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Abstract
AIM: To estab l i sh the therapeut ic potent ia l of 
proteasome inhibition, we examined the therapeutic 
effects of MG132 (Z-Leu-Leu-Leu-aldehyde) in an 
experimental model of acute pancreatitis.

METHODS: Pancreatitis was induced in rats by two 
hourly intraperitoneal (ip) injections of cholecystokinin 
octapeptide (CCK; 2 x 100 µg/kg) and the proteasome 
inhibitor MG132 (10 mg/kg ip) was administered 30 min 
after the second CCK injection. Animals were sacrificed 4 
h after the first injection of CCK.

RESULTS: Administering the proteasome inhibitor 
MG132 (at a dose of 10 mg/kg, ip) 90 min after the 
onset of pancreatic inflammation induced the expression 
of cell-protective 72 kDa heat shock protein (HSP72) and 
decreased DNA-binding of nuclear factor-kB (NF-kB).  
Furthermore MG132 treatment resulted in milder 
inflammatory response and cellular damage, as revealed 
by improved laboratory and histological parameters of 
pancreatitis and associated oxidative stress.

CONCLUSION: Our findings suggest that proteasome 
inhibition might be beneficial not only for the prevention, 
but also for the therapy of acute pancreatitis.

© 2007 WJG. All rights reserved.
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INTRODUCTION
Proteasome inhibition is an emerging strategy to attenuate 
the inflammatory response[1]. Inhibiting the proteasome 
blocks nuclear factor-kB (NF-kB) activation by detaining 
proteolysis of  its inhibitory subunit, the IkB. Preventing 
NF-kB activation then decreases NF-kB dependent proin-
flammatory gene expression, resulting in reduced inflam-
matory response. However studies also reveal that NF-kB, 
one of  the major initiators of  pro-inflammatory pathways, 
has anti-inflammatory roles in the resolution of  inflamma-
tion. Thus inhibiting NF-kB during the resolution of  in-
flammation has been shown to protract the inflammatory 
response in vivo[2].

Acute pancreatitis is a severe inflammatory disease 
characterized by intrapancreatic activation of  digestive 
enzyme zymogens that leads to acinar cell injury and 
subsequent inflammatory response[3-5]. The inflammatory 
response is first localized only to the pancreas, but due to 
the release of  inflammatory mediators, later overspreads 
and becomes systematic affecting other organs including 
the lung and kidney. This exacerbation of  pancreatitis re-
sults in multiple organ failure and systemic inflammatory 
response syndrome that is responsible for the mortality 
of  acute pancreatitis. There have been many experimental 
attempts for the treatment of  acute pancreatitis, however 
most failed to succeed in the clinics[6,7]. This might stem 
from the fact that many studies aim to examine only the 
prophylactic effects of  compounds. One thing is clear 
however, the therapeutic potential of  a compound in acute 
pancreatitis can only be established if  it is given after on-
set of  the disease[8,9]. In our previous study the peptide 
aldehyde proteasome inhibitor MG132 prevented the de-
velopment of  pancreatic inflammation when administered 
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before the induction of  the disease[10]. In order to estimate 
the clinical potential of  proteasome inhibition, we also 
had to examine the therapeutic effects of  the compound 
administered after the onset of  pancreatitis. Given the 
NF-kB inhibitory effects of  MG132, it was also crucial to 
determine whether NF-kB inhibition with MG132 after 
the onset of  pancreatitic inflammation might worsen or 
ameliorate pancreatitis.

The following paper will summarize the observed ef-
fects of  therapeutic administration of  MG132 in this 
experimental model of  acute pancreatitis and suggest that 
proteasome inhibition might be beneficial for the therapy 
of  the disease.

MATERIALS AND METHODS
Experimental protocol
For the in vivo studies male Wistar rats (provided by the Ani-
mal Center of  the University of  Szeged) weighing 250-300 g  
were used. The animals were kept at constant room tem-
perature with a 12-h light-dark cycle, and were allowed free 
access to water and standard laboratory chow (Biofarm, 
Zagyvaszántó, Hungary). Animal experiments performed 
in this study were approved by the Animal Care Committee 
of  the University and complied with the European Com-
munities Council Directive of  24 November 1986 (86/609/
EEC). In each experimental group eight rats were used (n = 
8). Acute pancreatitis was induced by injecting 100 µg/kg of  
CCK (synthesized in the Department of  Medical Chemistry, 
Szeged, Hungary as described by Penke et al[11]; dissolved in 
physiological saline) twice with an interval of  1 h (Figure 1). 
Ninety minutes after the first CCK injection, the animals 
were injected intraperitoneally (ip) either with 10 mg/kg of  
MG132 [Z-Leu-Leu-Leu-aldehyde; Sigma; dissolved in 0.25 
mL dimethyl sulfoxide (DMSO)] or with an equal volume 
of  DMSO (Sigma) alone. Controls received physiological sa-
line (PS) and DMSO in the same manner. Four hours after 
the first CCK or saline injections, the animals were anesthe-
tized (with pentobarbital sodium 50 mg/kg, ip) and killed 
by exsanguination through the abdominal aorta. Pancreases 
and lungs were quickly removed, the former were cleaned 
of  fat and lymph nodes, weighed, frozen in liquid nitrogen 
and stored at -80℃ until use.

Procedures
Nuclear protein extraction: Nuclear protein extracts 
were prepared as described previously[12].

Electrophoretic mobility shift assay (EMSA) of  NF-
kB: EMSA of  NF-kB was carried out as described previ-
ously[12,13].

Western blotting: Western blot analysis of  pancreatic 
heat shock protein 72 (HSP72) and IkBa was performed 
as described by Rakonczay et al[12,14]. a-tubulin was used as 
a loading control.

Serum amylase activity assay: The pancreatic weight/
body weight ratio was utilized to evaluate the degree of  
pancreatic edema. To measure the serum amylase activities, 

all blood samples were centrifuged at 2500 ��×� g for 20 min. 
The serum levels of  amylase were determined by a colori-
metric kinetic method (Dialab, Vienna, Austria).

Pancreatic tumor necrosis factor-a and interleukin-6 
levels: Tumor necrosis factor-a (TNF-a) and interleu-
kin-6 (IL-6) concentrations were measured in the pancre-
atic cytosolic fractions with ELISA kits (Bender Medsys-
tems, Vienna, Austria) according to the manufacturers’ 
instructions.

Pancreatic and lung myeloperoxidase activity: Pancre-
atic and lung myeloperoxidase (MPO) activity, as a marker 
of  tissue leukocyte infiltration, was assessed by the method 
of  Kuebler et al[15].

Real time quantitative polymerase chain reaction (RT-
qPCR): RT-qPCR was performed on a RotorGene 3000 
instrument (Corbett Research, Australia) with gene-specific 
primers (designed with the software PrimerExpress, Applied 
Biosystems, USA) and SYBRGreen I protocol as described 
previously[10]. Relative expression ratios were normalized to 
cyclophilin and calculated with the Pfaffl method[16]. The 
PCR primers used were as follows:  cyclophilin, forward 
primer, 5'-TCTCTTCAAGGGACAAGGCTG-3', reverse 
primer, 5'-TGGCAAATCGGCTGACG-3'; pancreatitis-
associated protein (PAP), forward primer, 5'-CCTCTGCAC
GCATTAGTTGC-3', reverse primer, 5'-TGAAACAGGG
CATAGCAGTAGG-3'.

Lipid peroxidation, reduced glutathione levels and 
activities of  superoxide dismutase and catalase: Lipid 
peroxides may undergo metal- or enzyme-catalyzed de-
composition to form multiple products, including malond-
ialdehyde (MDA). Pancreatic MDA levels were measured 
according to the MDA/TBA-high performance liquid 
chromatographic (HPLC) method of  Wong et al[17] and 
were corrected for the protein content of  the pancreas. Re-
duced glutathione (GSH) levels were determined spectro-
photometrically with Ellman’s reagent[18]. Pancreatic total 
superoxide dismutase (SOD) activity was determined on 
the basis of  the inhibition of  epinephrine-adrenochrome 
autoxidation[19].
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Figure 1  Experimental protocol of acute pancreatitis.
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Ferric reducing ability of  plasma (FRAP): The total 
antioxidant activity of  the plasma was determined with 
the method of  Benzie and Strain[20]. Ferric to ferrous ion 
reduction-in a complex with tripyridyl-triazine - at low pH 
causes the development of  an intense blue color, which 
has an absorption maximum at 593 nm. FRAP values are 
obtained by preparing a calibration curve with a solution 
of  known Fe (Ⅱ) concentration.

Histological evaluation of CCK-induced acute pancreatitis
A portion of  the pancreas was fixed in 8% neutral form-
aldehyde solution and subsequently embedded in paraffin. 
Sections were cut at 4 µm thicknesses and stained with 
hematoxylin and eosin (HE). The slides were coded and 
read for the traditional histological markers of  pancreatic 
tissue injury by two independent observers who were blind 
to the experimental protocol. Semiquantitative grading of  
intestinal edema, inflammation, hemorrhage, vacuolization 

and acinar cell necrosis was performed on a scale of  0 to 3 
(0-absent, 1-mild, 2-moderate, 3-severe).

Statistical analysis
Results were expressed as mean ± SD. Differences be-
tween experimental groups were evaluated by using analy-
sis of  variance (ANOVA).  Values of  P < 0.05 were ac-
cepted as significant.

RESULTS
Pancreatic weight/body weight ratio and serum amylase 
activity 
Injecting 2 �� ����×�����  100 μg/kg body weight of  CCK resulted in 
elevated serum amylase levels and pancreatic weight/body 
weight ratio, signs of  acinar injury and pancreatic inflam-
mation[21,22]. These actions of  CCK were interfered by 
MG132 treatment (Figure 2A).

Intrapancreatic proinflammatory cytokine levels 
Inflammatory mediators, like TNF and IL-6 couple the lo-
cal pancreatic inflammation with systemic complications 
such as pancreatitis-associated lung and renal-injury[23,24]. 
In our study CCK significantly increased the expression 
of  TNF and IL-6 in the pancreas compared to controls. 
MG132 treatment reduced intrapancreatic TNF and IL-6 
levels (although, compared to Group CCK, the effect of  
MG132 on pancreatic TNF levels were not statistically sig-
nificant, as shown in Figure 2B).

Pancreatic and lung myeloperoxidase activity 
Neutrophils produce an enzyme called myeloperoxidase 
that can be used to identify the amount of  neutrophils 
infiltrating a tissue after inflammation[25]. CCK hyper-
stimulation increased MPO activity in both the pancreas 
and lung, reflecting the elevated levels of  neutrophil in-
filtration within these organs. Proteasome inhibition with 
MG132 decreased MPO activity in the lung and pancreas 
(Figure 2C).

Expression of pancreatitis-associated protein 
Pancreatitis-associated protein (PAP), the acute-phase 
protein of  the pancreas, is overexpressed in acute pancre-
atitis[26]. Supramaximal CCK doses significantly increased 
the expression of  PAP mRNA. MG132 treatment could 
interfere markedly with this effect of  CCK (Figure 3).

Parameters of oxidative stress
Two hourly injections of  CCK induced pancreatic inflam-
mation and underlying oxidative stress. Thus, the ferric 
reducing ability of  plasma (FRAP), as an index of  total an-
tioxidant capacity was reduced four hours after the induc-
tion of  pancreatitis. Moreover CCK stimulation depleted 
SOD activity and GSH, the two important antioxidant 
defense systems and increased malondialdehyde content 
(the marker of  lipid peroxidation) in the pancreas. MG132 
treatment inhibited the production of  reactive oxygen 
species due to CCK hyperstimulation, as judged by the im-
provements of  above mentioned laboratory parameters of  
antioxidant power and oxidative stress (Figure 4A and B).

Figure 2  Effects of MG132 on laboratory parameters of acute pancreatitis.  
aP < 0.05; bP < 0.01.

CCK      -      +    +
MG132  -      -     +

-      +     +   CCK
-      -      +   MG132

b

a

b

a

60

50

40

30

20

10

  0

TN
F-
α

 (
ng

/g
 p

ro
te

in
)

IL
-6

 (
ng

/g
 p

ro
te

in
)

400

300

200

100

    0

B

CCK      -      +    +
MG132  -      -     +

-      +    +   CCK
-      -     +   MG132

8

6

4

2

0

Pa
nc

re
as

 w
ei

gh
t/

bo
dy

 w
ei

gh
t

Se
ru

m
 a

m
yl

as
e 

(×
 1

00
0 

U
/L

)

30

25

20

15

10

   5

   0

b

a
a

b

A

CCK      -      +    +
MG132  -      -     +

-      +    +   CCK
-      -     +   MG132

b

a

b

a

Pa
nc

re
as

 M
PO

 (
m

U
/m

g 
pr

ot
ei

n)

35

30

25

20

15

10

  5

  0

2.0

1.5

1.0

0.5

0.0

Lu
ng

 M
PO

 (
U

/m
g 

pr
ot

ei
n)

C

4454        ISSN 1007-9327       CN 14-1219/R     World J Gastroenterol   September 7, 2007    Volume 13     Number 33

www.wjgnet.com



Pancreatic heat shock protein 72 (HSP72) levels 
Induction of  heat-shock proteins is a useful tool to 
increase cellular tolerance against stress[27,28]. Injec-
tions of  CCK elevated the levels of  pancreatic HSP72 
four hours after the first CCK injection. MG132, the 
well-known inducer of  heat-shock proteins, further 
increased the expression of  HSP72 in the pancreas 
(Figure 5A and B).

Pancreatic NF-kB activation
In the pancreas, supramaximal doses of  CCK triggered the 

degradation of  IkBα and subsequent activation of  NF-kB, 
based on Western blots and EMSAs carried out on pan-
creatic samples of  animals involved in our study. Inhibiting 
the proteasome decreased IkBα degradation (Figure 5A 
and C) and DNA-binding of  NF-kB (Figure 6A and B)  
(The effects of  MG132 on IkBα degradation were not 
significant statistically).

Histological findings
CCK hyperstimulation resulted in cytoplasmic vacuol-
ization and death of  acinar cells, edema formation, and 
infiltration of  inflammatory cells in the pancreas samples 
of  CCK-treated animals (Figure 7A). Treating the animals 
with the proteasome inhibitor MG132 inhibited the cellu-
lar damage and inflammatory response due to CCK, as re-
flected by milder histopathological changes in the pancreas 
(Figure 7B).
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Figure 3  Effect of MG132 on mRNA expression of pancreatitis associated protein 
(PAP) in experimental acute pancreatitis.
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Figure 5  Effects of MG132 on HSP72 expression and IκB degradation in 
experimental acute pancreatitis. aP  < 0.05.

Figure 4  Effects of MG132 on measures of oxidative stress in experimental acute 
pancreatitis. aP  < 0.05; bP  < 0.01.
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DISCUSSION
Acute pancreatitis is a severe inflammatory disease trig-
gered by abnormal activation of  intrapancreatic proteases 
and enhanced transcriptional activity of  stress-responsive 
transcriptional factors like NF-kB[3-5]. Intrapancreatic activa-
tion of  digestive enzyme zymogens can be prevented by the 
inhibition of  lysosomal hydrolases like cathepsin B[29-31]. NF-
kB activation can also be prevented by inhibiting the protea-
some and other proteases (like calpains) that degrade the 
inhibitory IkB subunit[32-35]. MG132 is a peptide aldehyde 
proteasome inhibitor with a broad inhibitory range, showing 
selectivity towards both serine and cysteine proteases includ-
ing cathepsins and calpains[1,36]. To make it more complex, 
MG132 has the ability to induce heat shock proteins (includ-
ing HSP72), which increases cellular tolerance to stress[37,38].

In our earlier study we have shown that pretreatment 
of  rats with MG132 protected against acute pancreatitis by 
preventing NF-kB activation and inducing the expression 
of  HSP72[10]. However the therapeutic value of  prophylac-
tic treatment in acute pancreatitis is indeed very doubtful. 
In order to validate the therapeutic potential of  protea-
some inhibition in pancreatitis, we also tested the effects 
of  therapeutic administration of  MG132 in an experi-
mental model of  the disease. Pancreatitis was induced by 
two hourly injections of  the cholecystokinin octapeptide 
(CCK). In this model of  the disease, CCK hyperstimula-
tion resulted in pancreatitic inflammation characterized by 
intracellular activation of  digestive enzymes and elevation 
of  their serum levels, cytoplasmic vacuolization and death 
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Figure 6  Effect of MG132 on NF-kB activation in experimental acute pancreatitis. 
aP  < 0.05; bP  < 0.01.

Figure  7   E f fec t  o f 
MG132 on pancreatic 
morphological damage in 
CCK-induced pancreatitis 
(HE, x 40).

of  acinar cells, edema formation, infiltration of  inflamma-
tory cells and oxidative stress. Thus severity of  pancreatitis 
could be very accurately detected by monitoring the labo-
ratory parameters of  the disease. 

Administering MG132 90 min after the onset of  pan-
creatitic inflammation could still ameliorate the severity of  
the disease. So MG132 treatment could decrease cellular 
damage, inflammation and subsequent oxidative stress 
associated with pancreatitis. These beneficial effects of  
MG132 can be explained by its ability to induce the ex-
pression of  HSP72 that protects cells against stressful con-
ditions. MG132 also decreased the transcriptional activity 
of  NF-kB. NF-kB, however, has a dual role in inflamma-
tory diseases, because besides triggering proinflammatory 
cellular events during first phase of  the inflammatory re-
sponse, it has also anti-inflammatory role during the reso-
lution of  inflammation[2]. In CCK-induced pancreatitis, 
NF-kB activation peaks in the first phase of  the disease[39]. 
Since in MG132 treatment had more pronounced effects 
on HSP72 than on NF-kB, thus it is likely that in our case 
the induction of  heat shock proteins made larger contribu-
tion to the observed beneficial effects of  MG132 in acute 
pancreatitis and than NF-kB inhibition. 

Our observation that MG132 could ameliorate the 
severity of  acute pancreatitis when administered 90 min 
after the induction of  the disease is indeed very promising. 
Considering this, we have to note that although supramaxi-
mally stimulating doses of  CCK cause the inflammatory 
response that underlies many of  the features of  human 
pancreatitis, still CCK-induced pancreatitis is a mild model 
of  the disease[40]. Thus MG132 and other proteasome 
inhibitors should be further tested in other, more severe 
models of  pancreatitis in order to accurately determine the 
clinical potential of  proteasome inhibition for the treat-
ment of  acute pancreatitis.
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