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Abstract
RNA interference (RNAi) is an evolutionally conserved 
gene silencing mechanism present in a variety of 
eukaryotic species. RNAi uses short double-stranded RNA 
(dsRNA) to trigger degradation or translation repression 
of homologous RNA targets in a sequence-specific 
manner. This system can be induced effectively in vitro  
and in vivo  by direct application of small interfering 
RNAs (siRNAs), or by expression of short hairpin RNA 
(shRNA) with non-viral and viral vectors. To date, RNAi 
has been extensively used as a novel and effective tool 
for functional genomic studies, and has displayed great 
potential in treating human diseases, including human 
genetic and acquired disorders such as cancer and 
viral infections. In the present review, we focus on the 
recent development in the use of RNAi in the prevention 
and treatment of viral infections. The mechanisms, 
strategies, hurdles and prospects of employing RNAi in 
the pharmaceutical industry are also discussed.
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INTRODUCTION
RNA interference (RNAi), a highly conserved gene 
silencing mechanism plays an important role in the 

regulation of  gene expression. This system was examined 
in a broad variety of  species including plants, fungi, yeasts, 
nematodes, flies and mammals. In fact, RNAi serves as 
a safeguard for the preservation of  genomic integrity. 
It protects the host from viral infections and invasion 
by mobile genetic elements by degrading the exogenous 
genomic material (e.g., viral RNAs).

RNAi is triggered by small double-stranded RNA 
(dsRNA) and func t ions a t a l l l eve l s , i nc lud ing 
transcription[1], post-transcription[2] and translation[3]. 
The first reports on RNA-induced post-transcriptional 
gene silencing (PTGS) phenomena were published in the 
early 90s, when Napoli[4] and Van der Krol[5] described 
the co-suppression of  both viral transgenes and their 
homologous endogenous genes in transgenic plants. 
Similar inactivation of  gene expression called “Quelling” 
was observed in Neurospora crassa by transformation 
with homologous sequences[6]. In 1995, sense RNA was 
demonstrated to be as effective as antisense RNA in 
disrupting the expression of  par-1 in Caenorhabditis elegans[7]. 
The mechanism of  action remained enigmatic until 1998, 
when Fire and Mello discovered that dsRNA, instead of  
the single-stranded sense or antisense RNA, mediated gene 
silencing by degrading endogenous mRNAs in a sequence-
specific manner[8]. They also challenged a previous report 
published in 1995 claiming it to be an artificial effect of  
dsRNA contamination. Further studies have revealed 
that RNAi can occur at both the transcription and 
post-transcription levels. Transcriptional gene silencing 
involves histone H3 methylation and the formation of  
heterochromatin[9-11]. Post-transcriptional gene silencing 
includes small interfering RNA (siRNA) that mediates 
sequence-specific target RNA degradation, and micro 
RNA (miRNA) which promotes blockage of  protein 
translation at the 3'-untranslated region (3'UTR)[12].

In recent years, RNAi has become a powerful tool to 
probe gene functions and to rationalize drug design. It has 
been employed as a prophylactic and therapeutic agent for 
combating a wide range of  disorders, including infectious 
diseases, tumors and metabolic disorders. Several lethal 
viruses, including human immunodeficiency virus (HIV), 
the hepatitis C and B viruses (HCV & HBV), coronavirus, 
influenza A virus (IAV), human papillomavirus (HPV), 
have been shown to be inhibited or eliminated by RNAi. 
These findings have emphasized the potential of  RNAi in 
clinical applications. In the present review, we discuss the 
mechanism of  RNAi, and its role in the prevention and 
the treatment of  viral infections.

Mechanisms of RNAi
Biochemical and genetic studies have revealed the detailed 
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mechanism by which dsRNA-mediated gene silencing 
takes place. In general, the mechanism includes two major 
steps: the initiator step and the effector step (Figure 1).

In the initiator step, long dsRNAs, which are produced 
by endogenous genes, invading viruses, transposons or 
experimental transgenes, are initially recognized by a 
dsRNA-binding protein, RDE-4/R2D2[13,14]. They are then 
submitted to and cleaved by the RNase Ⅲ-like nuclease 
Dicer[15], which generates 21-23 nucleotide duplex RNAs 
with overhanging 3’ ends[16], called small interfering RNAs 
(siRNAs). The presence of  highly conserved Dicer in 
yeast[11], plants[17,18], C. elegans[19], Drosophila[15], mice[20] and 
humans[21,22], suggests that the RNAi pathways share 
similar basic mechanisms in these organisms.

In the effector step, siRNAs are incorporated into a 
multicomponent nuclease complex, the RNA-induced 
silencing complex (RISC)[23]. The antisense strand of  the 
duplex directs RISC to recognize and to cleave cognated 
target RNAs, which undergoes specific base pairing and 
endonucleolytic cleavage. This leads to the degradation of  
the unprotected and single-stranded target RNA. To date, 

several components of  the RISC have been identified, 
including some conserved argonaute proteins that share 
the PAZ domain with Dicer family proteins[24].

The Dicer also cleaves the 60-70nt long precursor 
miRNA (pre-miRNAs) into miRNAs, which are of  similar 
size as siRNAs. This pathway is referred to as miRNA-
dependent gene silencing. The pre-miRNAs, whose 
structures are imperfectly complementary to each strand, 
are generated from endogenous stem loop precursors or 
hairpins, named primary-miRNA (pri-miRNA). The pri-
miRNAs are first cleaved by Drosha RNase Ⅲ in the 
nucleus[25]. The resulting pre-miRNAs are then exported 
into the cytoplasm for further processing by Dicer. The 
complex of  the activated RISC and miRNA binds the 
3’UTR of  specific mRNAs, which triggers cleavage by 
perfect base-pairing, or translational repression by partial 
base-pairing recognition[26-29].

Strategies for RNA interference
In order to study the functional genomics and biology of  
RNA interference, much effort has gone into the study of  
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Figure 1  The RNA interference pathways.
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artificial RNAi-inducing gene silencing. Strategies for delivery 
of  RNAi reagents into mammalian cells can be divided into 
two types, the transient RNAi and the stable/inducible RNAi.

T h e m e t h o d s c o m m o n l y u s e d i n p r o d u c i n g 
siRNA extraneously include chemical synthesis, in vitro 
transcription, and recombinant human Dicer/E. coli 
RNase Ⅲ digestion of  long dsRNAs. These siRNAs can 
be transiently transfected into target cells. Alternatively, the 
short hairpin RNAs (shRNAs) are expressed endogenously 
from plasmids and viral vectors. The shRNA expression 
cassettes can be stably integrated into the genome of  target 
cells, transcribed intranuclearly and processed into siRNAs 
by Dicer in the cytosol. In general, RNA Pol Ⅲ promoters 
(i.e., U6, H1 and tRNA promoters) are commonly used 
to drive shRNA expression in the RNAi studies. The viral 
vectors including retro-[30-33], lenti-[34-36], adeno- and adeno-
associated viral vectors[37-39] have been demonstrated to 
feature high-efficiency gene delivery and can overcome 
the obstacles of  cell-type-dependent transfection. The 
development of  an inducible RNAi system has certainly 
enhanced our understanding of  candidate genes’ functions, 
as it provides an invaluable genetic switcher that allows 
the inducible and reversible control of  specific gene’s 
expression in vitro[40-42] and in vivo[43-45].

RNAi applications to combat viral infection
Viral infection is a serious public health, social and 
economic problem. More effective approaches are urgently 
needed to prevent viral propagation. Several studies have 
shown that RNAi technology has potential advantages 
over traditional measures such as the use of  anti-viral 
drugs and vaccines, because of  its ease of  use, rapidity 
of  action, high efficiency and specificity of  activity when 
applied to the different stages of  virus-host interactions[46]. 
In this section we will focus on the prospective use of  
RNAi in several common human pathogens such as HIV, 
HCV, HBV, SARS-coronavirus and influenza virus.

Human immunodeficiency virus
Human immunodeficiency virus type 1 (HIV-1) is the first 
primate virus shown to be inhibited by RNAi. HIV is a 
retrovirus that has been categorized into the subgroup 
of  lentiviruses. Upon infection, the positive strand of  
the HIV’s RNA genome is reversely transcripted into a 
linear dsDNA soon after the virus enters the host cells by 
receptor recognition and cell adhesion. The linear dsDNA 
becomes circularized, is then transported into the nucleus 
and integrated into the host chromosome as a provirus. 
By utilizing the host enzymes, HIV provirus converts 
viral genes into mRNAs, which are used as blueprints for 
the subsequent expression of  viral structure proteins and 
enzymes. It has been suggested that the genomic RNA or 
the newly transcribed viral mRNAs are good targets for 
siRNAs intervention.

It is unclear whether RNAi can target RNA genome 
of  HIV-1 infectious particles. Jacque reported siRNA-
mediated inhibition of  the early and late steps of  HIV-1 
replication, by targeting various regions of  the HIV-1 
genome and by preventing the formation of  viral 
complementary-DNA intermediates[47]. Other workers 

have suggested that the incoming HIV-1 RNA genome 
may not be accessible to siRNAs[48,49]. To date, several viral 
target sequences have been identified. These include the 
structure proteins, Gag[48,50-52] and Env[52,53]; the reverse 
transcriptase Pol[48]; the regulatory proteins, Tat[54,55] 
and Rev[54,56], and the two accessory proteins Nef[47,57,58] 
and Vif[47] (Table 1). The long terminal repeats that the 
integrase employs to insert HIV’s DNA genome into host 
DNA, have also been targeted[47,51].

Several studies have demonstrated that HIV may be 
able to escape RNAi target by mutations[58-60]. To overcome 
this problem, lentiviral vectors incorporated with different 
shRNA-expressing-cassettes, which can simultaneously 
target multiple sequences including conserved sequences 
of  the HIV genome, have been constructed[61,62]. Another 
proposed strategy using RNAi application is the targeting 
of  host genes. Some host genes are essential for viral 
replication but have a much slower mutation rate than 
the viral genes. These genes have been targeted by RNAi, 
and the results are very encouraging[63-69] (Table 1). Down-
regulation of  the cell surface CD4 receptor and/or one 
of  the co-receptors CCR5 and CXCR4 by RNAi has 
led to dramatic reduction of  viral entry into cells[34,70,71]. 
Compared with CD4 and CXCR4, CCR5 has been found 
to be a preferential target, since no immune defects or 
host mortality was observed on its deletion[72,73]. Therefore, 
careful selection of  host immutable co-factors that are 
important for viral replication, but not for host survival, 
is of  prime importance in the development of  anti-HIV 
strategies. Furthermore, simultaneous targeting by RNAi 
of  both the virus and host factors[50,74] has been shown to 
be more effective in inhibiting HIV-1 replication than the 
targeting of  either virus or host factors alone.

Hepatitis C virus
Hepatitis C virus infection is a major cause of  chronic 
liver diseases, including liver cirrhosis and hepatocellular 
carcinoma (HCC). The estimated number of  infected 
individuals are about 170 million worldwide[75], which 
accounts for nearly 3% of  the world’s population. The 
World Health Organization (WHO) has recognized HCV 
infection as a global health problem.

HCV is a small, enveloped RNA virus that belongs 
to the Flaviviridae family. The cytoplasmic replicating 
virus contains a 9.6 kb RNA genome that functions 
as the messenger RNA and replication template. The 
development of  anti-HCV drugs has accelerated since 
the replicon-based culture system was established a few 
years ago[76,77]. Several regions of  the HCV’s RNA genome, 
including 5'UTR and the coding sequences of  Core, NS3, 
NS4B and NS5B, are sensitive to the action of  siRNA[78-83] 
(Table 2). The therapeutic potential of  RNAi was further 
emphasized by in vivo studies[84,85]. The administration of  
siRNA and shRNA to target cell surface receptor FAS[86], 
caspase 8[87] and NS5B[84], has resulted in the destruction of   
cognate mRNAs and protection of  mice from liver failure. 
The use of  multiple siRNAs against highly conserved 
HCV sequences with and without host cell cofactors 
may limit the emergence of  resistant viruses as has been 
demonstrated in several studies[88-92] (Table 2).
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Hepatitis B virus
Hepatitis B virus infection is a major public health 
problem. It is estimated that, approximately 2 billion 
people are infected with HBV worldwide, and about 400 
million are HBV chronic carriers[93]. HBV infection is 
highly prevalent in Asia and South Africa and results in 
over one million deaths worldwide annually.

Although the clinical symptoms caused by HBV and 
HCV infection are very similar, the viruses are completely 
unrelated[94]. HBV, the prototypical member of  the 
Hepadnaviridae family, is one of  the smallest DNA viruses 
(-3.2 kb), which can undergo reverse-transcription for viral 
replication. The HBV genome contains four overlapping 
open reading frames: P (polymerase-reverse transcriptase), 
C (core structure protein), S (surface glycoprotein) and 
X (HBx protein). After the uncoated nucleocapsids 
enter the nucleus, the HBV genome is repaired to form 
a covalently closed circular DNA (cccDNA), which is a 
template for messenger RNA transcription. The RNA 

intermediates-pregenomic and subgenomic RNAs, coding 
for viral multifunctional proteins, are transported into 
the cytoplasm where translation is initiated. After the 
pregenomic transcript is packaged into virion core particle, 
it is reversely transcribed by viral reverse transcriptase, 
thus producing a single stranded (-) DNA. Based on the 
structure of  the (-) stranded DNA, a complementary 
(+) DNA strand is synthesized. Due to the lack of  
proofreading function of  its polymerase, HBV undergoes 
rapid mutagenesis, with the creation of  a large number of  
drug-resistant variants. These drug-resistant variants are 
further amplified under selective pressure during antiviral 
treatment, resulting in the elimination of  the anti-viral 
effect and virus rebound during treatment. In severe cases, 
this can lead to death, even after cessation of  treatment. 
Because of  this challenge, new drugs with different targets 
or drug metabolism mechanisms are urgently required for 
better treatment outcome.

Several sites of  the HBV genome including the P, Pre 

Target gene RNAi inducer 
(length)

Promoter Vector Cell type Delivery methods Inhib. of virus 
prod. (fold)

Reference

Viral Gene
LTR, Vif, Nef siRNA (21 bp)/

shRNA (19 bp)1
T7 Plasmid Magi, PBLs Transfection > 20 [47]

Gag, Pol siRNA (21 bp) - - HOS.T4.CXCR4 Transfection > 10 [48]
Gag, LTR siRNA (23 bp)/

dsRNA (21nt)2
- - U87-CD4+-CCR5+/CXCR4+, PBMC Transfection 4 [51]

Gag, Env dsRNA (441-
531nt)3

- - COS, Hela-CD4+, PBMC, ACH2 Transfection 70 [52]

Tat + Rev siRNA (21 bp) - - 293T, Jurkat, PBMC Transfection > 15 [54]
Rev (Tat) siRNA (21 bp)5 Dual U6 Plasmid 293/EcR Transfection 10 000 [56]
Nef dsRNA (556nt)3 - - MT4-T, U937 Transfection 2.5 [57]
Env siRNA (20 bp)

/shRNA (20 bp)4
U6 Plasmid,

Lentivirus
COS, MT-4 Transfection /

Transduction
> 10 [53]

Nef shRNA (21 bp) H1 Retrovirus SupT1 Transduction > 10 [58]
Gag, Pol, Int, Vpu shRNA (21 bp) H1 Lentivirus 293T, Magi, GHOST hi5, CEM-A, Molt-4,

 PBMC
Transduction > 20 [61]

Cellular gene
Tsg101 siRNA (21 bp) - - 293T Transfection 10-20 [63]
LEDGF/p75 siRNA (21 bp) - - Hela Transfection NR [64]
P-TEFb (CDK9/CyclinT1) siRNA (21 bp) - - Hela, Magi Transfection 3-5 [65]
hRIP siRNA (21 bp) - - Hela, Jurkat, Macrophages Transfection -100 [66]
Emerin siRNA (21 bp) - - Hela, Macrophages Transfection > 10 [67]
LEDGF/p75, HRP2 siRNA (21 bp) - - Hela-P4 Transfection 2-3 [68]
CXCR4 siRNA (21 bp) - - HOS-CD4+, HOS-CD4+-CXCR4+/CCR5+ Transfection 3-5 [70]
Importin 7 siRNA (21 bp) - - Hela, Macrophages Transfection -10 [69]
CXCR4+ CD4,
CXCR4+ CCR5 shRNA (19/21 bp)6 - - Magi-CXCR4/CCR5, PBMC Transfection > 15 [71]
CCR5 shRNA (19 bp) U6 Lentivirus Magi-CCR5, PBLs Transduction 3-7 [34]

Combination of viral and cellular genes
Gag, CD4 siRNA (21 bp) - - Magi-CCR5, Hela-CD4 Transfection 4-25 [50]
Tat, RT, NF-κB (p65) siRNA (21 bp) - - Magi, Jurkat Transfection 5-500 [74]

Table 1  Strategies designed to inhibit HIV replication via  RNA interference

The fold inhibition of virus production refers to the results obtained with the most potent siRNA/shRNA tested in a specific cell model. All siRNAs were 
prepared by chemical synthesis unless indicated otherwise. LTR: Long terminal repeat; PBLs: Peripheral blood lymphocytes; PBMC: Peripheral blood 
mononuclear cell; Pol: Polymerase; Env: Envelope; Tsg101: Tumor susceptibility gene 101; LEDGF/P75: Lens epithelium-derived growth factor/transcription co-
activator p75; NR: Not reported; P-TEF: Positive transcription elongation factors; hRIP: Human Rev-interacting protein; HRP2: Hepatoma-derived growth factor 
related protein 2; RT: Reverse transcriptase; NF-κB: Nuclear factor-NF-κB. 1shRNA expressed from a transfected plasmid under the control of a T7 promoter. 
2dsRNA produced by in vitro T7 promoter-mediated transcription. 3dsRNA produced by in vitro SP6/T7 promoter-mediated transcription. 4shRNA and siRNA 
expressed from transfected plasmids under the control of one and two U6 promoters respectively, shRNA further stably expressed from a recombinant lentiviral 
vector driven by a U6 promoter. 5siRNA expressed from a transfected plasmid under the control of two U6 tandem promoters that drive the synthesis of each of 
the siRNA strand. 6shRNA produced by in vitro T7 promoter-mediated transcription.

www.wjgnet.com

5172        ISSN 1007-9327     CN 14-1219/R     World J Gastroenterol   October 21, 2007        Volume 13    Number 39



C/C, PreS/S, X gene, have been employed as targets to 
examine the in vitro efficacy of  RNAi[95-99] (Table 3). Some 
sites have also been tested in hydrodynamic HBV model 
and transgenic HBV model[100-104] (Table 3). Our group 
has successfully designed multiple shRNAs that target 
DR elements and regions that code for core, polymerase, 
PreS, S, and X proteins. These shRNA were found to 
potently inhibit HBV replication and showed synergistic 
antiviral effects with the commonly used antiviral 
drug, lamivudine[105]. In a recent study, we showed that 
simultaneous delivery of  two shRNAs that target different 
regions, exhibited strong synergistic antiviral effects in a 
hydrodynamic transgenic mice model. In this study, both S 
and e antigens were reduced to undetectable levels, and the 
viral load was reduced by greater than one hundred-fold 
(He et al unpublished observations). These results clearly 
demonstrate the potential of  RNAi application in anti-
HBV therapy.

SARS-coronavirus
Severe acute respiratory syndrome (SARS) outbreak 
affected nearly 30 countries during the years 2002-2003. 
This epidemic was caused by a novel SARS-associated 
coronavirus (SARS-CoV)[106-108]. SARS-CoV is a large 
(-30 kb), enveloped, positive-stranded RNA virus and its 
genome is composed of  replicase (rep), spike (S), envelope 

(E), membrane (M), and nucleocapsid (N) genes. The 
prophylactic and therapeutic efficacies of  siRNAs were 
tested because of  the absence of  any effective drugs or 
vaccines against SARS-CoV infection. Both in vitro and 
in vivo applications proved satisfactory, using synthetic 
siRNAs as well as vector-based shRNAs against leader 
sequence[109,110], 3'-UTR[110], non-structural[111] and structural 
genes[110,112-115] of  SARS-CoV (Table 4). Another recent 
report revealed that the siRNA-mediated depletion of  the 
host cellular clathrin heavy chain gene, reduced the SARS-
CoV infectivity[116]. Locked nucleic acid (LNA)-modified 
siRNAs, an RNA-like high affinity nucleotide analogue, has 
been found to improve the performance of  gene silencing 
via enhancement of  siRNA biostability and specialty. 
The improvement was clearly apparent when siRNA was 
transfected into Vero cells prior to a lethal SARS-CoV 
attack[117].

It is worth mentioning that our group was the first 
to demonstrate in 2003 the remarkable inhibition and 
replication of  SARS-CoV infection by siRNAs against rep 
gene[118]. Subsequently, we designed siRNAs that could 
target both rep and structural genes. We also evaluated the 
antiviral effect, dose response, duration and viral kinetics 
of  siRNAs in foetal rhesus kidney (FRhK-4) cells[119,120]. 
Two of  the siRNAs were further evaluated for safety and 
antiviral efficacy in a rhesus macaque SARS model[119]. 

Target gene RNAi inducer (length) Promoter Vector Model Delivery methods Inhib. of virus
 prod. (fold)

Reference

In vitro studies
Viral gene
5’-UTR siRNA (21 bp) - - 5-2 cells (Huh-7) Transfection     -6 [79]

siRNA (21 bp)/shRNA(19 bp)1 U6 Plasmid 293T, Huh 7 Transfection > 10 [78]
NS4B siRNA (23 bp) - - Huh-7.5 Transfection   -80 [80]
NS3, NS4B, NS5A,
 NS5B

siRNA (21 bp) - - S1179I (Huh-7) Transfection  -23 [81]

IRES, NS3, NS5B siRNA (23bp)/shRNA (21 bp)2 Dual H1 Plasmid Huh-7 Transfection > 9 [82]
5’-UTR, C, NS4B,
 NS5A, NS5B

esiRNA (15-40 bp)3/shRNA (19bp) H1 Mo-MuLV Huh-7 Transfection /
Transduction

-100 [88]

5’-UTR, C, NS3, NS5B siRNA (21 bp)/shRNA (19 bp)4 U6 Plasmid/Lentivirus Huh-7 Transfection /
Transduction

    -7 [83]

Cellular gene
Lα, PTB, eIF2Bγ,
 hVAP33

shRNA (19 bp) U6 Plasmid/Adenovirus Huh-7 Transfection /
Transduction

   -13 [91]

Cyp-A,B,C shRNA (NR) U6 Plasmid/Retrovirus Huh-7 Transfection /
Transduction

   -10 [92]

Combination of viral and cellular genes
5’-UTR, 3’-UTR,
PSMA7, HuR

shRNA (19-21 bp) U6 Plasmid/Retrovirus Huh-7 Transfection /
Transduction

   > 2 [89]

CD81, IRES, NS5B shRNA (19-21 bp) H1 Lentivirus Huh-7 Transduction > 32 [90]
In vivo studies
NS5B siRNA (23 bp) - - Mice Hydrodynamic

 transfection
      3 [84]

IRES shRNA (19-25 bp)5 - - Mice Hydrodynamic
 transfection

  -50 [85]

Table 2  Strategies designed to inhibit HCV replication via  RNA interference

The fold inhibition of virus production represents the most potent effect caused by a specific siRNA or combinatorial siRNAs. All siRNAs were prepared by 
chemical synthesis unless indicated otherwise. UTR: Untranslated region; NS: Non-structural; IRES: Internal ribosomal entry site; C: Core protein; esiRNA: 
Endoribonuclease-prepared siRNA; Mo-MuLV: Moloney murine leukemia virus; PTB: Polypyrimidine tract-binding protein; eIF2Bγ: Subunit gamma of human 
eukaryotic initiation factors 2B; hVAP-33: Human VAMP-associated protein of 33 kDa; Cyp: Cyclophilin; PSMA7: Proteasome a-subunit 7; HuR: Hu antigen R; 
N.R: not reported. 1stem-loop- and tandem-type siRNA expressed from DNA-based vectors driven by one and two U6 promoters respectively. 2shRNA expressed 
from a transfected plasmid under the control of two H1 tandem promoters that drive the synthesis of each of the siRNA strand. 3esiRNA generated by in vitro 
T3/T7 promoter-mediated transcription. 4shRNA expressed from a transfected plasmid or a lentivirus vector respectively under the control of a U6 promoter. 5 
shRNA generated by in vitro T7 promoter-mediated transcription.
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These siRNAs relieved SARS-like symptoms, and were 
safe for prophylaxis and therapeutic treatment. These 
findings greatly encouraged the clinical testing of  siRNAs 
as an anti-SARS therapy.

Influenza virus
Influenza virus is one of  the public health scourges 
worldwide. Three influenza epidemics have occurred in 

the last century and have caused tens of  millions of  deaths 
globally. Recent outbreaks of  highly pathogenic avian 
influenza in Asia and Europe have greatly increased public 
awareness, and accelerated the development of  measures 
for the prophylaxis and therapy of  this infection.

Influenza viruses are enveloped, single-stranded, 
segmented (7-8) RNA viruses which belong to the 
Orthomyxoviridae family[121]. They are classified into 

Target gene RNAi inducer 
(length)

Promoter Vector Model Delivery methods Inhib. of virus
prod. (fold)

Reference

In vitro studies
C siRNA (21 bp) - - Huh-7, HepG2 Transfection     -4-5  [95]

siRNA (19 bp) - - HepAD38, HepAD79 Transfection      -50  [96]
C, X shRNA (19 bp) hH1 Plasmid Huh-7, HepG2.2.15 Transfection      2-20  [97]

C, S, P, X, DR shRNA (21-24 bp) mU6 Plasmid HepG2.2.15 Transfection      -2  [98]
shRNA (21 bp) hU6 Plasmid HepG2 Transfection     > 30 [105]

S shRNA (19 bp) hH1 PFV, AAV 293T.HBs, HepG2.2.15 Transduction     4-9  [99]

In vivo studies
C, S, P, X shRNA (25 bp) hU6 Plasmid Immunocompetent 

C57BL/6J mice, 
Hydrodynamic
transfection1

    3-12 [100]

Immunocompromised 
NOD/SCID mice

C, S siRNA (21 bp) - - Male NMRI mice High-volume
injection via
tail vein1

    -4 [101]

S shRNA (19 bp) hH1, hU6 Plasmid BALB/c mice,
HBsAg-transgenic FVB/N mice

Hydrodynamic 
transfection2

    -9 [102]

P, S, X shRNA (20 bp) hH1 Plasmid C57BL/6 HBV-transgenic mice Hydrodynamic 
transfection1

    19-99 [103]

P, S, X shRNA (NR) mU6 Adenovirus HBV-transgenic mice Hydrodynamic
transfection

    > 9 [104]

Table 3  Strategies designed to inhibit HBV replication via  RNA interference

The fold inhibition of virus production refers to the results obtained with the most potent siRNA/shRNA. All siRNAs were prepared by chemical synthesis 
unless indicated otherwise. C: Core antigen; S: Surface antigen; P: Polymerase; X: X protein; DR: Direct repeat element; PFV: Prototype foamy virus; AAV: 
Adeno-associated virus; mU6: Mouse U6; hU6: Human U6; hH1: Human H1. 1shRNA expression plasmid/naked siRNA coinjected with the pHBV construct. 
2shRNA expression plasmid simultaneously or subsequently injected with the pHBV/pSAg construct in BALB/c mice.

Target gene RNAi inducer (length) Promoter Vector Model Delivery methods Inhib. of virus
prod. (fold)

Reference

In vitro studies 
Viral gene
Leader, TRS, 3’-UTR, S siRNA (21 bp) - - Vero E6 Transfection           9 [110]
N shRNA (20 bp) U6 Plasmid 293 Transfection           NR [112]
E, M, N siRNA (21 bp) - - Vero E6 Transfection        > 4 [113]
P shRNA (19 bp) H1 Plasmid Vero Transfection        > 100 [114]
S shRNA (22 bp) U6 Plasmid Vero E6, 293T Transfection          -6 [115]
Rep siRNA (21 bp) - - FRhk-4 Transfection        > 12 [118]
Cellular gene
CHC siRNA (25 bp) - - HepG2, COS7 Transfection          -1 [116]
In vivo studies
S, NSP12 siRNA (21 bp) - - BALB/C mouse, i.t.1 and i.n.2            3 [119]

Rhesus macaque administration
(Macaca mulatta)

Table 4  Strategies designed to inhibit SARS-CoV replication via  RNA interference

The fold inhibition of virus production refers to the results obtained with the most potent siRNA/shRNA. All siRNAs were prepared by chemical synthesis 
unless indicated otherwise. TRS: Transcription-regulating sequence; UTR: Untranslated region; S: Spike protein; N: Nucleocapsid protein; NR: Not reported; E: 
Envelope protein; M: Membrane protein; P: RNA polymerase; Rep: Replicase; FRhk-4: Fatal Rhesus monkey kidney cells; CHC: Clathrin heavy chain; NSP: Non-
structural protein; i.t.: Intratracheal; i.n.: Intranasal. 1siRNA and target-sequence containing reporter plasmid co-administered intratracheally into mouse lungs in 
D5W or Infasurf solution; 2siRNA instilled intranasally to monkey in D5W solution with different dosing regimens.
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inf luenza virus types A, B, and C, based on their 
nucleoproteins and matrix proteins. Influenza A virus (IAV) 
is the most prevalent respiratory pathogen worldwide.

Since it is an RNA virus, IAV has the ability for rapid 
genetic changes through antigen drift[122] or antigen 
shift [123]. This involves the accumulation of  minor 
mutations within the viral genome, or reassortment of  
RNA segments between different viruses, which results 
in the emergence of  new viral strains. Ge et al[124,125] and 
Tompkins et al[126] verified the efficacy of  siRNAs which 
specifically target the conserved regions of  the influenza 
virus genome (nucleocapsid and acid polymerase). They 
confirmed that siRNAs were potent inhibitors of  the 
influenza virus both in vitro and in vivo, and could be 
administered both prior to and subsequent to a lethal IAV 
challenge. Moreover, Ge developed an unconventional 
delivery system, administering small volumes of  siRNAs 
or DNA vectors encoding shRNA in complex with 
polyethyleneimine (PEI) by slow intravenous infusion[127]. 
This system was effective in reducing virus production in 
infected mice and provided helpful suggestions for future 
clinical application of  siRNAs.

Progress of RNAi for clinical application
Since RNAi was found to have antiviral activity in 
transgenic plants, much evidence has emerged with regard 
to its pivotal role in antiviral therapeutic applications. 
Numerous investigations have reported successful 
inhibition of  viral replication in cultured cells and in 
murine/nonhuman primate models using both transient 
transfection of  synthetic siRNA and stable expression 
of  shRNA. To harness the full potential of  RNAi for 
therapeutic applications, pharmaceutical companies 
are actively engaged in clinical trials. In 2004, Acuity 
Pharmaceuticals initiated a clinical trial using RNAi in the 
treatment of  macular degeneration; encouraging results 
have been obtained in the Phase Ⅰ/Ⅱ studies[128]. In 2006, 
Alnylam Pharmaceuticals launched a Phase I clinical trial 
in the U.S. of  an inhaled formulation of  ALN-RSVO1 (an 
RNAi-based drug) to combat respiratory syncytial virus 
(RSV) infection[129]. Other potential indications for RNAi 
use include asthma, Huntington’s disease, spinocerebellar 
ataxia, and HIV, HAV, HBV and influenza virus infections, 
and clinical trials are under consideration in many of  these 
conditions[130].

Challenges and perspectives
Despite the rapid progress in RNAi use, its clinical 
application still poses several challenges. These include 
target specificity, biostability, biosafety, and delivery 
efficacy of  the RNAi system in various diseases. Recent 
studies have indicated off-target effects associated with 
the use of  siRNA[131-133]. In order to improve the power 
of  gene silencing and to avoid undesirable adverse effects 
induced by siRNAs, such as nonspecific gene silencing 
and immunoactivation[134,135], great effort has been made to 
improve siRNA design, including its sequence[136], size[137] 
and structure[138]. However, the poor pharmacokinetic 
properties of  siRNAs have added another hurdle in the 
development of  RNAi-based therapies. Multiple chemical 
modifications at different positions of  the siRNA duplexes, 

including sugars[117,139-141], backbones[142,143], and bases of  
oligonucleotides[144,145] have been found to prolong siRNA 
half-life in serum. Conjugation of  one or both strands 
of  siRNAs with lipids[146,147] and peptides[148,149], has been 
shown to enhance nuclease stability and improve cellular 
uptake.

The systematic and site-specific deliveries of  siRNA 
also need to be addressed. Non-viral vectors, such as 
cationic lipids[150-152] and polymers[153-156], have been widely 
used for in vitro and in vivo siRNA delivery. It has been 
reported that siRNAs encapsulated into stable nucleic 
acid lipid particles (SNALPs) improve the potency, 
lengthen the half-life, lower the effective dose and reduce 
the dosing frequency. This was observed in a study 
comparing unformulated siRNAs in rodents challenged 
with replicating virus[157,158] and non-human primates[159]. 
Besides, Song et al designed a protamine-antibody fusion 
protein to deliver siRNA to HIV-infected or envelope-
transfected cells. This study established a systemic, cell-
type specific, antibody-mediated in vivo delivery system of  
siRNAs via cell surface receptors[160]. The current advances 
have brought siRNA close to the era of  clinical trials 
and real-life therapeutic applications in infected human 
subjects.

However, before RNAi-based clinical trials can 
be carried out, the toxicity and side-effects of  RNAi, 
and the harmful potential of  viral vectors need careful 
attention. It has been shown that over-expression of  
shRNA by double-stranded AAV8 viral vectors resulted 
in severe hepatic toxicity and even death. Moreover, it has 
been observed that over-expressed shRNA can saturate 
the miRNA pathway[161]. Our studies have shown that 
simultaneous delivery of  two shRNAs using a weaker 
expressing viral vector (AAV2) did not produce any 
obvious liver toxicity or side-effects (He et al unpublished). 
Therefore, it is essential to use safer vectors and in this 
respect we believe that inducible viral vectors may be good 
candidates for future clinical studies.

Scientists in different fields, including geneticists, 
biochemists, pharmacologists, chemists and materials 
scientists, have supported the use of  RNAi in clinical 
applications. As a part of  the research force, our team 
while being cautious, is optimistic regarding the use of  
RNAi in human diseases.
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