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Abstract

There are several cofactors which affect body iron
metabolism and accelerate iron overload. Alcohol and
hepatic viral infections are the most typical examples for
clarifying the role of cofactors in iron overload. In these
conditions, iron is deposited in hepatocytes and Kupffer
cells and reactive oxygen species (ROS) produced
through Fenton reaction have key role to facilitate
cellular uptake of transferrin-bound iron. Furthermore,
hepcidin, antimicrobial peptide produced mainly in the
liver is also responsible for intestinal iron absorption
and reticuloendothelial iron release. In patients with
ceruloplasmin deficiency, anemia and secondary iron
overload in liver and neurodegeneration are reported.
Furthermore, there is accumulating evidence that fatty
acid accumulation without alcohol and obesity itself
modifies iron overload states. Ineffective erythropoiesis
is also an important factor to accelerate iron overload,
which is associated with diseases such as thalassemia
and myelodysplastic syndrome. When this condition
persists, the dietary iron absorption is increased due to
the increment of bone marrow erythropoiesis and tissue
iron overload will thereafter occurs. In porphyria cutanea
tarda, iron is secondarily accumulated in the liver.
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INTRODUCTION

In hereditary hemochromatosis, patients having HFE
trait are more susceptible to iron overload when cofactors
such as alcohol, hepatitis viruses, and abnormal porphyrin
metabolism are present. Even in the absence of hereditary
hemochromatosis, there are several conditions associated
with secondary iron overload in which iron deposition
is rather mild". For example, in alcoholics and patients
with chronic hepatitis C, intrahepatic iron is increased
and liver injury is accelerated, followed by development
of fibrosis, cirrhosis and hepatocellular carcinoma
(HCC). In addition, abnormal copper metabolism and
several causes for iron-loaded anemia are also important
cofactors which influence the background iron overload.
Furthermore, there is accumulating evidences that fatty
acid accumulation without alcohol and obesity itself
modifies insulin resistance through iron” and fibrogenesis
of the liver™. In this review, the role of cofactors on
iron overload will be discussed in three categories such
as alcohol, hepatitis C virus infection and steatosis with
obesity, the most common cofactors in liver iron overload.

COFACTORS AFFECTING BODY IRON
METABOLISM AND IRON OVERLOAD

There are several factors which affect body iron
metabolism and accelerates iron overload. Table 1 lists
cofactors and disease conditions which are known to
accelerate hepatic iron accumulation independent from
responsible genes for hereditary hemochromatosis.
Alcoholic and hepatic viral infections are the most typical
examples for clarifying the role of cofactors in iron
overload. In addition, abnormal copper metabolism and
several causes for iron-loaded anemia such as thalassemia
and myelodysplastic syndrome are also important factors
which influence the background iron overload. When this
condition persists, the dietary iron absorption is increased
due to the increment of bone marrow erythropoiesism and
tissue iron overload will occur thereafter. These patients are
usually anemic in spite of increased body iron stores (iron-
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Table 1 Cofactors of iron overload

Alcohol (Alcoholic liver disease)

Infection (Hepatitis C virus infection, etc)

Obesity and insulin resistance (Nonalcoholic steatohepatitis)
Copper (Ceruloplasmin deficiency)

Porphyrin (Porphyria)

Ineffective erythropoiesis (Thalassemia, myelodysplastic syndrome)
Others

NG W N =

loaded anemia), and require frequent blood transfusions,
which further exaggerate secondary iron overload, in
which conditions of new oral iton chelators are effective”.
In patients with ceruloplasmin deficiency, anemia and
secondary iron overload in liver and neurodegeneration
are reported'”. Furthermore, there are accumulating
evidences that fatty acid accumulation without alcohol
and obesity itself modifies iron overload states. Ineffective
erythropoiesis is also an important factor to accelerate
iron overload. This condition is associated with diseases
such as thalassemia, aplastic anemia, and myelodysplastic
syndrome. In porphyria cutanea tarda, iron is secondarily
accumulated in the liver and phlebotomy and oral iron
chelators are effective as well as in hemochromatosis.

ALCOHOL

Alcohol is one of the most important cofactors to modify
or enhance iron accumulation in the liver. Excess intake
of alcohol induces alcoholic liver diseases (ALD) such as
fatty liver, fibrosis, hepatitis, and cirrhosis, in which iron
overload is frequently associated”. By Perls’ iron stain,
excess iron accumulation was found in hepatic tissues with
ALD, but not in any normal hepatic tissues'”. In ALD, iron
is deposited in both hepatocytes and reticuloendothelial
(Kupffer) cells. In advanced cases of ALD, which is also
called as “alcoholic siderosis”, the reticuloendothelial
iron deposition is dominant. In earlier stages of ALD
such as fatty liver and fibrosis, iron deposition is mild
and is preferentially present in hepatocytes rather than in
Kupffer cells, which finding is more frequently observed
in Japanese patients who have mild clinical phenotype
comparing with those in US”.

The reactive oxygen species (ROS) produced play
an important role in the development of ALD"". The
expression of 4-hydroxy-2-nonenal (HNE)-protein
adducts, which is a lipid peroxidative product is increased
in oxidized hepatocytes[“]. Chronic alcohol ingestion in
experimental animals is associated with oxidative stress as
reflected by increased hepatic levels of lipid peroxidation
products such as malondialdehyde and HNE, both of
which have been implicated in hepatic fibrogenesis in
the intragastric ethanol infusion model"?. Furthermore,
lipid peroxidation products induce gene expression of
procollagen a-1 (I) and increase collagen production
by several folds in cultured hepatic stellate cell™. In
human ALD, there is a positive correlation between iron
deposition and histological intensity of HNE-protein
adduct". As shown in Figure 1, the distribution of
HNE-protein adducts and iron granules appeared to be
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Figure 1 Iron staining and immunohistochemical staining of 4-hydroxy-2-nonenal-
modified protein (HNE-protein) adducts in human alcoholic liver disease. The
localization of HNE-protein adducts and iron in hepatocytes appeared to be
identical (from ref. 14 with some modifications).

identical, suggesting that iron may be associated with
the production of HNE-protein adduct. As hepatic iron
is visualized by Perls’ reaction as an insoluble protein-
bound iron such as hemosiderin, this form of iron may
be inactive for the production of ROS. But, the free
iron responsible for Fenton reaction should be present
close to the protein-bound iron, and may be involved in
the production of HNE-protein adducts. There are two
pathways to generate ROS through ethanol metabolism.
Oxidation of ethanol by alcohol dehydrogenase to form
acetaldehyde, which is subsequently oxidized to acetate and
ultimately carbon dioxide and water. During the oxidation
process of acetaldehyde involving aldehyde oxidase
and xanthine oxidase, superoxide (O2) is produced"”,
In addition, cytochrome P450 is involved in the
metabolism of ethanol, in which ROS are also generated
in microsomes"®. Among ROS, hydroxy radical (OH) is
most potent, which is produced via Fenton reaction in
the presence of free iron and the resulted OH can ecasily
cause cell damage by oxidizing lipid, proteins, and nucleic
acids. In an intragastric infusion mouse model of ALD,
supplementation of carbonyl iron advanced peri-venular
fibrosis to bridging fibrosis and cirrhosis'"". Oxidative
stress atising from hepatocytes and macrophage activates
hepatic stellate cells by increasing the production of
cytokines such as transforming growth factor-f (TGE),
directly or indirectly. The dietary iron supplementation was
associated with increased NF-kB activation”, and the up
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regulation of NF-kB responsive proinflammatory genes
such as IL-1B, TNFq, and MIP-1",

In advanced cases of ALD, iron is accumulated mote
prominently in Kupffer cells than in hepatocytes, mainly
due to repeated endotoxemia and hyper-cytokinemia of
TNFq and IL-1B"". These cytokines induced hepatic
uptake of transferrin iron 7 vitro® and in vivd™. In mild
cases of ALD, iron is preferentially stained in hepatocytes,
rather than in Kupffer cells, suggesting that hepatocyte is
the main site of carly iron storage in the liver. However, it
is not clear why iron is accumulated in liver parenchymal
cells of alcoholics in such conditions. Two possibilities
can be drawn: one is the increased uptake of iron in
hepatocytes, and another is the increased iron absorption
through hepcidin, which is a newly found antimicrobial
peptide, and is a negative regulator of iron absorption
and reticuloendothelial iron releases™. Hepatocytes have
several pathways for iron uptake. Iron in serum is usually
bound to transferrin and iron-bound transferrin is taken
up via transferrin receptor (TfR) with high affinity or via
other unknown mechanism with greater capacity, but low
affinity independent of high affinity receptor™. There
are two molecules of transferrin receptor: transferrin
receptor 1 (TfR1) and transferrin receptor 2 (TfR2). TfR1
has a high affinity to serum transferrin and considered
to be functional, while the function of TfR2 is not clear
yet, even though the TfR2 gene is responsible for genetic
hemochromatosis'®. In normal hepatocytes, TfR2 is
constitutively expressed. But, TfR1 is down-regulated,
suggesting that TfR1 does not contribute to the steady
state hepatic iron uptake. Recently, Wallace e# 2/ reported
that homozygous TfR2 knockout mice had no TfR2
associated with typical iron overload, and there was no
upregulation of hepcidin mRNA, suggesting that TfR2
is requited to iron regulated expression and is involved in
a pathway to HFE and hemojuvelin. In addition, DMT1
may be involved when serum iron concentration exceeds
transferrin iron binding capacity’”’. It is noteworthy
that TfR1 is regulated by cellular iron levels or oxidative
stresses post-transcriptionally and it is possible that ethanol
may augment TfR1 expression by producing oxidative
stresses. According to immunohistochemical investigation,
TfR1 expression was increased in hepatocytes in 80% of
hepatic tissues with ALD, but was not detected in any
normal hepatic tissues™. Tt is noteworthy that the mean
duration of abstinence of patients who demonstrated
positive TfR1 expression in hepatocytes was significantly
shorter than that of patients who demonstrated negative
TfR1 expression.

Ethanol exposure in the presence of iron to the
primary cultured-hepatocytes demonstrated an increase
of TfR expression, and this augmentation was suppressed
by the inhibitor of alcohol dehydrogenase, 4-methyo
pyrazole, but enhanced by a inhibitor of acetaldehyde
dehydrogenase, cyanamide, suggesting that ethanol
metabolite acetaldehyde itself is involved for the induction
of TfR1 by ethanol™. By functional uptake assay
using “’Fe-transferrin, the additional ethanol exposure
increased transferrin-iron uptake into hepatocytes, while
non-transferrin-bound iron (NTBI) uptake”™ was not
increased. It has been reported that TfR1 expression was

Table 2 Speculated effects of iron on HCV

1 Immunological modification (Immunological escape of HCV)
Decrease of Thl activity
Impaired function of macrophage and Kupffer cells
Decrease of innate immunity (Natural resistance macrophage protein 2)
2 Increase of liver toxicity by iron-mediated radical formation
Reactive oxygen production through fenton reaction
Induction of apoptosis
Acceleration of fibrinogenesis
DNA damage and carcinogenesis
3 Effect on cell signalling
Decrease of interferon responsiveness by NF«B activation
4 HCV proliferation
Activation of translation initiation factor 3 (eIF3)
Suppression of HCV RNA polymerase (NS5B) activity

up-regulated both transcriptionally”™ and posttranscriptio
nally®”. This regulation is induced either by iron deficiency
state or oxidative stress such as H202 and nitric oxide via
iron regulatory protein, IRP™!. In addition to the direct
cell toxicity, acetaldehyde produces free radicals”™ and free
radicals modify IRP activityps’%].

Body iron homeostasis is strictly regulated by a balance
between the processes such as dietary iron absorption in
enterocytes, iron transport by transferrin in circulation,
iron utilization and storage in bone marrow and liver.
The increase of intestinal iron absorption was one of the
mechanisms of the hepatic iron deposition in alcoholics™.
In patients with hereditary hemochromatosis, serum
pro-hepcidin is lower than that of normal controls,
suggesting that iron absorption is increased in spite of
high iron storagepsj. It is speculated that down-regulation
of hepcidin might be one of important factors for
pathogenesis of iron overload in ALD". Serum pro-
hepcidin concentration in ALD was significantly lower
than that in healthy subjects, and pro-hepcidin/ferritin
ratios in ALD were lower than healthy subjectsHOJ. In the
ethanol-loaded mouse model which has a mild steatotic
change, the hepcidin mRNA and protein expression
were significantly lower than that of control. In addition,
alcohol-loading might disrupt the sensing signal of
inflammatory cytokines, and then down-regulate hepcidin
expression, following the increased iron absorption from
small intestine. Recently, the mechanism of hepcidin
downregulation by alcohol has been elucidated: a decreased
hepcidin expression in mouse liver is accompanied with
an increase of DMT1 and ferroportinl, and a decrease of
hepcidin promoter activity and DNA-binding activity of
CCAAT/enhancer-binding, protein o (C/EBPq)™".

HEPATITIS C VIRUS INFECTION

Hepatitis C virus infection is one of the most common
disorders in liver diseases involving chronic hepatitis,
cirrhosis, and hepatocellular carcinoma (HCC). Table 2
summarizes the effect of iron on hepatitis C virus
infection. In the Third National Health and Nutrition
Examination Survey, HCV infection is significantly
associated with higher serum levels of ferritin and iron
in the US population®. The mean serum levels of
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ferritin and iron were significantly higher among subjects
with HCV infection than among subjects without liver
disease®. In addition, serum ferritin levels were directly
and significantly correlated with serum levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and y-glutamyl transpeptidase, whereas platelet counts were
inversely correlated with serum ferritin. It is also found
that lipid peroxidative products such as malondialdehyde
are increased in hepatic tissues with CH-C*, In 1994, an
initial report was published that phlebotomy was effective
in improving the serum ALT level in patients with CH-C™*”!
and a national prospective study confirmed the results™,
Since then, it was reported that hepatic iron accumulation
in CH-C predict a response to interferon (IFN) therapy™*”,
and phlebotomy before and during IFN therapy improved
virological and histological response to short-term
IFN therapy evaluated at the end-of-treatment™. This
observation is reasonable considering the finding that
oxidative stress impairs interferon alpha signal by blocking
JAK-STAT pathway™. The standard therapy for hepatitis
C is now a combined therapy of interferon-o and
ribavirin, in which patients with viral response to treatment
seemed to develop higher soluble transferrin receptor
levels®” with decline in serum iron and ferritin than non-
responders, revealing intracellular reduction of iron store
depending on the result of treatment including hemolytic
reaction by ribavirin®’. This is an interesting observation
that decrease of iron status may be an additional effect
of the combination therapy with interferon and ribavirin.
Moreover, HFE mutations are also associated with
increased sustained virologic responses by antiviral long-term
treatment, while it is well known that HFE mutations are
associated with increased iron loading™. However, some
reports suggest that iron depletion was unable to trigger
interferon response, so that there are conflicting data.
It should be further investigated whether hepatic iron
content modify the response to interferon®*"

From these observations, iron and related molecules
seem to be key factors in the hepatocytes to influence
the disease condition of CH-C, and also development of
cirrhosis and maybe hepatocellular carcinoma. Clinical
data on phlebotomy on CH-C generally indicates that
phlebotomy does not influence the viral load in vivo.
On the other hand, in vitro study on HCV replication
is controversial: iron promotes HCV translation by up-
regulating expression of the translation initiation factor
eIF3 by reporter assay"”, whereas iron suppresses HCV
replication by inactivating the RNA polymerase NS5B,

As previously described, hepatocytes have two iron
uptake systems, transferrin-mediated and nontransferrin-
bound iron-mediated pathway. Transferrin and TfR1
are molecules involved in the classical pathway of
cellular iron uptake, but are faintly expressed in normal
hepatocytes, and is down-regulated in iron-loaded hepatic
tissues with hemochromatosis. Concerning the post-
transcriptional regulation of TfR1, two mechanisms are
postulated through the activity change of IRP which is
already mentioned. In CH-C, TfR1 expression was up-
regulated and DMT1 expression was down-regulated
in the condition of hepatic excess iron accumulation,
suggesting that regulation of DMT1 expression is iron-
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dependent, but that of TfR1 expression is iron-independ-
ent in CH-CP". In patients with CH-C, serum values of
inflammatory cytokines such as IL-1f, 1L.-6, and TNFa
have been reported to be high in compatison with those
in normal controls. In addition, TfR1 was up-regulated by
IL-1B, 1L-6, and TNFq, in HepG2. Administration of 1.6
augments hepatic uptake of transferrin-bound iron (“’Fe),
and this is mainly mediated through hepatocytes, but not
through Kupffer cells. These results suggest that the up-
regulation of TfR1 expression in CH-C might be caused
by increase of inflammatory cytokines that proceeded
from HCV infection, although there is a possibility that
the components of HCV themselves may induce TfR1
expression directly or indirectly.

Like wise, the up-regulated TfR1 might act as a key
molecule for hepatic excess iron accumulation in CH-C;
however, there are several candidate molecules which
cause this condition. For instance, each mutant of HFE,
T{R2, hepcidin, hemojuvelin and ferroportinl (also known
as Iregl or MTP1) with substitution of amino acid causes
the similar phenotype of hemochromatosis. That is, these
facts indicate that at least 5 molecules are involved in
the familiar hemochromatosis”™. In hepatocytes, TfR2
predominantly expresses in the normal condition™ and
the disruption of TfR2 gene caused the hepatic iron
overload, a phenotype of hemochromatosis, suggesting
that TfR2 should also have important role in hepatic iron
metabolism®”. This receptor might act as a sensor of iron
status because hepatic TfR2 protein level was increased
in iron loaded rats and was decreased in iron deficient
rats. Recently, Takeo ¢z a/*" reported that in CH-C TfR2
protein expression is increased parallel with ferroportinl,
although the meaning of this TfR2 elevation is still to be
elucidated'”.

In addition, there was a significant correlation of
hepcidin mRNA expression in the liver with hepatic iron
concentration and serum ferritin, but did not correlate
with ALT, AST, HAI, or viral load. In inflammatory
conditions, hepcidin is regulated transcriptionally by
11.-6" and TL-18"" independent of liver iron content. It is
noteworthy that, in contrast to other inflammatory states,
hepcidin mRNA expression in the liver was independent
of markers of inflammation in hepatitis C, suggesting that
iron stores in patients with hepatitis C regulate hepcidin
expression, and that iron loading in chronic hepatitis C is
not due to inappropriate hepcidin expression®. However,
there is still a controversial result concerning the hepcidin
metabolism in chronic hepatitis C that serum pro-hepcidin
is down-regulated”. The role of hepcidin in chronic
hepatits C seems to need further consideration.

The role of iron on the hepatocellular carcinoma
(HCC) development in patients with chronic hepatitis C
is another major concern. In primary hemochromatosis,
iron could be involved in the development of HCC
in associated with cirrhosis, suggesting a strong link
between heavy iron overload and HCC development.
In cases of chronic hepatitis C, it is also known that
HCC are developed 20 to 30 years after the infection of
hepatitis C virus through the progression of the disease
from chronic hepatitis and cirrhosis. In Long-Evans
Cinnamon (LEC) rat, an animal model of human Wilson
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disease which spontaneously developed hepatitis and liver
fibrosis, HCC is frequently developed after the rats have
recovered from initial fulminant hepatitis and subsequent
liver fibrosis. This is considered to relate to progressive
iron accumulation in the animal®”, and iron depletion
prevents their development of hepatic cancer'™. Even
though the iron deposition in chronic hepatitis C is mild
compared with that in hemochromatosis, iron may be an
independent factor on the risk of HCC. It is reported that
liver fibrosis is a favorable environment of proliferation
of cancer cells by releasing transforming growth factor
B, and there is a strong link between liver fibrosis and
liver iron deposition. In clinical trials of phlebotomy, the
hepatic content of 8-OH deoxyguanosine is decreased
and fibrotic score is improved. An important issue in
hepatocaricinogenesis in chronic hepatitis C is the closely
related sustained production of ROS during inflammation
and fibrosis. Moriya ez al”” reported that HCC developed
in HCV core transgenic mice after the age of 16 mo,
and showed high hepatic lipid peroxidation levels in old
(more than 16 mo) core transgenic mice, than in control.
However, the association of HCV transgenic mice, and
HCC development disappeared with advanced passaging
of animals, suggesting that HCC development in HCV
transgenic mice cannot be simply explained by HCV
infection, but requires additional cofactors. A recent
study by Furutani ez a/"" clearly showed that hepatic iron
overload induces HCC in transgenic mice expressing
HCV polyprotein. Transgenic animal carrying full length
polyprotein-coding region (cote to NS5B, nts 342-9378)
by using pAlb promotet/enhancer was fed with excess
iron diet. After 6 mo feeding, the transgenic mice showed
marked steatosis and increased 8 hydroxy-2’deoxyguanosine
content in association with the hepatic iron accumulation.
Twelve months after feeding, 45% of transgenic mice
developed hepatic tumors including HCC. It is noteworthy
that the steatosis does not accompany with inflammation
but a remarkable ultrastructural alteration of mitochondria
associated with decreased degradation activity of fatty
acids.

STEATOSIS AND INSULIN RESISTANCE

Nonalcoholic steatohepatitis (NASH) is a clinical entity
characterized by the development of histopathological
changes in the liver that are nearly identical to those
induced by excessive alcohol intake, but in the absence of
alcohol abuse; the presence of macrovesicular steatosis
and mixes inflammatory infiltrate associate with varying
amounts of Mallory’s hyaline, glycogenated nuclei,
and focal hepatocyte ballooning degeneration. Clinical
features of NASH include obesity, hyperlipidemia,
diabetes mellitus, and hypertension. In US population,
approximately 25% is obese, and at least 20% of the obese
individuals have hepatic steatosis. Thus, non-alcoholic
liver disease (NAFLD) is the most common cause of liver
dysfunction, and it is believed that NASH becomes a cause
of cryptogenic cirrhosis and hepatocellular carcinoma
(HCC). In patients with homozygote of HFE-related
hemochromatosis, obesity and steatosis affect liver disease
progression, and will be cofactors for iron overload. There

is one study of Australia that showed that the prevalence
of abnormal genotype of HFE in NASH is 31%
compared to a normal prevalence of 13% in the general
population, sugget that excess iron might be important. A
study on North American subjects showed similar results
that the prevalence of the HFE gene mutation associated
with hereditary hemochromatosis are increasing in patients
with NASH"". In the study dealing Japanese NASH
patients, who had no HFE gene mutations, a significant
staining of liver iron and increased level of thioredoxin,
a marker of oxidative stress in addition to the increase of
serum ferritin, was observed.

As diabetes and obesity were background conditions
of NAFLD, and is thought to be a initial triggering factor,
insulin resistance is now considered the fundamental
operative mechanism. Insulin resistance is probably the
"first step" in NASH, and a close correlation between
insulin resistance and iron is speculated. Even though
it is not still clear whether secondary iron accumulation
increases insulin resistance, or vice versa, oxidative stress
may be the elusive "second" hit of possibly multiple
steps in the progression of steatosis to fibrosing
steatohepatitis' . This may be due to the activation of
stellate cells””.

Because hepatic iron promotes oxidative stress, it
seems that iron is a contributory cofactor in NASH. This
proposal is strengthened by an association with hepatic
fibrosis with NASH™ and was confirmed by measuring
serum markers of oxidative stress' ", Excess hepatic
iron also occur in insulin resistance-associated iron
overload (IRHIO), characterized by hyperferritinemia
with normal to mild increases in transferrin saturation.
There is an interesting clinical study that venesections
and restricted diet are effective in patients with IRHIO™,
As in IRHIO, restriction of dietary calories, fat and iron
improved NAFLD in addition the decrease of levels of
serum aminotransferases and ferritin”. Tt seems that
the simultaneous disorder of iron and glucose and/or
lipid metabolism, in most cases associated with insulin
resistance, is responsible for persistent hyperferritinemia
and identifies patients at risk for NASH™. However,
it is still unclear why iron is deposited in IRHIO and
NAFLD. There is an interesting report by Bekri e7 a/*” that
there is an increase of hepcidin in adipose tissue of the
severely obese but of liver, suggesting that severe obesity
itself cause hypoferremia due to the overproduction of
hepcidin in the adipocytes. This finding may explain the
hypoferremia in severe obese patients, but does not show
the mechanism of hepatic iron deposition in IRHIO
and NASH. Further studies are needed to clarify this
issue, including an increase of transferrin iron influx into
hepatocytes in NAFLD.

In patients with NASH, increased transferrin saturation
correlated positively with the severity of fibrosis in
univariate analysis, although it became insignificant when
age, obesity, diabetes, and AST/ALT ratio were controlled.
A recent study showed improvement in insulin sensitivity
with the use of venesection in 11 patients with NASH.
Biweekly phlebotomy until serum ferritin concentration
became lower than or equal to 30 ng/mL reduced mean
serum ALT activity without a significant change of
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Figure 2 Postulated schema of liver damage occurred by alcohol, HCV infection,
obesity and insulin resistant. A common pathway through steatosis/oxidative stress
may be responsible for the development of liver fibrosis and carcinogenesis by
iron.

body weight, suggesting that iron reduction therapy by
phlebotomy will be one of the promising therapies for
NASH™, although this approach cannot be implemented
without extensive review.

The natural history of NASH is still unclear, but
some patients follow advanced liver fibrosis progressing
to cirrhosis and sometimes HCC™. It is also known that
diabetes increases the risk of hepatocellular carcinoma
in US™. Further studies are needed to clarify this issue,
especially the relation between hepatocarcinogenesis from
mild iron accumulation in NASH.

As shown in Figure 2, a common pathway through
steatosis/oxidative stress may be present for the develop-
ment of liver fibrosis and carcinogenesis by iron.
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