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Abstract
Hepatitis C virus (HCV) infection is one of the major 
causes of chronic liver disease, including cirrhosis 
and liver cancer and is therefore, the most common 
indication for liver transplantation. Conventional antiviral 
drugs such as pegylated interferon-alpha, taken in 
combination with ribavirin, represent a milestone in 
the therapy of this disease. However, due to different 
viral and host factors, clinical success can be achieved 
only in approximately half of patients, making urgent 
the requirement of exploiting alternative approaches 
for HCV therapy. Fortunately, recent advances in the 
understanding of HCV viral replication and host cell 
interactions have opened new possibilities for therapeutic 
intervention. The most recent technologies, such as 
small interference RNA mediated gene-silencing, anti-
sense oligonucleotides (ASO), or viral vector based gene 
delivery systems, have paved the way to develop novel 
therapeutic modalities for HCV. In this review, we outline 
the application of these technologies in the context of 
HCV therapy. In particular, we will focus on the newly 
defined role of cellular microRNA (miR-122) in viral 
replication and discuss its potential for HCV molecular 
therapy.
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INTRODUCTION
Hepatitis C virus (HCV), first identified in 1989, is a 
single-stranded positive-sense RNA flavivirus with 6 
major genotypes and over 70 subtypes[1,2]. According 
to the estimation of  the World Health Organization, 
approximately 170 million people, 3% of  the world 
population, are HCV positive with 3 to 4 million de 
novo infections each year. Unfortunately, 55%-85% 
of  those infected fail to clear the virus and progress 
to develop chronic infection. Over a period of  20 to 
30 years cirrhosis develops in about 10% to 20% and 
hepatocellular carcinoma (HCC) develops in 1% to 7% of  
persons with chronic infection[3]. Currently, no safe and 
effective vaccine is available to prevent HCV infection. 
Conventional treatment, such as interferon taken alone or 
in combination with ribavirin, is only effective in part of  
the patients, but is often financially inaccessible for people 
in developing countries[4,5].

To explore the potential of  new therapeutic strategies, 
it is critical to better understand the viral and host 
factors involved in virus cell entry, replication and virus-
cell interaction. An apparent two-way dialogue exists in 
which the virus apparently takes advantage of  the cells’ 
own signal transduction systems to facilitate virus entry 
and support replication[6]. Indeed, remarkable progress 
has been achieved in understanding the properties of  the 
HCV genome and viral proteins. Contributions have come 
through several different sources, including vaccination 
of  chimpanzees, structural studies, binding studies with 
recombinant envelope proteins, and the use of  clinical 
isolates, HCV-like particles (HCV-LPs), HCV pseudotyped 
particles (HCVpp), and cell culture-derived HCV particles 
(HCVcc) in infectivity assays[7,8]. Cellular pathways or 
molecules involved in viral entry, such as CD81, scavenger 
receptor class B type Ⅰ (SR-BI), LDL receptor, L-SIGN, 
DC-SIGN and asialoglycoprotein receptor (ASGPR) could 
be putative therapeutic targets[9-12].

New technologies, particularly RNA interference 
(RNAi) induced by small interfering RNA (siRNA), are 
gaining favour as effective therapeutic entities for HCV 
infections. RNAi works at a posttranscriptional level by 
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degrading cognate mRNA. As HCV is a single-stranded 
RNA that functions as both a messenger RNA and a 
template for replication, it is a prime candidate for RNAi. 
Moreover, previous reports have shown that by blocking 
cellular determinants of  viral entry and replication, such 
as CD81, HSP90, or p68, either by RNAi, antisense 
oligonucleotides or chemically engineered “antagomirs”, 
leads to significant reduction of  viral invasion[13-15]. In this 
review, we outline the novel small RNA based technologies 
in designing therapeutic approaches for HCV treatment, 
according to the mechanism of  viral entry, replication 
and virus-cell interaction. In particular, we will discuss 
emerging evidence that a liver-specific, small non-coding 
microRNA (miRNA) is involved in replication of  HCV 
through a novel mechanism and outline its therapeutic 
potential.

MOLECULAR CHARACTERISTICS OF HCV
ENTRY AND REPLICATION
HCV, contains a single-stranded RNA genome of  about 
9400 nucleotides in length, composed of  a 5′ and 3′ non-
coding region (NCR) with a single open reading frame 
encoding a polyprotein precursor of  approximately 
3000 amino acids that is cleaved into three structural 
(core, E1, E2) and seven non-structural (p7, NS2-NS5B) 
proteins[16,17].

Since the discovery of  HCV, numerous studies have 
demonstrated its mechanism of  cell entry, but it is still 
unclear how the virus penetrates cell membranes. In 
order to elucidate the infection pathway, it is first required 
to identify and understand both the putative viral and 
cell factors involved in this process. The viral envelope 
glycoproteins E1 and E2, cleaved from the polyprotein 
by the endoplasmic ret iculum (ER)-resident host 
enzymes signal peptidase and signal peptide peptidase, 
have been widely regarded as the critical determinants 
for virus cell entry. To date, several models have been 
designed to investigate E1/E2 function. These include 
HCV-LPs expressing E1-E2 heterodimers instead of  
glycosylated individual E1 and E2[18-21], HCVpp consisting 
of  unmodified HCV envelope glycoproteins E1 and E2 
assembled onto retroviral or lentiviral core particles[22-26], 
vesicular stomatitis virus (VSV)/HCV pseudotypes 
expressing HCV E1 or E2 chimeric proteins containing 
transmembrane and cytoplasmic domains of  the VSV 
G glycoprotein, or HCVcc neutralization assays with 
E1 or E2 antibody[27-30]. These models have shown that 
both envelope glycoproteins E1 and E2 are essential for 
host cell entry. The lack of  either E1 or E2 significantly 
decreases HCV infection activity whereas deletion of  
the whole envelope protein coding sequence abolishes 
the particle infectivity. Additionally, several cell surface 
molecules have been identified using these models and are 
now considered as critical components in mediating HCV 
attachment and entry.

Similar to viral entry, HCV replication requires both 
viral and cellular factors. Although our current knowledge 
of  the HCV life cycle is still mainly at the hypothetical 
level, several minimum viral components and host 
cell factors have been proposed. The HCV 5′ NCR, in 

particular the IRES sequence, plays an important function 
in ribosomal assembly and the NS3 to NS5B coding region 
are necessary for function of  the replicase complex[31-35]. 
Found as interaction partners of  NS5A and NS5B, human 
vesicle-associated membrane protein-associated proteins 
VAP-A and VAP-B were first identified from the host 
cell[36,37]. More recently, the geranylgeranylated protein 
FBL-2, the immunophilins cyclophilin B and FKBP8 
have been identified as important host factors for HCV 
replication[38-40]. Furthermore, the host enzyme IMPDH, 
essential for the de novo synthesis of  GTP nucleotides, may 
be involved in HCV replication as the IMPDH inhibitors 
ribavirin and mycophenolic acid suppresses replication[41,42]. 
Interestingly, the mammalian liver-specific miRNA 
(miR-122) has been recently defined to facilitate HCV 
replication, indicating that this small RNA may present a 
novel target for antiviral intervention[43].

miR-122 AND HCV REPLICATION
miRNAs are approximately 22 nucleotide noncoding 
RNAs that can downregulate various gene products by 
inducing either cleavage or a reduction in the translational 
efficiency of  the target mRNA[44,45]. In the last 5 years, 
over 3000 miRNAs have been identified in vertebrates, 
flies, worms, plants and even viruses. Most miRNAs have 
been shown to participate in essential biological processes, 
such as cell proliferation, apoptosis, differentiation and 
metabolism[46]. The 22 nucleotide mature miR-122, derived 
from a noncoding polyadenylated RNA transcript of  the 
hcr gene, is a liver-specific developmental regulator. It can 
be detected as early as 12.5 d post-gestation and reach a 
plateau immediately before birth, then slowly increase up 
to 70% of  the total miRNA population in adult liver[47-49]. 
miR-122 is the first identified host miRNA linked to HCV 
viral replication. A further novelty to these findings is the 
fact that miR-122 upregulates, rather than downregulates, 
viral RNA by interaction with the 5′ NCR of  the viral 
RNA. Previous work had suggested that miRNA can only 
negatively regulate gene expression through targeting the 3′  
NCR of  mRNA.

Interestingly, Jopling et al[43] have observed that though 
both Huh7 and HepG2 cells are derived from human 
hepatocytes, HCV RNA can only replicate in Huh7 cells. 
This may link to the fact that Huh7 is miR-122 positive, 
while HepG2 is miR-122 negative. To determine if  
miR-122 is required to regulate HCV replication, they 
transfected antisense oligonucleotides into Huh7 liver 
cells to suppress miR-122 function. The results showed 
that the amount of  viral RNA was reduced by about 80% 
when miR-122 was silenced, but it is still unclear whether 
it is simply a direct or indirect interaction through cellular 
factors. Thus, to further address this issue, two putative 
binding sites, located in each of  the viral NCR, were tested 
as possible targets for miR-122. It was found that only the 
binding sequence located in the 5′ NCR was responsible 
for miR-122 targeting. This is notably very different 
from the common observation that miRNA target the 3′  
NCR, leading to suppression or degradation of  target 
mRNA. Recently, a study in mice has shown synthesized 
antisense single-stranded 23-nucleotide RNA molecules 
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can effectively inhibit production of  miR-122 in vivo[50]. 
Therefore, miR-122 seems a potential target for HCV 
treatment, although the mechanism for this new miRNA 
role is still very much unclear. 

THERAPEUTIC STRATEGIES BASED ON 
GENE SILENCING TECHNOLOGY
As current antiviral regimens have proven largely 
unsatisfactory, particularly for patients with genotype 
1 infection, it is important to explore novel therapeutic 
strategies. Smal l interfer ing RNAs and ant isense 
oligonucleotides (ASO) have emerged as efficient nuclei 
acid-based gene silencing tools to target highly conserved or 
functionally important regions within the HCV genome or 
essential host cell factors for entry or replication (Figure 1).

RNAi, induces gene silencing at a post-transcription 
level by double-stranded small interference RNA (siRNA) 
and represents an exciting new technology that could have 
applications in the treatment of  viral diseases. Particularly, 
HCV could be an attractive target for RNAi therapy, as 
it is a RNA virus. The HCV genome is a positive single-
stranded RNA that functions both as the viral messenger 
RNA and a template for RNA replication via a negative-
strand intermediate. Instead of  a 5' cap, the IRES, 
located at the 5' NCR, plays an essential role to bind 
eukaryotic ribosomal subunits and initiates the assembly 
of  the translationally active 80S complex. Consequently, 
this sequence is more conserved than any other part of  
the viral genome, at least among the six known HCV 
genotypes[51,52]. Thus, IRES seems an ideal target for RNAi 
mediated anti-HCV therapy and several groups have 
demonstrated efficient inhibition of  HCV replication by 
designing siRNAs toward this region[53-55]. In addition, 
RNAi directed against the viral core, NS3, NS4B, NS5A 
and NS5B regions can suppress HCV infection. McCaffrey 
et al[56] was the first to demonstrate feasibility of  siRNA 
targeting HCV NS5B in vivo. By co-expression of  an 
NS5B-luciferase fusion gene with an anti-NS5B siRNA 
expression plasmid they found a significant reduction 
of  luciferase expression in the mouse liver indicating 
selective degradation by the NS5B siRNA. Additionally, 
several other groups have observed suppression of  HCV 
replicon by siRNA-mediated targeting either NS5B or NS3 
region[57-59].

Besides these viral elements, numerous host cellular 
factors, such as CD81, SR-BI, HSP90, p68 or USP18, 
could be typical targets for potentiating RNAi antiviral 
therapy. CD81, expressed in most human cells, is able to 
bind to HCV E2 protein and is, therefore, considered an 
essential receptor for HCV entry. Further investigation, by 
either ectopic expression of  CD81 in Huh7-Lunet cells (low 
expression of  CD81) or modulation of  CD81 cell surface 
density in Huh-7.5 cells (high expression of  CD81) by 
RNAi, revealed that density of  cell surface-exposed CD81 
is a key determinant for HCV entry into host cells[60]. SR-
BI, primarily expressed in the liver and steroidogenic 
tissues, was identified as another potential HCV receptor 
based on coprecipitation with recombinant E2. A 90% 
down-regulation of  SR-BI expression in Huh7 cells by 

RNAi caused a 30%-90% inhibition of  HCVpp infection, 
depending on the HCV genotype[61,62]. However, either 
CD81 or SR-BI alone is not capable of  virus binding 
indicating that at least one additional host protein, possibly 
the recently identified co-receptor, Claudin-1[63], is required 
for cell entry of  enveloped virions via the CD81/SR-BI 
pathways.

Although using siRNA to target either viral or host 
factors could be considered effective tools to significantly 
block HCV infection and replication, an advanced 
method by knockdown both viral and cellular factors may 
further improve the therapeutic efficacy. Work by our 
group has shown that both entry and replication can be 
simultaneously targeted using shRNAs directed against two 
regions of  the HCV RNA and one region of  the host cell 
receptor, CD81. The triple shRNA expression vector was 
effective in concurrently reducing HCV replication, CD81 
expression, and E2 binding, comparable to conventional 
single shRNA anti-HCV vectors[64].

Antisense oligonucleotides represent an alternative 
gene-silencing tool that can be employed as HCV therapy. 
ASO-based inhibition of  HCV has been demonstrated 
extensively in the past[65-71]. Currently, ASO is the most 
promising method to block the function of  miRNA, 
such as miR-122. For instance, a 2 ′-O-methylated 
RNA oligonucleotide with exact complementarity 
to miR-122 was introduced to inactivate its function 
in Huh7 cells, in order to determine the relationship 
between miR-122 and HCV replication. Subsequently, 
Krutzfeldt et al[50] developed a pharmacological approach 
for silencing miRNA in vivo, by chemically modified, 

Figure 1  Novel anti-viral strategies based HCV life cycle. RNAi technology, 
inducing gene silencing at posttranscriptional level mediated by siRNA, can be 
applied to prevent HCV replication and infection by targeting either viral RNA (1) 
or host factors, such as surface receptor (2) or cellular molecules (3). miR-122 is 
a liver specific miRNA that is involved in HCV replication and therefore silencing of 
miR-122 by antisense oligonucleotides (ASO) could be considered as a potential 
therapeutic modality (4).
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cholesterol-conjugated single-stranded RNA analogues 
to complementarily target miR-122. By injection of  
these ‘antagomirs’ into the tail veins of  mice, efficient 
and specific suppression of  endogenous miR-122 was 
observed. Hence, designing ASO based molecular 
medicines would provide new agents for human major 
diseases, because upregulation of  certain miRNAs linked 
to a set of  diseases such as cancer, diabetes or HCV. 

LIVER-TARGETED VIRAL DELIVERY
SYSTEMS
Obviously, RNAi or ASO technologies could be 
regarded as potentially effective novel modalities for anti-
HCV treatment. Nevertheless, the success depends on 
developing effective delivery systems, to target therapy to 
the liver. Regarding to treat a liver-hosted and long-term 
persistent hepatitis virus, an ideal vector would be able to 
transfer genetic material efficiently and specifically into 
the target cells/tissues, resulting in high level, properly 
regulated and prolonged expression, without toxic and 
immunogenic side effects. Since viruses have many 
advantages as transgenic vehicles, we will discuss two of  
the most promising delivery systems: lentiviral and adeno-
associated viral (AAV) vectors.

Lentiviral vectors, are mainly based on human 
immunodeficiency virus type 1 (HIV-1) and have 
been shown to effectively transduce liver, muscle, 
and hematopoietic cells. These vectors integrate their 
payloads into the host genome ensuring transmission 
to progeny cells[72]. Although lentiviral-mediated short 
hairpin RNA (shRNA, precursor of  siRNA) delivery has 
been widely developed for therapeutic application, there 
are few reports referring to HCV treatment[57,64]. There 
are currently some limitations for the use of  lentiviral 
vectors: (1) production efficiency limits in vivo transfection; 
(2) possibility of  insertional mutagenesis or generation 
of  wild-type virus leading to safety considerations. To 
circumvent these drawbacks the following strategies may 
be required to achieve further improvement: firstly, newer 
generations, such as the gutted third generation, relatively 
high titers of  VSV-G pseudotyped HIV-1 vectors, other 
types such as HIV-2 and simian immunodeficiency virus 
(SIV) vectors, or even immunodeficiency viruses derived 
from nonprimates, including felines and equines, are also 
being developed to overcome conventional problems[73-76].

Analogically, with the superiority of  low pathogenicity 
and long-term gene expression, AAV could be another 
ideal viral vector for siRNA delivery, although no 
reference of  AAV-mediated anti-HCV RNAi therapy has 
been reported so far. Particularly AAV serotype 8, a new 
member of  the AAV family isolated from rhesus monkeys, 
is an attractive candidate for hepatic-directed shRNA 
transfer because of  10- to 100-fold increased transduction 
efficiency in mouse liver models, compared with the 
previous AAV2 based vectors[77]. Since derived from 
nonhuman primate, AAV8 is less prone to recognition by 
prevailing antibodies that generate side immunological 
effects in human[78]. Moreover, the safety and transgenic 
delivery efficacy could be further improved by conjugating 

other strategies, such as utilizing liver-specific promoters, 
hybr id izat ion of  AAV8 with other serotypes, or 
modification of  viral capsids.

Furthermore, since miRNA context based siRNA 
cassette (second-generation shRNA) can be driven by a 
regulated polⅡ promoter instead of  conventional polⅢ 
promoters[79], liver-targeted expression of  shRNA could be 
achieved by employing a liver-specific polⅡ promoter in 
viral delivery system.

CONCLUSION
The treatment of  HCV remains a challenge that requires 
further elucidating the process of  viral life cycle and 
developing novel therapeutic approaches. In fact, recent 
progress has provided the possibilities of  identifying novel 
antiviral targets and designing new therapeutic strategies. 
According to the previous description, miR-122 is one 
of  the most emergent targets for HCV therapy that is 
commonly abundant in human livers and thus promotes 
viral replication. Therefore, downregulation of  miR-122 
by antisense based ‘antagomirs’ or oligonucleotides 
significantly suppressed viral replication. However, before 
such a method can be applied in the clinic, the role of  
miR-122 in maintaining normal hepatic function must be 
further investigated. Krutzfeldt et al[50] have demonstrated 
that silencing of  miR-122 by ‘antagomirs’ do not show any 
apparent toxicity to mice, but the more recent study has 
shown that miR-122 is downregulated in the rodent and 
human hepatocellular carcinomas (HCC). Using the animal 
model of  diet-induced hepatocarcinogenesis, Kutay et al[80] 
have observed that the reduced expression of  miR-122 
probably occurs between 36 and 54 wk when neoplastic 
transformation occurs. These findings suggest that the 
downregulation of  miR-122 might be associated with 
hepatocarcinogenesis and, therefore, further investigation 
into the funct ion of  miR-122 is required before 
therapeutic application can be commenced. In conclusion, 
the recent progress of  understanding the viral life cycle 
and identification of  novel targets, in combination with the 
newly developed ASO and RNAi technology, may pave the 
way for new anti-HCV therapy. 
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