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Abstract
The aetiology of primary sclerosing cholangitis (PSC) is 
not known. A more than 80-fold increased risk of PSC 
among first-degree relatives emphasizes the importance 
of genetic factors. Genetic associations within the human 
leukocyte antigen (HLA) complex on chromosome 6p21 
were detected in PSC 25 years ago. Subsequent studies 
have substantiated beyond doubt that one or more 
genetic variants located within this genetic region are 
important. The true identities of these variants, however, 
remain to be identified. Several candidate genes at other 
chromosomal loci have also been investigated. However, 
according to strict criteria for what may be denominated 
a susceptibility gene in complex diseases, no such gene 
exists for PSC today. This review summarises present 
knowledge on the genetic susceptibility to PSC, as well 
as genetic associations with disease progression and 
clinical subsets of particular interest (inflammatory bowel 
disease and cholangiocarcinoma).
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INTRODUCTION
Primary sclerosing cholangitis (PSC) is a chronic 
inf lammator y  condi t ion of  unknown aet io log y, 
characterised by progressive strictures of  the intra- and 
extrahepatic bile ducts and eventually liver cirrhosis and 
liver failure[1,2]. No effective medical treatment is currently 

available[3,4], and PSC is the major indication for liver 
transplantation in the Scandinavian countries as well as 
the fifth leading indication for liver transplantation in 
the United States[5,6]. Population-based studies of  disease 
frequency are available from Norway, Great Britain and 
The United States[7-9], and indicate comparable incidence 
(0.9-1.3 per 100 000/year) and prevalence (8.5-14.2 per 
100 000) rates for these populations. The prevalence of  
PSC is probably lower in Southern European and Asian 
populations[10]. In contrast to the female predominance of  
many autoimmune diseases, approximately 2/3 of  the PSC 
patients are male[11]. Affected individuals are young (less 
than 40 years at time of  diagnosis), and median survival 
from time of  diagnosis by cholangiography to death or 
liver transplantation is approximately 12 years[11].

Up to 80% of  the PSC patients of  Northern European 
origin have concurrent inflammatory bowel disease 
(IBD)[10]. The frequency in Southern Europe and Asia is 
lower (around 50% and 35%, respectively)[12-14]. According 
to standard criteria[15], the IBD phenotype in PSC has 
mainly been classified as ulcerative colitis (UC), although 
an association with colonic Crohn's disease also exists[16,17]. 
The increased frequency of  a variety of  other autoimmune 
diseases (e.g., type 1 diabetes) among patients with PSC 
does not seem related to the increase in IBD[18]. There is 
also an increased risk of  cancer among the patients with 
PSC, not only cholangiocarcinoma of  the biliary tract 
(approximately 13%-14% in Scandinavia)[19,20], but also 
other gastrointestinal malignancies (i.e., pancreatic and 
colorectal cancer)[19]. The diagnosis of  cholangiocarcinoma 
is difficult because the cholangiographic changes 
may look similar to those found in PSC without 
cholangiocarcinoma[21]. As a result, the cancer is often 
recognised at an advanced stage when treatment by liver 
transplantation does not improve survival[22].

Smoking is the only environmental factor known 
to influence PSC susceptibility and is associated with a 
reduced risk of  the disease[23]. Several genetic risk factors, 
however, have been repeatedly described throughout the 
25 years since they were first detected[24,25]. The present 
editorial aims to summarise present knowledge on 
statistical associations between genetic variants and risk 
of  PSC or particular characteristics of  PSC. In genetic 
epidemiology, disease characteristics under study are called 
phenotypes. Etymologically, the pheno-prefix refers to 
"visible" or "evident". Phenotypes, also referred to as traits, 
may be dichotomous (e.g., PSC/healthy) or quantitative 
(e.g., the level of  alkaline phosphatase in a blood sample 
from a PSC patient). The clinical definition of  a disease is 
primarily made to decide whether a particular treatment 
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or follow-up may be indicated for a patient or not. This 
practical aspect means that PSC as a clinical "diagnosis" 
does not necessarily equal the ideal "phenotype" for 
genetic association studies. The disease phenotype in 
such studies should be as homogeneous as possible, 
simply because the presence of  irrelevant phenotypes in a 
study population will reduce the strength of  effects to be 
identified. The clinical phenotype of  PSC is compound 
(Figure 1). 

In other diseases, susceptibility genes have been 
identified through genome-wide linkage scans followed 
by fine-mapping[26-28]. In PSC, the lack of  families with 
affected sibling pairs has not allowed such studies 
to position susceptibility loci[28]. The search for PSC 
susceptibility genes has thus focused on plausible 
candidates with regard to function[25]. As a general basis 
for interpreting candidate gene association studies, an 
introduction to important concepts of  such studies will be 
given, followed by a presentation and discussion of  studies 
performed in PSC. We searched PubMed for relevant 
articles published up until the end of  April 2007. We have 
also reviewed the reference lists of  identified articles, as 
well as the reference lists of  major immunogenetic- and 
hepatology conferences held over the last 2 years.

GENETIC CONSIDERATIONS
In genetic terms, PSC is considered a complex trait, 
meaning that polymorphisms in several genes along 
with environmental factors are required for disease 
development[27]. Heritability for a disease is measured by (a) 
concordance rates in monozygotic versus dizygotic twins 
and (b) relative risk in siblings of  a patient (λs = prevalence 
among siblings divided by the general population 
prevalence). For monogenic disorders, λs ranges from 
several hundreds to several thousands, whereas values in 
complex traits are usually below 100. A strong genetic 
contribution to overall risk of  PSC is supported by λs 
values of  approximately 100[29], as compared with values 
of  15-35 for Crohn's disease and 6-9 for UC[30]. 

Polymorphisms are genetic variants that have arisen 
from mutational events in DNA[31]. Conventionally, to be 

denominated a polymorphism, a mutant variant should 
occur at a frequency of  > 0.01 in the general population. 
A particular nucleotide (or nucleotide sequence) at a 
polymorphism is defined as an allele. The combination of  
alleles on the two chromosomes is termed the genotype of  
the individual at that position. A distinct combination of  
two or more alleles of  polymorphisms that occur together 
on the same chromosome is defined as a haplotype. 

When a mutation arises in a chromosomal region, it 
does so on a background of  particular DNA variants that 
are already present in the population, i.e., the mutation 
is linked to these surrounding alleles by the integrity 
of  the DNA molecule. Over time, recombination 
tends to separate a mutant allele from the alleles of  the 
surrounding DNA. At the population level, the positive 
association that remains between particular alleles at linked 
polymorphisms is called linkage disequilibrium (LD), 
meaning that these alleles occur more frequently together 
than would be expected from their population frequencies. 
Recombination ultimately leads to loss of  LD unless there 
is a selective advantage of  particular allele combinations.

The relationship between disease phenotype and three 
of  the genetic concepts described (polymorphisms, alleles 
and haplotypes), is the subject of  genetic association studies. 
That is, the aim of  genetic epidemiology is to identify 
alleles (or in diploid terms, genotypes) of  polymorphisms 
that are associated with an increase or decrease in risk 
of  disease or a particular characteristic of  a disease. 
The advantage of  LD is that all polymorphisms in a 
genetic region do not have to be genotyped to detect an 
association. This is because the causative variant will reside 
on the same haplotypes as other polymorphisms and can 
be indirectly detected by typing for these. The disadvantage 
of  LD is that it may be almost impossible to determine 
which of  a series of  alleles in LD on a haplotype that is 
actually the causative variant. Most of  the genetic variation 
(> 99%) in the human genome is believed to be without 
any phenotypic consequence[32].

STATISTICAL CONSIDERATIONS
Because of  the low prevalence, a major limiting factor for 
statistical power in studies of  PSC susceptibility genes 
is sample size. Figure 2 illustrates the statistical power as 
a function of  the effect size (odds ratio; OR) and allele 
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Figure 1  Primary sclerosing cholangitis (PSC) is a patchwork of different 
phenotypes in addition to the bile duct involvement. Most important are 
inflammatory bowel disease (IBD), malignancy and other autoimmune diseases. 
PSC is distinct from secondary sclerosing cholangitis (SSC).
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Figure 2  Statistical power (α = 0.05) for different odds ratios and allele 
frequencies in a study of 365 patients and 365 controls, i.e., the number of alleles 
in each group is 2 n = 730.
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frequency of  a genetic variant for studies performed 
in the largest PSC population in which studies have 
been performed so far (n = 365)[33]. Two issues require 
mentioning. First, very weak effects (OR ≈ 1.0-1.3) are 
likely to be missed, even for populations of  this size. 
Second, rare variants of  importance for PSC susceptibility 
(allele frequency < 0.01) are likely to be missed unless the 
OR of  the variant is very high (or low; ORs < 1 were not 
plotted for clarity).

An important controversy regarding the prospects of  
mapping the genetic predisposition to complex diseases is 
not related to statistical power, but the possible complexity 
of  allelic variation at a susceptibility locus. Supporters 
of  the "common-disease/common-variant" hypothesis 
argue that common diseases arise due to polymorphisms 
that are common (i.e., allele frequency > 0.10[34]) in the 
background population. Supporters of  the "multiple rare 
variants" hypothesis point to the complexity observed 
at susceptibility loci in monogenic disorders, where 
multiple rare alleles define a similar phenotype (e.g., the 
hundreds of  disease causing alleles at the cystic fibrosis 
transmembrane-conductance regulator locus)[35]. Possibly, 
susceptibility genes in complex diseases that are defined 
by multiple rare variants cannot be identified using regular 
LD based approaches[36]. Although PSC is relatively rare, 
the main HLA haplotypes that confer risk are relatively 
common (e.g., the frequency of  the PSC associated 
ancestral HLA haplotype 8.1 is > 0.10 in Scandinavia[37]).

The abundance of  false positive genetic association 
studies (i.e., typeⅠstatistical errors) represents a problem 
of  legitimacy for this type of  study design[38]. Simply using 
a P-value < 0.05 as "evidence" to distinguish between a 
"positive" and "negative" finding in these studies can be 
questioned[39]. The problem is partly related to the many 
statistical tests performed in these studies. The so-called 
Bonferroni correction (multiplying P-values with the 
number of  comparisons that have been performed) is the 
most widely accepted strategy to account for this problem. 

The Bonferroni approach has limitations. Due to the 
many tests that are theoretically possible throughout the 
genome, it can be argued that conservative significance 
levels of  10-5 or even 10-8 should be used for all tests[38,40]. 
Achieving such significance levels would require patient 
collections simply not available for rare diseases like PSC. 
The most recent proposal is that so-called permutation 
testing (in Latin, "permutare" means "change completely") 
within a dataset is the preferable strategy to take account 
of  multiple testing[41]. In permutation tests, case/control 
assignment is shuffled randomly using a computer and 
tests are run over and over again to count how often 
the permuted dataset achieves the effect observed in the 
correctly ordered dataset. If  the permuted dataset achieves 
an effect equal to or stronger than that observed in the 
original dataset in 500 out of  10 000 analyses, this means 
that the probability of  a typeⅠerror for a finding is 5%.

The problem of  statistical significance in genetic 
association studies philosophically relates to the problem 
of  causality for which criteria relevant to modern medicine 
were proposed by Sir Austen Bradford Hill in a classic 
essay in 1965[42]. These criteria point to factors in addition 
to the probability from statistical association tests (e.g., 

biological plausibility) that are required for a causal 
relationship to be established. This is also argued for in so-
called Bayesian statistics, where the prior probability of  
a genetic variant to be associated (e.g., non-synonymous 
polymorphism in a gene which function is relevant to the 
disease phenotype), is accounted for when deciding on 
the posterior probability of  whether or not a finding is 
valid[38]. In sum, circumstantial evidence (from functional 
studies or mouse models) is required to support findings if  
a genetic variant should be considered causative in terms 
of  contributing to a disease phenotype[28], whatever the 
statistical evidence is available.

THE HLA COMPLEX AND GENETIC
ASSOCIATIONS OBSERVED IN PSC
The HLA complex stretches across 7.6 million base 
pairs (bp) of  DNA on the short arm of  chromosome 
6 and contains 252 expressed protein-coding genes, of  
which 28% are potentially related to immunological 
functions[43]. Throughout evolution of  this genetic 
region[44], duplications have led to several gene clusters 
containing genes of  similar function (Figure 3)[43]. HLA 
classⅠmolecules (i.e., HLA-A, -B and -C) are expressed 
on all nucleated cells in the body and present intracellular/
endogenous antigens to CD8+ T-lymphocytes. HLA class
Ⅰmolecules also serve as ligands for inhibitory killer 
immunoglobulin-like receptors (KIRs) on natural killer 
(NK) cells and γδ T-lymphocytes[45,46]. HLA class Ⅱ 
molecules are expressed on antigen presenting cells (e.g., 
macrophages and dendritic cells) and present extracellular/
exogenous antigens to CD4+ T-lymphocytes[45]. 

Sequence-based HLA-nomenclature was established 
in 1987[45]. The locus name is followed by an asterisk and 
two pairs of  digits. The first pair of  digits denominates 
the main type and is often similar to the serological 
type (e.g., DRB1*03 is the same as serological DR3, but 
DRB1*13 is only one of  the DR6 alleles). The second 
pair of  digits denominates the subtype (e.g., DRB1*0301 
and DRB1*1301). Further definition is possible, since null 
alleles are suffixed by "N", and polymorphisms that do 
not alter the amino acid sequence of  the peptide binding 
groove give rise to the fifth, sixth and seventh digits. 
In result, a complete sequence-based HLA allele name 
represents the haplotype of  all alleles at all polymorphisms 
within the HLA gene at that chromosome.

LD between alleles at the HLA classⅠand Ⅱ loci 
defines ancestral HLA haplotypes (AHs) and are named 
after which HLA-B allele they contain (e.g., the most 
common haplotype with HLA-B*08 is called AH8.1)[44]. 
Alleles of  other genes are in LD with these ancestral 
haplotypes, and the co-occurrence of  particular alleles 
across the entire HLA complex on one chromosome is 
called an extended HLA haplotype[47]. At the population 
level, the degree of  conservation varies between different 
extended HLA haplotypes[48]. As examples of  this 
phenomenon, an extended HLA haplotype with the 
HLA-B*08 and DRB1*0301 alleles (i.e., the AH8.1) 
is remarkably conserved in the Northern European 
population, whereas haplotypes carrying DRB1*04 alleles 
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are considerably less conserved and may not even qualify 
for the denomination "extended haplotypes"[49].

A HLA association in PSC was first identified 
for  HLA-B8 ( i .e. ,  HLA-B*0801)  and DR3 ( i .e. , 
DRB1*0301)[24,50]. Later studies have verified that PSC 
associations exist also for the other alleles of  the AH8.1 
(the HLA-A1 allele[51], the HLA-C7 allele[52], the major 
histocompatibility complex classⅠchain-related A (MICA) 
*008/5.1 allele[53,54], and the tumour necrosis factor alpha 
(TNFα) promoter -308 A allele[55,56]). This haplotype is 
associated with a wide range of  autoimmune diseases[57,58]. 
A cross-European study (Norway, Sweden, Great Britain, 
Italy and Spain) concluded that a consistent, positive 
HLA class Ⅱ association in PSC probably exists also for a 
haplotype that carries the DR6 (i.e., DRB1*1301) allele[37]. 
In individuals negative for DR3 and DR6, an association 
with haplotypes that carry the DR2 (i.e., DRB1*1501) 
allele can be found. Negative associations with HLA 
class Ⅱ alleles have been reported for the DR4, DR7 and 
DR11 alleles[37,59,60], although primarily in populations of  
Northern European origin[56]. In Southern Europe, the 
picture is even more complex, since the DR4 allele seems 
to be consistent in LD with a predisposing variant in 
Italy[37,56], whereas a protective effect is noted in Spain[37].

Due to strong LD, an important question in HLA 
genetics is whether genetic associations are due to 
variation in the HLA classⅠor Ⅱ genes (meaning 
that they arise because the patients are able to present 
particular antigens to the T-cell receptor)[61], or due to 
variation in neighbouring genes[62]. There is some degree 
of  amino acid sequence similarity between several of  the 
PSC associated HLA class Ⅱ polypeptide variants[59,63]. 
However, no consistency has been found regarding these 
similarities[59]. The proposal of  leucine at position 38 of  
the DRβ polypeptide as a critical determinant for PSC 
susceptibility relies heavily on the strong DRB3*0101 
association in Northern European populations[63]. An 
early suggestion that a common denominator between 
haplotypes with the DRB1*0301 and DRB1*1301 alleles 
could be the DRB3*0101 allele (serologically DRw52a) 
was later withdrawn[64,65]. Another study found that the 

DRB1*1301-DRB3*0202 haplotype association is as 
strong as the DRB1*1301-DRB3*0101 association[37]. 
Taken together, the most interesting proposal of  a single 
amino acid position in defining risk of  PSC may rather 
relate to a protective effect in carriers of  proline at 
position 55 of  the DQβ polypeptide, which is common 
for DQ3 alleles known to be in LD with the protective 
DR4, DR7 and DR11 alleles[59]. However, no consistent 
risk allele is defined by this position[59], and to what extent 
the HLA class Ⅱ molecules are of  primary importance in 
the PSC pathogenesis should probably not be concluded 
based on present evidence.

The PSC-associated MICA*008/5.1 allele has been 
proposed as a common denominator between the PSC-
associated A*01-C*07-B*08-DRB1*0301-DQB1*0201 
and  A*03-C*07-B*07-DRB1*1501-DQB1*0602 
haplotypes[53,59]. MICA functions as a ligand for the 
activating NKG2D receptor on NK cells[66]. It was recently 
recognised that the two risk haplotypes in question share 
alleles not only at MICA, but also at the neighbouring 
HLA-B and -C loci, when these are defined according 
to the KIR binding properties of  the HLA classⅠ
molecules[67]. The PSC-associated HLA-B and -C KIR 
ligand genotypes may result in decreased inhibition of  NK 
cells and several subsets of  T-lymphocytes that express 
KIRs[46,68]. Such combinations of  KIR and HLA classⅠ
ligand variants have been shown to increase susceptibility 
to other autoimmune diseases[46]. How the PSC-associated 
MICA*008/5.1 allele may cause disease is not known. 
This allele is also associated with an increased risk of  other 
autoimmune conditions[69,70], and may thus also result in an 
increased activity of  cells expressing the NKG2D receptor, 
acting in synergy with the loss of  inhibition resulting from 
the PSC associated HLA classⅠligand genotypes. The 
fact that the MICA 5.1 allele was recently shown to confer 
protection against cholangiocarcinoma is in line with 
an activating effect[71]. Some studies report an increased 
frequency of  NK cells in the portal infiltrate of  patients 
with PSC when compared with other liver diseases[72,73], 
and also in the intestinal mucosa of  patients with PSC 
without IBD compared with IBD patients without liver 
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Figure 3  Schematic outline of the HLA complex on chromosome 6. Distances are arbitrary. By convention, the extended HLA complex stretches from the centromeric 
border of the HLA class Ⅱ loci (HLA-DP) to the telomeric limit of the histone gene cluster more than 4 million bp from HLA-A[43,120]. Centromeric to the HLA-DQ loci, a region 
with intense recombination can be found ("recombination hot-spot")[132].
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disease[74]. Taken together with the genetic findings in this 
region of  the HLA complex (Figure 3), further studies on 
the role of  these cells in PSC seem warranted.

In sum, the HLA association in PSC is likely to be 
complex. Multiple risk variants may exist[25], some of  which 
may be associated not only with PSC, but autoimmunity in 
general.

PSC ASSOCIATIONS WITH
POLYMORPHISMS IN GENES OUTSIDE
THE HLA COMPLEX
Summarising the published genetic association studies 
in PSC, it seems proven beyond doubt that one or 
more genetic variants located within the HLA complex 
are important. The true identities of  these variants, 
as discussed above, are not known. The situation is 
even less clear with regard to other susceptibility loci. 
Given the large number of  protein coding genes in the 
human genome (25-35 000)[32], selecting candidate genes 
for association studies is an extremely difficult task. 
According to strict criteria for what may be denominated 
a susceptibility gene in complex diseases (consistent 
statistical evidence, functional consequence of  identified 
mutation, relevant tissue expression, etc.)[28], no such gene 
exists for PSC. A summary of  studies performed is given 
in Table 1. So far, most attention has been given to genes 
known to be of  importance in other autoimmune diseases. 
The association between PSC and IBD has also inspired 
some of  the studies, as well as the observation of  PSC-like 
changes in cystic fibrosis[75]. 

Two of  the negative findings are of  particular interest 
and will be discussed in greater detail. First, studies in 
limited populations (n < 50) have pointed to a non-
significant increase of  particular multidrug resistance 
gene 3 (MDR3) variants among PSC patients as compared 

with healthy controls[86,87]. Knock-out mice for this 
phospholipid transporter gene (called mdr2 in mice) 
spontaneously develop hepatic lesions resembling PSC[92], 
possibly due to loss of  protection of  the biliary epithelium 
from toxic bile acids. Second, it cannot be formally ruled 
out that the 32 bp deletion of  the chemokine receptor 5 
(CCR5) gene and the E/E genotype of  the K469E SNP 
in the intercellular adhesion molecule 1 (ICAM-1) gene 
may confer population specific effects[80,81,93]. Both genes 
are plausible candidate genes in PSC. The CCR5 may 
be involved in the recruitment of  intestinally activated 
lymphocytes via portal expression of  CCR5 ligands (e.g., 
the macrophage inflammatory protein-1α and β), and 
ICAM-1 may play a similar role in recruiting leukocytes to 
an inflamed liver by interacting with the β2-integrin ligand. 
The negative findings in the replication series referred to 
in Table 1 state it unlikely that genetic variants of  these 
receptors are of  primary importance in the pathogenesis 
of  PSC. The receptors may, however, still be involved in 
the disease process along with other CCRs and adhesion 
molecules [e.g., CCR9 and the mucosal addressin cell 
adhesion molecule 1 (MAdCAM-1)[94,95]].

GENETIC ASSOCIATIONS WITH CLINICAL
SUBSETS OF PSC PATIENTS
The most prominent features of  PSC along with 
the biliary changes are inflammatory bowel disease, 
cholangiocarcinoma and other autoimmune diseases 
(Figure 1).

The increased frequency of  autoimmune diseases 
among patients with PSC is possibly due to the increased 
frequency of  the AH8.1 among the patients[58,96]. Similarly, 
an increased frequency of  IBD risk alleles among patients 
with PSC could contribute to the co-occurrence of  
these two phenotypes. Several IBD susceptibility genes 
have been identified during the last 6 years through 
the application of  genome-wide linkage screens and 
subsequent fine-mapping approaches[26]. To determine 
if  the high frequency of  IBD among patients with PSC 
could be due to genetic risk factors shared with IBD 
in general, we recently genotyped key polymorphisms 
of  known IBD susceptibility genes in a large cohort 
of  Scandinavian PSC patients[97]. The following genes 
were studied: caspase activating recruitment domain 15 
(CARD15), toll-like receptor 4 (TLR-4), caspase activating 
recruitment domain 4 (CARD4), solute carrier family 22, 
member 4 and 5 (SLC22A4 and SLC22A5), Drosophila 
discs large homolog 5 (DLG5) and multidrug resistance 
gene 1 (MDR1)[26,98]. No significant PSC associations were 
detected for any of  the investigated polymorphisms[97]. 
These negative findings add to notions that the IBD 
phenotype in PSC may be a "third" IBD phenotype[99], 
possibly distinct from UC and Crohn's disease not only 
in clinical presentation, but also with regard to genetic 
susceptibility. 

It is of  interest to know whether genetic associations 
detected in PSC may be of  particular importance for 
the IBD phenotype among the PSC patients or patients 
with IBD in general. In a recent study of  HLA alleles in 

Table 1 Candidate gene studies performed in PSC

Gene Chromo-
some

N 
(PSC)

Primary 
finding

Reference Replication
finding

Reference

IL-1   2q   40 Negative     [76] Negative    [77]
IL-10   1q   96 Negative     [77] Negative    [55]
MMP1 11q 165 Negative     [78] NA    -
MMP3 11q 111 Positive     [79] Negative    [78]
CCR5   3p   71 Positive     [80] Negative    [33]
ICAM-1 19p 104 Positive     [81] Negative    [82]
CFTR   7q   29 Negative     [83] Negative    [84,85]
MDR3   7q   37 Negative     [86] Negative    [87]
BSEP   2q   37 Negative     [86] NA    -
AIRE 21q   60 Negative     [88] NA    -
NRAMP1   2q   40 Negative     [89] NA    -
CTLA4   2q 144 Negative     [90] NA    -
FOXP3   X 195 Negative     [91] NA    -

Interleukin-1 and -10 (IL-1 and -10), MMP1 and 3 (matrix metalloproteinase 
1 and 3), CCR5 (chemokine receptor 5), ICAM-1 (intercellular adhesion 
molecule 1), CFTR (cystic fibrosis transmembrane conductance regulator), 
MDR3 (multidrug resistance gene 3), BSEP (bile salt export pump), 
AIRE (autoimmune regulator), NRAMP1 (natural resistance-associated 
macrophage protein 1), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), 
FOXP3 (forkhead box P3). NA: Not available. 
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PSC and UC patients of  the same ethnicity[100], the only 
parallel association detected was a protective effect of  
the DRB1*0404 allele, more pronounced among the PSC 
patients than among the patients with UC without liver 
disease. No association with any of  the main PSC risk 
alleles (DRB1*0301, DRB1*1301 or DRB1*1501) was 
found among the regular UC patients. Interestingly, a 
non-significant trend towards a higher frequency of  the 
DRB1*1501 allele was noted among the patients with 
PSC and concurrent IBD compared with PSC patients 
without IBD, and the possibility should be held open 
that this HLA haplotype may harbour genetic variants of  
particular importance for the IBD phenotype in PSC. A 
similar notion can be made with regard to the MMP3 5A 
allele association detected by Satsangi et al[79]. Although 
the replication study by Wiencke et al[78] failed to confirm 
an overall association with PSC susceptibility, a significant 
association was evident when PSC patients with UC were 
compared with UC patients without liver disease.

The study by Wiencke et al[78] also detected a possible 
association between cholangiocarcinoma and the 
MMP1 1G allele. Although the number of  patients 
with cholangiocarcinoma in this series was too small for 
conclusive statistics to be performed (n = 15), the 100% 
occurrence of  this allele among the cholangiocarcinoma 
patients warrants future replication attempts in other 
study populations. Recently, a highly significant association 
between polymorphisms in the NKG2D gene and 
cholangiocarcinoma in PSC was detected[71]. Previous 
studies have highlighted the importance of  this activating 
NK cell receptor in protection against other cancer 
types[66]. Persistent exposure to effector molecules of  
inflammatory pathways (e.g., IL-6[101]), along with chronic 
cholestasis[102], is probably important for the malignant 
transformation of  cholangiocytes. The study by Melum 
et al[33] points to the possible role of  NK cell activity in 
protection against neoplastic cells. Polymorphisms of  the 
NKG2D gene along with other parameters may also prove 
important in identifying PSC patients at a particular low 
risk of  developing cholangiocarcinoma. 

MODIFIER GENES IN PSC
There is an increasing interest in so-called "modifier genes" in 
complex diseases (as compared with "susceptibility genes"), 
initiated by the recognition of  the influence of  such 
genes on disease expression (e.g., severity) in monogenic 
disorders like cystic fibrosis and haemochromatosis[103-105]. 
Modifier genes may point to biochemical and physiological 
systems of  relevance to prognosis and are therefore of  
great clinical interest. Although PSC should be considered 
a progressive condition culminating in death or liver 
transplantation in most cases[106], the clinical course for 
each individual patient varies considerably[107,108]. In terms 
of  disease course, indicators of  PSC severity (e.g., portal 
hypertension and need for liver transplantation) are 
more likely to represent a particular disease stage than to 
serve as valid measures of  disease progression. The most 
precise strategy for performing enquiries on effects from 
genotypes on disease course in PSC is thus to compare 
absolute survival time (defined as time from diagnosis 

until death or liver transplantation) using Kaplan-Meyer 
analyses, or calculating the relative risk for death and/or 
liver transplantation from Cox regressions[109,110].

We have recently observed that genetic variants of  
the steroid and xenobiotic receptor (SXR) are associated 
with a more aggressive disease course in PSC[110]. The 
SXR is a ligand-dependent transcription factor known to 
mediate protection against bile acid-induced liver injury 
in cholestatic animal models[111,112]. In this perspective, our 
data may suggest that the activity of  bile acid detoxification 
systems could be of  importance for disease progression 
in PSC. Interestingly, the SXR ligand rifampicin has been 
used in the treatment of  cholestatic pruritus[113], and it 
has also been shown that ursodeoxycholic acid is able to 
activate SXR in human hepatocytes[114]. However, the SXR 
may also influence inflammatory pathways via the pro-
inflammatory transcription factor nuclear factor kappa B 
(NF-κB)[115], as well as liver fibrogenesis and thus cirrhosis 
via direct effects on hepatic stellate cells and Kuppfer 
cells[116]. Further studies are needed to clarify the functional 
consequences of  various polymorphisms of  the SXR gene 
in patients with PSC.

The SXR variants associated with death or liver 
transplantation in our study were not associated with PSC 
susceptibility[110]. However, also for some of  the disease- 
associated variants in the HLA complex, modifier effects 
have been observed. The first notion was made by Gow 
et al[117] who described an unusually aggressive disease 
progression in four patients carrying the DR4 allele. Later, 
Boberg et al[109] found that DR4 positive patients have an 
increased risk of  cholangiocarcinoma, but do formally 
not experience an accelerated disease progression. In this 
study, an increased risk of  death or liver transplantation 
was observed in patients heterozygous for the DR3-
DQ2 haplotype. As long as the causative variants along 
the HLA haplotypes in question have not been identified, 
one can only hypothesize upon a biological explanation 
for these observations. Given the complexity of  the 
HLA associations in PSC, it is even possible that other 
variants within this region may be important for disease 
progression than those primarily important for disease 
susceptibility. However, for the same reasons it has been 
difficult to pinpoint susceptibility genes in this region 
(strong LD, multiple genes of  immunological relevance, 
etc.), such modifier genes may prove hard to identify 
conclusively.

FUTURE STUDIES AND CONCLUDING
REMARKS
Although several important findings have been made 
during the past 25 years since the first genetic association 
study in PSC was performed[24], PSC remains an enigmatic 
disease and future studies are warranted. With an ever 
increasing availability of  methods for efficient genotyping 
of  polymorphisms[118], a critical limitation for such studies 
in PSC is the availability of  well-characterised patient 
materials. Collaborative efforts will be necessary to achieve 
patient collections required for detecting the modest 
effects (Figure 2), as well as for replicating results of  
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uncertain validity[33]. Such collaborations are now being 
undertaken in other diseases[119], and have successfully 
aided in clarifying genetic associations found in PSC[37].

In terms of  future research strategies, several proposals 
can be made. First, dissection of  the widely replicated 
HLA-associated susceptibility to PSC should be considered 
a priority. Detailed maps of  genetic markers in this region 
are now available[120]. It is anticipated that the systematic 
application of  such marker maps in populations of  an 
appropriate size may lead to the identification of  true, 
disease causing variants in this difficult region[62].

Second, some biological pathways are pointed to by 
existing findings (e.g., the possible importance of  bile 
acid homeostasis in influencing disease progression), and 
further candidate gene studies of  critical components of  
these systems may identify additional risk factors. There 
is increasing awareness of  the importance of  interaction 
between polymorphisms in functionally related genes 
in complex diseases, i.e., epistasis[121,122]. In some cases, 
epistatic considerations have proven necessary for the 
detection of  effects from genetic variation on a phenotype 
of  interest[123,124]. These observations have implications 
for study design in future candidate gene studies in PSC. 
Polymorphisms not only in single genes, but in relevant 
panels of  several genes encoding proteins with closely 
related functions, should be investigated. 

Finally, two recent advances in the genetic research 
field now make genome-wide studies feasible also for case-
control materials. First, the human haplotype map project 
(HAPMAP) was recently completed[125]. In the project, 3.9 
million SNPs have been genotyped in families of  three 
different ethnicities (at the time of  writing). Results from 
the project enable researchers worldwide to efficiently select 
SNPs throughout the genome that are prone to cover 
genetic variation of  interest to a project[126,127]. Second, 
although costs are high, genotyping technology now allows 
for the typing of  100 000's of  SNPs simultaneously in the 
same DNA sample[118]. Emerging reports provide proof-
of-concept for genome-wide case-control studies[128,129]. 
However, there are still statistical problems to be solved 
regarding the many tests performed and risk of  false 
positive results[130]. As evident from Figure 2, only strong 
effects may be detectable, and prospects may not yet justify 
the costs. However, sooner or later genome-wide studies 
seem warranted, also in PSC. Possibly, PSC susceptibility 
genes will be identified that would otherwise never have 
been included in hypothesis-driven candidate gene studies 
of  the type performed so far[131].
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