓ ↑↓
Acyl-Coenzyme A oxidase 1, palmitoyl Acox1    2 2.3,0.5 ↓ ↑↓

Asterisks represent the reported genes associated with liver regeneration; LT: liver tumor; RRL: rat regenerating liver; 1: hepatocarcinogenesis; 2: hepatocellular 
carcinoma; 3: cholangiocarcinoma. ↑ represents genes up-regulated, ↓ down-regulated, and ↑↓ up-regulated at some time points and down-regulated at others 
during liver regeneration. Gene expression changes in liver tumors were obtained from scientific articles, and expression changes during liver regeneration were 
the result of microarray detection.

(16.7 folds higher than control) at 6 h following PH 
might explain why it played an important role in growth 
of  the regenerated hepatocytes. Dysregulated expression 

of  anti-apoptosis gene bcl-2 was present in LT as well 
as at metaphase and anaphase of  LR, and another anti-
apoptotic gene mcl1[32], whose change trend toward up-
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regulation in LT was identical to that in LR; and down-
regulation of  pro-apoptosis genes casp9 and dlc1[33,34] 
occurred in LT and the metaphase of  LR, which supported 
the idea that mcl1, casp9 and dlc1 might are related 
with cell survival in the two events. The differentiation-
related genes id1 and ptprh[35,36] down-regulation in LT 
and at forepart, metaphase and anaphase of  LR suggested 
that they failed to promote cell differentiation in both 
events. Up-regulation of  enhancement of  hepatoma 
cell migration-related genes itgav, itgb1, adam17, dlg7, 
sele, mta1, wisp1 and lgals1[37-43] in LT and the entire LR, 
especially a sustained high-level expression (12-fold higher 
than control) of  wisp1 at 48-60 h post-PH might imply 
the active cell migration in both LT and LR. According 
to up-regulated expression pattern in LT and almost the 
whole LR, metallopeptidase inhibitor timp1 was supposed 
to perform other biological functions except cell migration 
in the two events. Mif  inducing angiogenesis of  LT[44], 
cnn1 enhancing differentiation of  vascular smooth muscle 
cells[45] and apoptosis-inhibiting gene col18a1 encoding 
endostatin[46] were up-regulated both in LT and in forepart 
of  LR, which was presumably that the three genes might 

co-regulate angiogenesis in LT and LR. 
Study demonstrated that six pro-proliferation genes 

ikbkb, shc1, erbb2, fkbp4, wnt1, tcf7l2[47-51] up-regulated 
in LT were down-regulated during LR, at the same time, 
the down-regulated genes myc and spry2 possessing anti-
proliferation effect[52,53] in LT were up-regulated almost 
during the whole LR; two growth-promoting genes 
hspa5 and hspa1a[29,54] and four growth inhibitory genes 
gadd45b, fgl1, spint2 and smad4[55-58] were respectively up-
regulated and down-regulated in LT, whose expression 
correspondingly underwent opposite trend at metaphase 
of  LR comparing with LT, which was supposed to be 
closely associated with the differences in proliferation 
and growth between hepatoma cells and regenerating 
hepatocytes. Particularly, the expression abundance of  
gadd45b in human hepatocellular carcinoma was fifteen-
fold lower than control[55], just the contrary, its expression 
reached climax (nearly 56-fold over the control) at 2 h in 
rat LR, demonstrating there was a significant distinction 
in gadd45b expression change between normal and 
transforming l iver cells. The down-regulated pro-
apoptotic genes tp53, ifng and casp8[59-61] and the up-
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Figure 2  Correlation analysis of 121 liver tumor-associated genes with liver regeneration. Twenty-nine subcategories were obtained by the analysis for detection data of 
Rat Genome 230 2.0 array with Microsoft Excel. 1-6: 34 genes up-regulated in both liver tumor (LT) and rat regenerating liver (RRL); 7-10: 14 genes down-regulated in both 
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regulated apoptosis-inhibitory gene serpinb3[62] in LT 
were respectively up-regulated and down-regulated at 
metaphase and anaphase of  LR might account for the 
suppression of  apoptosis in LT and enhancement of  
apoptosis at metaphase and anaphase of  LR. In addition, 
casp8, inactivated caused by frame-shift mutation in 
hepatocellular carcinoma[61], was up-regulated to its highest 
levels (10.6 folds higher than control) at 48 h post-PH, 
and expression of  serpinb3 declined to the lowest point 
(11.4 folds lower than control) at 48 h, signifying the 
important regulatory effect of  the two genes on liver mass. 
Contribution of  efnb1 and tff3 in neovasculargenesis 
activity[63,64] and the crucial role for f2 in maintenance of  
vascular integrity[65] were helpful for understanding the 
hypothesis that the three up-regulated genes in LT down-
regulated at metaphase and anaphase of  LR implied 
the control of  blood-vessel growth serving as one of  
modulation pathways of  regenerated liver mass. Three 
hepatoma cell migration and invasion-associated genes 
hmga1, cttn and rhoc up-regulated in LT[66,67] and down-
regulated in LR possibly showed the stronger migration 
ability of  hepatoma cells.

Four up-regulated in LT genes promoting hepatoma cell 
proliferation including met, laptm4b, nfkb1 and acsl4[68,69], 
revealed down-regulation at metaphase and up-regulation 
at anaphase of  LR, and another two inhibitory genes 
dusp1 and cdkn1c[70] were up/down-regulated in LR, i.e. 
the former was up-regulated at 0.5-12 and 24 h, and down-
regulated at 54-60 h, while the latter was down-regulated at 
6-18 h and up-regulated at 30 and 42 h; Three up-regulated 
scd1, xbp1 and ngfb genes involved in hepatoma cell 
growth in LT[54,71,72] were up-regulated at forepart, prophase 
and metaphase, and down-regulated at some time points in 
the late phase of  LR, while another six negative regulatory 
genes including socs1, socs3, gadd45g, igfbp3, runx3 and 
hnf4a[73-77] down-regulated in LT had a significant increase 
in expression at some time points and significant decrease 
at others during LR. The more complicated expression 
of  these genes during the proliferation and growth of  
regenerating liver cells comparing with that of  hepatoma 
cells concluded from the above results was presumably 
consistent with the further improved control mechanism 
upon proliferation and growth of  regenerating liver cells 
than that of  hepatoma cells. Telomerase activity of  TERT 
was interfered by terf1 expression product[78], and the 
two were up-regulated in both LT and the metaphase of  
LR, while down-regulated at anaphase, indicating that the 
balance of  quantity of  the two gene products was essential 
for maintaining telomere stability. The up-regulated genes 
spp1, plau and gpnmb promoting hepatoma cell migration 
and invasion[79,80] as well as the up-regulated intercellular 
junction-involved cdh17 and cldn10 genes[47,81] were up-
regulated at forepart, prophase and some time points 
after 16h, and down-regulated at other points after 16 
h, possibly illustrating that the similar cell migration and 
interactions in LT occurred at forepart and prophase of  
LR, however the difference emerged when entering the 
metaphase of  LR. The dysregulated gene fgf2[82] promoting 
hepatoma cell apoptosis in LT was up-regulated at 4 h 
post-PH, consistent with the enhanced apoptotic action of  
regenerating liver cell at the forepart of  LR, demonstrating 

that it acted as a key gene involved in the regulation of  
apoptosis.

In conclusion, at transcriptional level, while decrease 
of  apoptosis occurring in liver tumors, the process was 
still going on in LR; as far as cell growth, proliferation, 
differentiation, migration and angiogenesis are concerned, 
not only resemblances but differences exist between LT 
and LR. Especially, expressions of  the genes, such as 
ccna2, serpine1, wisp1, gadd45b, casp8 and serpinb3, 
display marked changes in two events, so their actions 
deserve the further study. Of  course, the process of  DNA
→mRNA→protein→function could be influenced by 
many factors including gene mutation, protein interaction 
etc. Therefore, the further analyses are required for 
confirming the above results using techniques such as gene 
addition, knock-out, RNAi, etc. 
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