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INTRODUCTION
Iron is essential for an array of  key biological processes 
including erythrocyte production, DNA synthesis and 
cellular respiration[1-3]. The normal iron content of  the 
body in an adult male is 35 to 45 mg of  iron per kilogram 
of  body weight[2]. The majority of  the iron is bound to 
hemoglobin in erythrocytes. The rest is incorporated 
into myoglobin in the muscle, the tissue enzymes and 
plasma transferrin[2]. Parenchymal cells of  the liver and 
reticuloendothelial macrophages serve as depots for excess 
iron storage[2,4]. However, due to its potential to take part 
in the Fenton reaction as a transition metal, iron can also 
be toxic to the cell[5,6]. Hepatic iron overload is common 
in many liver diseases, where iron is a risk factor in disease 
progression[7-13].

IRON AND ALCOHOL
Alcoholic liver disease (ALD) patients frequently display 
evidence of  iron overload[14-18]. Recently, even mild to 
moderate alcohol consumption has been shown to 
elevate the indices of  iron stores[19]. Suzuki et al[20] have 
demonstrated elevated expression of  transferrin receptor-1 
in ALD patients by immunohistochemical analysis of  
liver biopsy samples. Moreover, Kupffer cells isolated 
from experimental animal models of  ALD also display 
increased iron content[21,22]. It is a well established fact, 
that both iron and alcohol individually cause oxidative 
stress and lipid peroxidation[6,23-26]. Hence, alcohol induced 
iron overload enhances the production of  free radicals 
and proinflammatory cytokines, thereby leading to liver 
injury[11,12,27]. Elegant studies with experimental animal 
models of  ALD have demonstrated, that increased iron 
content in Kupffer cells leads to the activation of  the 
transcription factor, nuclear factor-kappa (NF-κB), and 
increased expression of  the proinflammatory cytokine, 
tumor necrosis factor-alpha (TNF-α)[21,22,28]. These effects 
were abolished by iron chelation[29], thereby indicating a 
role for iron-mediated cell signaling in the pathogenesis of  
experimental alcoholic liver disease.

The iron overload disorder, genetic hemochromatosis 
(GH), is one of  the most prevalent genetic diseases in 
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Abstract
Patients with alcoholic liver disease frequently exhibit 
increased body iron stores, as reflected by elevated 
serum iron indices (transferrin saturation, ferritin) and 
hepatic iron concentration. Even mild to moderate 
alcohol consumption has been shown to increase the 
prevalence of iron overload. Moreover, increased hepatic 
iron content is associated with greater mortality from 
alcoholic cirrhosis, suggesting a pathogenic role for iron 
in alcoholic liver disease. Alcohol increases the severity 
of disease in patients with genetic hemochromatosis, 
an iron overload disorder common in the Caucasian 
population. Both iron and alcohol individually cause 
oxidative stress and lipid peroxidation, which culminates 
in liver injury. Despite these observations, the underlying 
mechanisms of iron accumulation and the source of 
the excess iron observed in alcoholic liver disease 
remain unclear. Over the last decade, several novel 
iron-regulatory proteins have been identified and 
these have greatly enhanced our understanding of 
iron metabolism. For example, hepcidin, a circulatory 
antimicrobial peptide synthesized by the hepatocytes 
of the liver is now known to play a central role in the 
regulation of iron homeostasis. This review attempts to 
describe the interaction of alcohol and iron-regulatory 
molecules. Understanding these molecular mechanisms 
is of considerable clinical importance because both 
alcoholic liver disease and genetic hemochromatosis are 
common diseases, in which alcohol and iron appear to 
act synergistically to cause liver injury.

© 2007 WJG. All rights reserved.
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individuals of  Caucasian origin[30-32]. The majority of  
GH patients are homozygous for a C282Y mutation 
in their Hfe gene[33,34]. Excessive alcohol consumption 
has been reported to exacerbate liver injury in GH 
patients homozygous for the C282Y mutation of  
Hfe gene[35]. However, despite all these findings, the 
underlying mechanisms of  iron accumulation observed 
in alcoholic liver disease, and the source of  the excess 
iron remain elusive. In vivo whole-body retention studies 
have demonstrated a two-fold increase in intestinal iron 
absorption in chronic alcoholics[36]. Changes in intestinal 
permeability are thought to be the underlying mechanism 
of  enhanced intestinal iron absorption[36]. Of  note, 
hepatocytes are the primary site of  iron storage in the 
liver, and iron may also leak out of  injured hepatocytes. 
However, it is also feasible that the iron stores in alcoholic 
patients are increased through recognized regulatory 
mechanism(s). Significant advances have been made with 
the discovery of  novel iron-regulatory molecules in recent 
years, which have improved our understanding of  iron 
metabolism. Studying the regulation of  these molecules 
by alcohol is important for understanding the underlying 
mechanisms of  iron overload in alcoholic liver disease.

IRON-REGULATORY MOLECULES
Since there is no physiological pathway of  excretion for 
excess iron in the body, the uptake, transport and storage 
of  iron must be tightly regulated[37-41]. A series of  novel 
iron-regulatory molecules including iron transporters and 
soluble mediators have recently been identified. Divalent 
metal transporter 1 (DMT1, also known as Nramp2) 
is a multi-transmembrane protein[42], responsible for 
importing dietary non-heme iron through the apical site 
of  absorptive enterocytes in the duodenum[42]. Studies 
employing mice with the targeted deletion of  DMT1 in the 
duodenum have confirmed the role of  DMT1 in intestinal 
iron absorption[43]. Conversely, ferroportin (also known as 
MTP1, Ireg1) exports iron into the bloodstream[44-46]. As a 
transition metal, iron undergoes reduction and oxidation 
reactions during these cellular uptake and export processes. 
Understanding the mechanisms involved in these reactions 
and identifying the candidate enzymes will require further 
investigation[47-49]. Iron circulates in the plasma by binding 

to the glycoprotein, transferrin (Tf). Iron-laden Tf  is taken 
up into the cell by forming complexes with transferrin 
receptor-1, TrfR1[2,50]. Recently, another homologous 
receptor, TrfR2 has been identified[51]. Unlike TrfR1, which 
is ubiquitously expressed, TrfR2 is mainly expressed in the 
liver[51]. 

The regulation of  iron metabolism involves multiple 
organs including the duodenum, liver and bone marrow. 
Hence, the presence of  soluble mediators has long 
been suspected. The discovery of  hepcidin peptide has 
not only confirmed these notions but also highlighted 
the importance of  the liver in the regulation of  iron 
homeostasis. Hepcidin is an antimicrobial peptide, which 
was first isolated from human urine and blood[52,53]. It is 
synthesized in the hepatocytes of  the liver as an 84 amino 
acid precursor protein, which is subsequently cleaved 
into the 25 amino-acid disulphide-bridged active peptide 
form[54,55]. Mice express two copies of  the hepcidin gene, 
Hepc 1 and Hepc 2, resulting from a tandem duplication 
of  the hepcidin gene[54,56,57]. Transgenic mice studies 
have confirmed a role for hepcidin in the regulation of  
iron metabolism. Hepcidin knockout mice develop iron 
overload in the liver, pancreas and heart[58], whereas mice 
overexpressing hepcidin display severe iron deficiency and 
anemia[59]. Hepcidin synthesis in the liver is sensitive to body 
iron levels; increasing with iron overload and decreasing 
in the case of  iron deficiency[54,60,61]. Interestingly, 
hepcidin is also regulated by inflammatory signals, and 
the inflammatory cytokines, IL-1 and IL-6[62-65]. However, 
the role of  Kupffer cells in the regulation of  hepcidin 
expression by inflammation is controversial[66,67].

Hepcidin plays a central role in the regulation of  iron 
metabolism by inhibiting intestinal iron transport and the 
release of  iron from macrophages (Figure 1)[60,61]. Hepcidin 
achieves this by binding to the iron exporter ferroportin 
and inducing its internalization and degradation[68,69]. 
Studies with both hemochromatosis patients and 
transgenic mouse models have identified candidate 
proteins, which modulate hepcidin synthesis in the liver 
(Figure 2A)[70-74]. Hemochromatosis patients, homozygous 
for the expression of  TrfR2 mutations display increased 
transferrin saturation but reduced urinary hepcidin 
levels[70]. Despite the iron overload phenotype, expression 
of  hepcidin in the livers of  TrfR2 knockout mice is 
similar to that of  control littermates[72,75]. Similarly, both 
genetic hemochromatosis patients with Hfe mutations 
and Hfe transgenic mice display significantly reduced 
hepcidin expression in the liver[73,74]. Taken together, these 
studies demonstrate a role for both TrfR2 and Hfe in the 
regulation of  hepcidin expression in the liver. However, 
the underlying mechanisms are unknown. Recently, the 
juvenile hemochromatosis gene hemojuvelin, has been 
shown to regulate hepcidin expression via the bone 
morphogenetic protein (BMP) signaling pathway in the 
liver (Figure 2A)[76,77].

The promoter of  the hepcidin gene harbors consensus 
binding sites for several transcription factors including 
C/EBP-α, HNF4-α, Stat3 and Smad4[78-81]. CCAAT/
enhancer-binding protein alpha (C/EBP-α) plays a 
role in the iron-mediated regulation of  hepcidin gene 
transcription[78].

Figure 1  Regulation of iron metabolism by hepcidin. Hepcidin peptide, which 
is synthesized by the liver and released into the circulation, regulates iron 
homeostasis by inhibiting duodenal iron transport and the release of iron from 
macrophages.
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ALCOHOL AND HEPCIDIN
Alcohol consumption increases the transfer of  both iron 
and endotoxin from the intestine into the circulation[36,82]. 
Hepcidin synthesis in the liver is regulated by iron and 
inflammation, with hepcidin playing a central role in iron 
homeostasis[54,58,59,62,63,69,83]. Hence, a role for alcohol is 
implicated in the regulation of  hepcidin expression in 
the liver. Indeed, alcohol was found to down-regulate 
hepcidin expression both in vitro with alcohol metabolizing 
hepatoma cells, and in vivo with mice subjected to short-
term alcohol exposure[84]. The effect of  alcohol on 
hepcidin expression in hepatoma cells was abolished 
by 4-methylpyrazole, a specific inhibitor of  the alcohol 
metabolizing enzymes[84]. Furthermore, alcohol did not 
alter the expression of  transferrin receptor-1 and the iron 
storage protein, ferritin, or the activation of  iron regulatory 
RNA-binding proteins, IRP1 and IRP2[84]. These findings 
demonstrate that alcohol does not regulate hepcidin 
expression by altering the iron status of  the cell but rather 
acts on hepcidin directly. Short-term alcohol exposure 
down-regulated hepcidin 1, but not hepcidin 2 mRNA 
expression in mice[84]. Similarly, iron has also been shown 
to up-regulate hepcidin 1 gene expression in mice[57]. 
Furthermore, rats with chronic alcohol exposure also 
display reduced hepcidin expression[85,86]. Collectively, these 
studies demonstrate a role for alcohol in the regulation of  
hepcidin expression in the liver.

Alcohol-mediated down-regulation of  hepcidin 
expression in the liver leads to elevated expression of  the 
iron transporter proteins, DMT1 and ferroportin in the 
duodenum[84]. This effect is abolished by injecting mice 
with the hepcidin peptide confirming a role for hepcidin in 
the alcohol-mediated increase in duodenal iron transporter 
protein expression[84]. The increase in intestinal iron 
transporter expression leads to increased intestinal iron 
absorption, and hence to increased body iron indices. A 
recent study has also reported increased serum iron in 
mice exposed to alcohol[87]. We have observed an increased 
expression of  the iron storage protein, ferritin in the livers 
of  rats with chronic alcohol exposure[86]. Taken together, 
these findings suggest that iron overload observed 
in patients with alcoholic liver disease is mediated by 
regulatory mechanisms, and that the alcohol-mediated 
down-regulation of  hepcidin synthesis in the liver may be 
one of  the underlying mechanisms of  iron overload.

Hepcidin synthesis in the liver responds to body iron 
levels, and is up-regulated by iron overload in vivo[54,61,83]. 
This raises the question of  whether the alcohol-induced 
decrease in liver hepcidin expression would be sustained 
while the body iron levels progressively increase through 
continued alcohol consumption. It is feasible that the 
decrease in liver hepcidin expression may only be an 
initial response to alcohol, which may eventually be 
negated by elevated iron levels. On the other hand, it 
is also possible, that hepcidin expression in the liver 
is continuously suppressed by alcohol despite the iron 
overload state, which will eventually lead to liver injury. 
Thus, we investigated the combined effect of  iron and 
alcohol in the regulation of  hepcidin expression. Despite 
iron overload, alcohol down-regulated the expression of  
hepcidin in the liver[86] demonstrating that alcohol renders 
liver hepcidin synthesis insensitive to body iron levels. A 
further decrease in hepcidin expression was also observed 
in Hfe knockout mice exposed to alcohol[86]. It is worth 
noting that hepcidin protects the body from iron overload 
by inhibiting duodenal iron uptake and iron release from 
macrophages (Figure 1)[60,61,69]. These findings suggest that 
the mechanisms which protect the body from the harmful 
effects of  iron overload (e.g. increased hepcidin expression 
and decreased iron uptake and storage) are compromised 
by alcohol[86].

Both iron and alcohol induce oxidative stress and 
oxidative stress plays an important role in alcoholic liver 
disease[23-25,88-90]. Treatment with antioxidants abolished 
the effect of  alcohol on hepcidin expression in the liver 
and on duodenal iron transporter expression in the 
duodenum[84]. These findings strongly suggest a role for 
acute alcohol-induced oxidative stress in the regulation 
of  hepcidin expression. Alcohol down-regulated both 
hepcidin promoter activity and the DNA-binding activity 
of  the transcription factor, C/EBP alpha. This effect 
was abolished by treating mice with antioxidants[84]. 
Furthermore, alcohol also inhibited the iron-mediated up-
regulation of  C/EBP activity in the liver[86]. These findings 
demonstrate that redox changes and oxidative stress 
associated with alcohol metabolism regulate hepcidin gene 
transcription by altering C/EBP alpha activity. Oxidative 
stress is therefore one of  the mechanisms by which 
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moderate alcohol consumption regulates liver hepcidin 
expression and hence iron homeostasis, without causing 
steatosis or apparent liver injury (Figure 2B)[84].

Hepcidin is expressed in hepatocytes of  the liver[54]. 
However, we observed a more prominent down-regulation 
of  hepcidin expression in vivo compared to in vitro in 
hepatoma cells suggesting a role for non-parenchymal cells 
of  the liver in the regulation of  hepcidin expression[84]. 
Kupffer cells play an important role in the progression of  
alcoholic liver disease[13,91]. Since alcohol down-regulates, 
and inflammation up-regulates hepcidin expression[62,63,84,85], 
this raises the question of  whether Kupffer cells and 
inflammation play a role in alcohol-mediated regulation 
of  hepcidin expression. Recently, we have shown a 
role for oxidative stress in the regulation of  hepcidin 
transcription by alcohol[84]. Alcohol metabolism induces 
oxidative stress in the hepatocytes and Kupffer cells of  the 
liver[13,90,91]. Oxidative stress leads to the release of  the pro-
inflammatory cytokine, TNF-α from activated Kupffer 
cells[12,13,92,93]. TNF-α has been reported to down-regulate 
hepcidin expression in vitro[62]. Thus, alcohol-mediated 
regulation of  hepcidin expression may involve both the 
hepatocytes and Kupffer cells of  the liver (Figure 2B). The 
role of  parenchymal and non-parenchymal cells of  the 
liver, and the proinflammatory cytokines in the regulation 
of  hepcidin expression by alcohol requires further 
investigation.

CONCLUSION
A role has been established for alcohol in the regulation of  
hepcidin expression in the liver. Alcohol-mediated oxidative 
stress inhibits C/EBP-α DNA-binding activity and down-
regulates hepcidin transcription in the liver. Increased down-
regulation of  hepcidin expression by alcohol may play a role 
in the disease severity of  genetic hemochromatosis patients 
in combination with alcohol intake. Down-regulation of  
hepcidin expression in the liver leads to increased intestinal 
iron transporter expression. Moreover, alcohol also 
abrogates the protective effect of  hepcidin in iron overload 
by rendering the synthesis of  hepcidin in the liver insensitive 
to body iron levels. Deregulation of  hepcidin synthesis 
in the liver may be one of  the underlying mechanisms 
by which alcohol consumption leads to iron overload. 
Ultimately, iron acts as a secondary risk factor in alcoholic 
liver disease. A better understanding of  the molecular 
mechanisms underlying the regulation of  iron homeostasis 
by alcohol may help us to develop therapeutic strategies 
or diagnostic tools to detect alcohol-induced liver injury at 
earlier stages before it develops into a chronic disease with 
irreversible liver damage.
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