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Abstract
Inflammatory bowel disease (IBD), the most important 
being Crohn's disease and ulcerative colitis, results from 
chronic dysregulation of the mucosal immune system in 
the gastrointestinal tract. Although the pathogenesis of 
IBD remains unclear, it is widely accepted that genetic, 
environmental, and immunological factors are involved. 
Recent studies suggest that intestinal epithelial defenses 
are important to prevent inflammation by protecting 
against microbial pathogens and oxidative stresses. 
To investigate the etiology of IBD, animal models of 
experimental colitis have been developed and are 
frequently used to evaluate new anti-inflammatory 
treatments for IBD. Several models of experimental 
colitis that demonstrate various pathophysiological 
aspects of the human disease have been described. In 
this manuscript, we review the characteristic features 
of IBD through a discussion of the various chemically 
induced experimental models of colitis (e.g., dextran 
sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, 
oxazolone-, acetic acid-, and indomethacin-induced 
models). We also summarize some regulatory and 
pathogenic factors demonstrated by these models that 
can, hopefully, be exploited to develop future therapeutic 
strategies against IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD), including ulcerative 
colitis (UC) and Crohn's disease (CD), represents a 
chronic, relapsing and remitting inflammatory condition 
that affects individuals throughout life[1]. No completely 
effective therapeutic strategy has been established because 
the etiology of  IBD remains largely unknown, although 
there has been extensive research on its pathogenesis. 
However, recent advances in the understanding of  the 
pathophysiology of  IBD have provided some clues for 
developing potentially helpful therapeutic tools.

Within the past two decades, several models of  
experimental colitis have been reported that demonstrate 
various pathophysiological aspects of  human IBD. While 
no model serves as a complete surrogate for the human 
disease, some characteristically pathological features are 
open for investigation, depending on the method used to 
induce the experimental colitis. Experimental models of  
colitis enable us to dissect the pathogenic components 
during different phases of  colitis, including acute, recovery 
and chronic phases. They also enable us to identify some 
pivotal immunological processes, as well as novel genes 
that are intimately involved in disease susceptibility.

In this review, we mainly focus on the role of  functionally 
distinct factors, including immune cells, cytokines/
chemokines, receptors/ligands, transcriptional factors, and 
enzymes/hormones, which maintain the homeostatic balance 
in the colon during the development of  acute and chronic 
inflammation.

DSS-INDUCED COLITIS
The dextran sodium sulfate (DSS) model, originally 
reported by Okayasu et al[2] has been used to investigate 
the role of  leukocytes in the development of  colitis. 
Oral administration of  5% DSS in drinking water can 
induce not only acute, but also chronic colitis. One cycle 
of  3%-5% DSS administration for 5-7 d, followed by 



regular water, results in extensive injury with complete 
crypt depletion (mainly basal crypt) and relatively slow 
regeneration of  colonic epithelium. This regeneration is 
much slower than in other acute injury models, which use 
toxic substances such as acetic acid and ethanol[3]. The 
clinical features of  this model include weight loss, loose 
stools/diarrhea, and rectal bleeding. Histopathological 
analysis typically reveals extensive crypt and epithelial 
cell damage, significant infiltration of  granulocytes and 
mononuclear immune cells, and tissue edema, often 
accompanied with severe ulceration. In fact, because of  
the massive edema and subsequent ulceration during the 
acute phase, some researchers have wrongly used the 
DSS-induced colitis model by interpreting it as a model 
for human UC; however, this colitis is a simple model of  
acute chemical injury rather than chronic inflammation.  
Pathological scoring is generally performed on the distal 
segment of  the colon, which is the most severely affected 
portion[3]. Histopathology, by hematoxylin and eosin 
staining, is scored based on three parameters: severity of  
inflammation (none, mild, moderate, severe), extent of  
inflammation (none, mucosa, mucosa and submucosa, 
transmural), and crypt damage (none, basal one-third 
damaged, basal two-thirds damaged, crypt lost but surface 
epithelium present, crypt and surface epithelium lost). 
It is noteworthy that long-term DSS administration 
produces colorectal carcinoma, which is similar to the 
dysplasia-carcinoma sequence seen in the course of  cancer 
development in human UC[4].

Acute mucosal damage can be observed in both wild-
type and severely combined immunodeficiency (scid) 
mice, which indicates that acquired immune responses 
are not involved in the induction of  DSS-induced 
colitis[5]. The lesions observed in scid mice have been 
associated with increased production of  macrophage-
derived proinflammatory cytokines, such as interleukin 
(IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. While 
the role of  luminal bacteria in the pathogenesis of  DSS-
induced colitis is unclear, this colitis can be ameliorated 
by treatment with antibiotics that are clinically effective 
in patients with IBD[1], which suggests the importance 
of  commensal bacteria in the development of  colitis[6]. 
Although the earliest change of  acute DSS-induced colitis 
is a progressive disruption of  colonic crypts during the 
chronic phase (14 d after stopping DSS), macrophages 
and CD4+ T cells are more prominent in areas of  wound 
healing in the basal portions of  the lamina propria (LP).  
These CD4+ T cells secrete increased levels of  interferon 
(IFN)-γ and IL-4, which suggests that chronic immune 
activation mediated by both Th1 and Th2 cells play a 
pathogenic role in chronic DSS-induced colitis[7].

2,4,6-TRINITROBENZE SULFONIC ACID 
(TNBS)-INDUCED COLITIS
In 1995, Neurath et al described a novel murine model 
of  intestinal inf lammation induced by intrarectal 
administration of  hapten reagent TNBS in ethanol 
solution.  Simultaneous administration of  TNBS and 
ethanol is required to induce TNBS colitis, because ethanol 

disrupts the epithelial layer and exposes the underlying LP 
to bacterial components. Intestinal inflammation induced 
by intrarectal administration of  TNBS has many of  the 
characteristic features of  CD in humans, including severe 
transmural inflammation associated with diarrhea, rectal 
prolapse, weight loss, and induction of  an IL-12-driven 
inflammation with a massive Th1-mediated response[8]. 
Interestingly, prior oral administration of  TNBS in the 
form of  trinitrophenol-haptenated colonic protein (TNP-
CP) prevents colitis induced by intrarectal administration 
of  TNBS[9,10]. The preventive effect is due to the induction 
in the LP of  regulatory cells consisting of  CD4+ T cells 
that produce transforming growth factor (TGF)-β after 
oral administration of  TNP-CP[10]. 

The susceptibility to TNBS colitis varies between 
different mouse strains; SJL and BALB/c are susceptible, 
whereas C57Bl/6 and 10 mice are resistant.  The 
susceptibility has been shown to be related to a genetically 
determined high IL-12 response to the lipopolysaccharide 
(LPS) locus on chromosome 11 in SJL/J mice[11]. In a 
recent study, te Velde and colleagues compared gene 
expression profiles in the colons of  three different models 
of  colitis (DSS, TNBS and CD45RBhigh T-cell transfer 
models)[12]. As a result, a restricted number of  genes were 
either up- or down-regulated in the TNBS colitis (21 
genes) model compared to DSS-induced colitis (387 genes) 
and CD45RBhigh transfer model (582 genes)[12]. Of  the 32 
genes known to change transcriptional activity in IBD 
(TNF, IFN-γ, Ltβ , IL-6, IL-16, IL-18R1, IL-22, CCR2 and 
7, CCL2, 3, 4, 5, 7, 11, 17 and 20, CXCR3, CXCL1, 5 and 
10, Mmp3, 7, 9 and 14, Timp1, Reg3γ, Pap, S-100a8, S-100a9, 
Abcb1, and Ptgs2), two (Mmp14 and Timp1) are up-regulated 
in TNBS, 15 (IL-6, IL-16, IL-22, CCL2, 3 and 11, CXCL1 
and 5, Mmp3 and 14, Timp1, Reg3γ, Pap, S-100a9, and 
Ptgs2) are up- or down-regulated in DSS, and 30 (except 
for CCL11 and Timp1) are up- or down-regulated in the 
CD45RB transfer colitis models. The study suggests that 
the pattern of  gene expression in these colitis models 
closely reflects altered gene expression in human IBD[12].

OXAZOLONE COLITIS
In contrast to TNBS, which leads to colitis driven by a 
Th1-polarized type of  T-cell response, administration of  
another haptenating agent, oxazolone, leads to a colitis 
associated with a Th2-polarized type of  response. This 
model is induced by the rectal administration of  oxazolone 
suspended in an ethanol vehicle. Although the SJL/J strain 
of  mice was utilized in the original description[13], over half  
of  the later studies have been performed using the C57Bl/6 
strain. The induction of  colitis in the C57 strain requires 
a presensitizing treatment, since this strain is resistant to 
haptenating agents[14]. For presensitization, 4.5 mg - 6 mg of  
oxazolone in 100% ethanol is injected into the abdominal 
wall of  mice, followed by intrarectal administration of  
various doses of  oxazolone in 50% ethanol after 5 d.

Oxazolone colitis is limited to the distal part of  the 
colon, in contrast to TNBS colitis that is characterized as 
pan-colitic. Microscopically, the inflammation of  oxazolone 
colitis manifests as relatively superficial ulceration[13]. An 
IL-4-driven Th2-type of  response is predominant and is 
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characterized by increased IL-4/IL-5, but normal IFN-γ 
production. The inflammation is prevented by the systemic 
co-administration of  intraperitoneal anti-IL-4 antibody. 
The proinflammatory Th2-dominant cytokine response 
is regulated by TGF-β, which limits both the extent and 
duration of  the disease. The histological features and 
inflammatory distribution of  oxazolone colitis resemble 
human UC[13].

OTHER CHEMICALLY-INDUCED COLITIS 
MODELS
In a search for novel experimental models of  acute IBD, 
MacPherson and colleagues have found that intrarectal 
administration of  3%-5% acetic acid induces acute colitis 
in the distal part of  the colon in rats[15]. The initial injury 
consists of  epithelial necrosis and edema that variably 
extends into the LP, submucosa, or external muscle layers. 
Epithelial injury is mainly caused by organic acids specifically 
because hydroxyl chloride (pH 2.3) does not generally 
induce acute colitis[4]. In mice, administration of  acetic acid 
within 4 h results in colonic epithelial destruction without 
inflammation, which is then followed by an influx of  acute 
inflammatory cells, and reaches its maximum intensity at 12 h. 
The inflammatory response is caused by non-specific factors 
after disruption of  the epithelial barrier. The chemical injury 
heals within days in mice or 2-3 wk in rats[16].

Whereas acetic acid produces acute inflammation 
restricted to the colon, another pro-inflammatory agent, 
indomethacin, has been used to induce acute ileitis. 
Fasted rats are treated subcutaneously with indomethacin  
7.5 mg/kg in sterile sodium bicarbonate, which leads to 
an acute inflammatory response characterized by multiple 
deep, longitudinal ulcers in the distal jejunum and proximal 
ileum. This acute response reaches its maximum intensity 
at 24 h and is completely resolved within 7 d, whereas two 
daily subcutaneous injections of  indomethacin produce a 

chronic inflammation that lasts at least 2 wk[17]. Luminal 
bacteria and their products significantly contribute to the 
exacerbation and perpetuation of  the chronic phase of  
indomethacin-induced inflammation.

These models have the advantage of  being easy to 
initiate and therefore would be useful in the initial screening 
of  new drugs for acute epithelial injury.  However, the injury 
in the first 24 h is nonimmunologic and thus is not suitable 
for drug therapy trials for human IBD.

FACTORS INVOLVED IN THE 
PATHOGENESIS OF THE MAIN 
CHEMICALLY INDUCED COLITIS MODELS
In the following section, we focus more on the factors 
involved in the fine balance between pathogenic and 
regulatory factors in the pathogenesis of  DSS- (Table 1), 
TNBS- (Table 2), and oxazolone- (Table 3) induced colitis.

T cells
CD4+ T cells play a key role in the development of  most 
T-cell-mediated IBD models. For example, the increased 
production of  IFN-γ, mainly produced by CD4+ T cells, 
is detected in most models of  Th1-mediated colitis[18]. 
By contrast, IL-4 and IL-13, produced by natural killer 
(NK) T cells, have been shown to play a key role in the 
pathogenesis of  Th2-mediated colitis, including oxazolone-
induced colitis[19]. NK1.1 positive lymphocytes are also 
essential for alleviation of  TNBS-induced colitis in the 
presence of  peripheral tolerance[20].

Although CD8+ T cells represent a major T-cell subset, 
there is little information available regarding the role of  
CD8+ T cells in the pathogenesis of  colitis. CD8+ T cell 
receptor (TCR)-positive Vβ14+ T cells, which are increased 
in the LP and have a cytotoxic effect[21], have a pathogenic 
role in the development of  TNBS-induced colitis.

By contrast, TCRγδ T cells are an evolutionarily 

Pathogenic factors
Categories Factors (References) 
Chemokines/cytokines Migration inhibitory factor[114], LIX[115], L-18[33], CCR5[116], IL-1[117]

Adhesion molecules CD98[118], β2 integrins (CD18/11a)[83], Integrin α1β1[81], VCAM-1[119]

Transcriptional factors STAT3[74]

Toll like receptors and ligands CpG motifs[92], Flagellin/TLR5[90]

Enzymes Chitinase 3-like-1[102], Carbonic anhydrase Ⅳ[100], Eosinophil peroxidase[120], Caspase-1[105]

Hormones Adiponectin[112], Resistin-like molecule β[121], Leptin[113], Osteopontin[122], Activins[123] 
Others Galanin-1 receptor[124]

Regulatory factors
Categories Factors (References)
T cells γδT cells[23,24]

Cytokines/chemokines BFGF[51], FGF2[125], TGF-α[46], TFF2[53], ITF[54], HGF[47,49]

Transcription factors SOCS3[74], Nrf2[126], PPARγ[76,77], PPARδ[76]

Adhesion molecules B2 integrins (CD11β)[83]

Receptors TLR4[87], PG receptor EP-4[95], Pregnane X Receptor[127]

Enzymes COX-2[94,96], COX-1[94], Matrix metalloproteinase-2[128]

Hormones Estrogen[129], Growth hormone[130], Adiponectin[110]

Neuronal factors Vagus nerve[131], IRE1β[132], Neurotensin[133]

Lipid-associated molecules Lipoxin A4[134], Apolipoprotein A-Ⅳ[135]

Others Dietary glycine[136], Follistatin[123], Bacterial superantigens[137], Thioredoxin-1[138]

Table 1  Pathogenesis of IBD models in DSS colitis
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conserved minor T-cell subset with characteristic properties 
that help maintain the homeostasis of  epithelial cells, by 
providing a barrier between the luminal bacterial contents 
and underlying immune cells[22]. A regulatory role has been 
shown for TCRγδ T cells in DSS-[23,24] and TNBS-induced 
colitis models[25,26].

In addition to these populations, carcinoembryonic 
antigen-related cellular adhesion molecule 1 (CEACAM1; 
also known as CD66a) is a cell surface molecule that has 
been proposed to negatively regulate T cell function, and 
is associated with the regulation of  T-bet-mediated Th1 
cytokine signaling in TNBS- and oxazolone-induced colitis 
models[27].

Finally, regulatory T cells express the antigen non-
specific suppressor factors transforming growth factor-β 
(TGF-β) and IL-10. Boirivant et al have shown that TNP-CP 
feeding cross-protects mice from an inflammatory response 
to a different hapten, oxazolone. This protective effect is 
associated with the appearance of  mononuclear cells that 
produce regulatory cytokines[28]. This phenomenon of  cross-
protection could be exploited in designing novel treatments 
for IBD, because it demonstrates that an orally-administered 

antigen can induce production of  regulatory cells that are 
able to suppress inflammation induced by a different type 
of  antigen.

Cytokines/chemokines/growth factors
TNBS injection results in a transmural infiltrative colitis 
associated with an IL-12-mediated Th1-immune response[8]. 
In most cases, a single dose of  TNBS is administered at the 
starting point of  the experiment. In subsequent studies of  
IL-12, it has been reported that mucosal TNF-α is necessary 
for the initiation and perpetuation of  TNBS colitis, since 
TNF-α-deficient mice are resistant to TNBS, and the colitis 
is extremely severe in mice that over-express TNF-α[29]. This 
result suggests that TNFα acts as a proximal co-factor for 
IL-12 or IL-18 production. One possible mechanism of  
amelioration by anti-IL-12 antibody treatment is through the 
induction of  Fas-mediated apoptosis of  Th1 cells[30].

Watanabe and colleagues have shown that TNBS-
induced colitis is mediated by macrophage-derived IL-18[31]. 
In fact, neutralization with anti-IL-18 antibody results in 
dramatic attenuation of  mucosal inflammation, and the 
administration of  TNBS fails to induce significant colitis 
in IL-18 knockout (KO) mice. These results have been 
confirmed by another group who have demonstrated 
that recombinant human IL-18 binding protein isoform 
(rhIL-18BPa) leads to a significant reduction in TNBS-
induced colitis, by decreasing local TNF-α production[32]. 
Interestingly, IL-18 is also a primary mediator of  the 
inflammation in DSS-induced colitis, while neutralization of  
IL-18 attenuates intestinal damage in that colitis model[33].

In Th1-mediated colitis, the use of  agents that block 
IL-12 secretion or activity provides the most direct approach 
for attenuating inflammation because IL-12 is critical for 
regulation of  differentiation and activation of  Th1 cells[8,30]. 
It has been demonstrated that IL-12p40 KO mice develop 
severe TNBS-induced colitis. Moreover, administration of  
IL-12p40 neutralizing antibody increases pathology in IL-
12p35 KO mice, which suggests that IL-12p40, in contrast 

Pathogenic factors
Categories Factors (References)
T cells Th1[8], CD8+ TCR Vβ14+ T cell[21], CEACAM1[27] 
Cytokines/chemokines IL-12[8,30], IFN-γ[8,34], IL-18[31,32,139], IL-6[73], IL-16[140], IL-17[38], TNF-α[29,141], MIP-α[142], MIP-3α[143]

Receptors CD40[57,58], CD44v7[144], FcεRI[145], GITR[63,64], Complement receptor 3[146]

Transcription factors NF-κB p65[65,67,147], RICK[69,70], MAPK p38[70], Smad7[72], Smad3[148]

Adhesion molecules Integrinα1β1[80]

Enzymes Poly (ADP-ribose) synthetase[149,150], Inducible nitric oxide synthase[151], Angiotensinogen[152], Vanin-1[107]

Hormones Leptin[113], Ghrelin[153], Adiponectin[112]

Others Geneticfactors[11], Glycolipid[154]

Regulatory factors
Categories Factors (References)
T cells TCRγδ[25,26], NK1.1[20,155,156]

Cytokines/chemokines TGF-β[10,44,45], IL-10[44,157,158], IL12 p40[34], IL12 p40-IgG2b[159], IL-2-IgG2b[160], IL-23[39], HGF[48], BFGF[51]

Receptors PAR-2[61], TNFR1[56]

Transcription factors STAT5b[161], Interferon regulatory factor-1[162], PPARγ[75]

Enzymes Indoleamine 2, 3-dioxygenase[163]

Hormones Adrenocortical hormones[164,165], NCX-101[166]

Neurotransmitters Vasoactive intestinal peptide[167,168], μopioid receptor[169]

Lipid mediators Lipoxin A4[170], Marine[171]

Bacteria and parasite related factors Yersinia pseudotuberculosis[172], Lactic acid bacteria[173,174], Schistosome eggs[175], Cholera toxin subunit B[176,177]

Others Galectin-1[178], Curcumin[179], Catalposide[180], Follistatin[123], Phex gene[181], FTY720[182], Matrine[183]

Table 2  Pathogenesis of IBD models in TNBS colitis

Pathogenic factors
Categories Factors (References) 
T cells NKT[19], CEACAM1[27], Major basic

protein[184], MHC class Ⅱ transactivator[185]

Cytokines/chemokines IL-4[13], IL-13[19,40], EBI3[42]

Transcription factors Smad7[72], NF-κB[67,68]

Others Glycolipid[154]

Regulatory factors
Categories Factors (References)
T cells Regulatory T cells[28]

Cytokines/chemokines TGF-β[13]

Receptors PAR-1[60]

Others Budesonide[186]

Table 3  Pathogenesis of IBD models in oxazolone colitis
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to IL-12p70, exerts the major regulatory function in TNBS-
induced colitis[34]. However, IL-12p40 forms heterodimers, 
not only with IL-12p35 (IL12p35p40; IL-12p70), but also 
with IL-23p19 (IL-23p19p40); a finding that raises the 
possibility that activity previously ascribed to IL-12 may be 
attributable to IL-23.  Recently, it has been revealed that 
IL-23 is a key effector cytokine in the immune system of  
the intestine[35]. IL-23 specifically expands a pathogenic 
population of  CD4+ T cells called Th-17 cells, which 
produce IL-17A, IL-17F, IL-6 and TNF-α[36,37]. Indeed, IL-
17R KO mice are protected against TNBS-induced colitis[38]. 
By contrast, Becker et al[39] have reported that IL-23 cross-
regulates IL-12 production in T-cell-mediated TNBS colitis, 
since mice lacking the p19 subunit of  IL-23 are highly 
susceptible to TNBS-induced colitis, and inhibition of  IL-
12p40 rescues IL-23p19 KO mice from lethal disease. 
These discrepancies regarding the role of  IL-23 may result 
from different experimental models; therefore, further 
characterization should help in developing new therapeutic 
treatments for patients.

As for the Th2-type responses, oxazolone colitis is 
associated with increased production of  IL-4/IL-5, and is 
prevented by the systemic co-administration of  anti-IL-4 
antibody[13]. Heller et al[19] have shown that IL-13, mainly 
produced by NK T cells, is a significant pathogenic factor 
in this model, since its neutralization by the decoy receptor 
IL-13Rα2-Fc prevents disease. As well, IL-13 induces 
TGF-β1, generally considered to be an anti-inflammatory 
cytokine, through IL-13Rα2 in oxazolone-induced colitis, 
and prevention of  IL-13Rα2 expression leads to the 
marked down-regulation of  TGF-β1 production and 
collagen deposition in bleomycin-induced lung fibrosis, 
during prolonged inflammation[40].

As an IL-12p40-related protein, it has been reported 
that Epstein-Barr virus-induced gene 3 (EBI3) dimerizes 
with a novel p28 subunit (which has homology to IL-
12p35) to form the cytokine IL-27[41]. IL-27 has been 
shown to function as a proliferation factor for naïve, but 
not memory, CD4+ T cells, and to synergize with IL-12 
to stimulate IFN-γ production[41]. That EBI3 KO mice 
have been found to be resistant to oxazolone-induced 
colitis suggests that this molecule plays a crucial role in the 
induction of  Th2-type immune responses[42].

Several families of  growth factors regulate a wide 
spectrum of  processes integral to IBD; including 
protection of  the intestinal mucosa and activation, as 
well as regulation of  the intestinal immune system. These 
factors mediate mucosal repair, restitution, remodeling and 
resolution of  inflammation following tissue damage[43]. 
It is now widely accepted that TGF-β has an important 
function in regulating inflammation and tissue repair. 
Fuss et al[44] have elegantly demonstrated the relationship 
between TGF-β and IL-10 in the regulation of  Th1-
mediated inflammation in TNBS-induced colitis, by 
performing a study in which mice were fed a haptenated 
colonic protein and then administered either anti-
TGF-β or anti-IL-10 antibody, at the time of  subsequent 
rectal administration of  TNBS. Anti-TGF-β antibody 
administration prevents TGF-β secretion, but leaves IL-10 
secretion intact, whereas anti-IL-10 antibody administration 
inhibits both TGF-β and IL-10 secretion. Their data 

suggest that TGF-β alone is the primary mediator of  
counter-regulatory Th1-type mucosal inflammation, and 
that IL-10 is necessary as a secondary factor that facilitates 
TGF-β production, but does not act as a suppressor 
cytokine by itself. Interestingly, Kitani et al[45] have shown 
that single intranasal administration of  DNA encoding 
active TGF-β prevents the development of  Th1-mediated 
TNBS colitis. This study shows that following treatment, 
TGF-β-producing T cells and macrophages are found 
in the LP and spleen, in which they hypothetically act to 
prevent induction of  TNBS colitis. Therapeutic strategies 
involving TGF-β-encoding DNA may provide beneficial 
effects in treating intestinal inflammation.

The role of  TGF-α in the small intestine and colon has 
not been studied as extensively as it has been in the gastric 
mucosa. In DSS colitis, TGF-α is a mediator of  protection 
and/or healing in the colon, which is demonstrated by the 
absence of  disease in TGF-α-KO mice[46].

Hepatocyte growth factor (HGF) may be a critical 
regulatory factor in IBD since HGF activator-KO mice are 
unable to survive after DSS or acetic acid-induced colitis[47]. 
HGF promotes migration of  gastrointestinal epithelial 
cells and accelerates wound repair by mucosal cells. The 
importance of  HGF has been confirmed by the intrarectal 
administration of  HGF-expressing adenovirus in TNBS-
treated mice, which leads to significant improvements in 
mucosal damage[48]. The same group has also demonstrated 
the therapeutic effects of  naked gene therapy of  HGF 
in the DSS-induced colitis model[49]. Taking these results 
together, HGF gene delivery may be very useful as a 
therapeutic strategy for human IBD.

As well as HGF, basic fibroblast growth factor 
(bFGF or FGF-2) also improves mucosal damage by 
enhancing epithelial cell restitution and proliferation in 
the gastrointestinal tract[50]. In fact, rectal administration 
of  human recombinant bFGF (hrbFGF) ameliorates 
DSS-induced colitis by significantly reducing the gene 
expression level of  TNF-α[51]. Not only DSS-, but also 
TNBS-induced colitis is improved by the administration of  
hrbFGF, which not only enhances survival rate, but also 
up-regulates levels of  cyclooxygenase (COX)-2, TGF-β, 
intestinal trefoil factor (ITF), and vascular endothelial 
growth factor (VEGF) in the colon[51].

Lastly, the trefoil factor family is comprised of  three 
peptides; trefoil factor family 1 (TFF1), spasmolytic 
polypeptide (SP also known TFF2), and ITF (also known 
as TFF3). TFF2 is a low-molecular-weight protein that is 
up-regulated in gastric tissues infected with Helicobacter or 
affected by other inflammatory conditions[52]. TFF2 KO 
mice are susceptible to DSS-induced colitis, with prolonged 
colonic hemorrhage and persistent weight loss[53]. The 
importance of  ITF in the modulation of  inflammation, 
wound healing, and protection of  the intestinal mucosa is 
supported by experiments in ITF KO mice, which have 
shown increased susceptibility and delayed wound healing 
during DSS- and acetic acid-induced colitis[54].

Receptors
TNF-α plays a central role in the pathology of  Th1-
mediated colitis such as CD; however, the role of  its 
receptors, TNF receptor-typeⅠ(TNFR1) and -type Ⅱ 
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(TNFR2) in mediating pathology has not been fully 
explored. TNFR2 expression and signal transducer and 
activator of  transcription (STAT) 3 activation in colonic 
epithelial cells (CECs) are markedly up-regulated during 
the recovery phase of  DSS-induced acute colitis[55]. 
Recently, it has been reported that TNFR1 KO mice lose 
more weight and have increased mortality compared with 
wild-type mice, while TNFR2 KO mice lose less weight 
and have an improved survival rate compared to wild-
type mice in TNBS-induced colitis. These results suggest 
that TNF-α signaling through TNFR1, but not TNFR2, is 
protective in mouse models of  IBD[56].

As for Th1-type responses, CD40L-CD40 interaction 
is crucial for the priming of  Th1 cells via the stimulation 
of  IL-12 secretion by antigen-presenting cells (APC) in 
TNBS-induced colitis. The administration of  anti-CD40L 
antibody prevents IFN-γ production and TNBS-induced 
colitis, which suggests that the Th1 response may be 
mediated by CD40L-CD40 interactions[57,58].

Recent studies have demonstrated that the proteinase-
activated receptors (PARs), a family of  G protein-
coupled receptors activated by serine proteinases, have 
an important anti-inflammatory role in the colon. PAR-1 
and -2 are highly expressed in CECs and neuronal 
elements, and are involved in regulating secretion by the 
epithelial cells of  salivary glands, stomach, pancreas and 
the intestine[59]. Intracolonic administration of  PAR-1 
agonist in oxazolone-treated mice efficiently inhibits 
colitis[59]. By contrast, the inflammatory responses in PAR1 
KO or PAR-1 antagonist-treated mice are exacerbated in 
oxazolone-induced colitis[60]. As well, PAR-2 activation 
prevents the development of  TNBS-induced colitis[61].

Finally, the glucocorticoid-induced TNFR (GITR)-
related gene is a member of  the TNFR superfamily that 
is constitutively expressed at high levels on CD4+ CD25+ 
regulatory T cells, and at low levels on unstimulated T 
cells, B cells and macrophages[62]. GITR signalling in CD4+ 
T cells is involved in the development and progression of  
colitis[63], while deletion of  GITR protects against TNBS-
induced colitis by reducing innate immune responses and 
effector T-cell activity[64].

Transcription factors
Nuclear factor (NF)-κB is the key transcription factor 
for pro-inflammatory responses, and is thought to be 
important in the initiation and progression of  both human 
IBD and animal models of  colitis[65,66]. Disease activity in 
mice with TNBS-induced colitis is inhibited by antisense 
oligonucleotides that inhibit the p65 subunit of  NF-κB, 
which suggests a critical role for NF-κB in mediating 
inflammatory responses[65]. Attempts to control mucosal 
inflammation by the use of  agents that block the NF-κB 
pathway have had some success in murine models. For 
example, it has been shown that administration of  NF-κB 
decoy oligodeoxynucleotides (decoy ODNs) encapsulated 
in a viral envelope prevents the development of  TNBS-
and oxazolone-induced colitis by inhibiting production 
of  IL-23/IL-17[67]. De Vry et al have used a chemically 
modified, non-viral NF-κB decoy and have shown that 
the NF-κB decoy ameliorates disease severity in TNBS-, 
DSS- and oxazolone- induced colitis. These studies suggest 

that NF-κB decoy ODNs are effective in attenuating 
Th1- as well as Th2-mediated colitis, and this would be a 
potentially useful therapeutic strategy for human IBD[68]. 
In addition to NF-κB, mitogen-activated protein kinase 
(MAPK) p38 is also a crucial mediator of  inflammation.  
Inhibition of  NF-κB and MAPK p38 by SB203580 is able 
to attenuate the inflammatory response in TNBS-induced 
colitis models[69,70].

By contrast, TGF-β1 functions as a negative regulator 
of  T-cell immune responses, signaling target cells through 
the Smad family of  proteins. Smad7, an inhibitor of  
TGF-β1 signaling, is over-expressed in the intestinal 
mucosa and purified mucosal T cells isolated from 
patients with IBD[71]. Oral administration of  antisense 
oligonucleotide of  Smad7 also ameliorates inflammation 
in TNBS- and oxazolone-induced colitis, by restoring 
TGF-β1 signaling via Smad3[72].

It has been demonstrated that cytokines exert their 
biological functions through Janus tyrosine kinases and 
STAT transcription factors. An experiment blocking 
the IL-6 receptor has demonstrated that IL-6 plays an 
important role in the development of  Th1-mediated 
TNBS-induced colitis by activating the STAT3 signaling 
pathway[73]. Indeed, STAT3 was most strongly tyrosine-
phosphorylated in human UC and CD patients and in 
DSS-induced colitis in mice[74]. These results suggest 
that the IL-6/STAT3 pathway plays a crucial role in the 
development and perpetuation of  DSS-induced colitis.

Lastly, peroxisome proliferator-activated receptor 
γ (PPARγ) is a lipid-activated transcription factor, and 
PPARγ heterozygous mice are highly susceptible to 
TNBS-[75] and DSS-induced colitis[76]. It has also been 
reported that mice with a targeted disruption of  PPARγ 
in macrophages display an increased susceptibility to DSS-
induced colitis[77]. Therefore, activation of  PPARγ may 
potentially protect against human IBD.

Adhesion molecules
Trafficking, activation and retention of  leukocytes within 
inflamed tissues are mediated by several classes of  
specialized adhesion glycoproteins[78]. Collagens represent 
the most abundant extracellular matrix protein, and the 
major cell surface receptors for collagens are integrins[78,79]. 
The collagen-binding integrin α1β1 mediates inflammation 
in TNBS-[80] and DSS-induced colitis[81], which suggests the 
importance of  α1β1-mediated adhesive leukocyte/matrix 
interactions in regulating mucosal inflammatory responses. 
Leukocyte β2 integrins are heterodimeric adhesion 
molecules consisting of  a common β subunit (CD18) and 
different α subunits (CD11a-d)[82]. In DSS-induced colitis, 
leukocyte function-associated antigen-1 (LFA-1, CD11a/
CD18) seems to have a pathogenic role, whereas Integrin 
alpha M (Mac-1α, CD11b/CD18) serves in a regulatory 
capacity[83]. Much attention has been focused on the role 
of  α4 integrin in IBD, but it has recently been reported 
that neutralization therapy may result in undesirable 
complications such as multifocal leukoencephalopathy[84].

Toll-like receptors (TLRs) and their ligands
It is widely suspected that IBD arises from a dysregulated 
mucosal immune response to luminal bacteria. TLRs, 
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which are pattern-recognition receptors expressed by 
both immune and non-immune cells, play a pivotal role 
in host/microbial interactions and have two distinct 
functions-protection from infection and control of  tissue 
homeostasis, depending on the recognition of  pathogens 
or commensals[85-88]. TLRs send intracellular signals in 
response to intestinal commensal or pathogenic microbes 
that contain or release conserved molecular patterns, such 
as LPS, bacterial lipoprotein, bacterial cytosine-guanosine 
dinucleotide (CpG) DNA, and bacterial f lagel l in. 
Activation of  TLRs results in the activation of  the innate 
and/or adaptive immune response[85]. In this context, TLRs 
play an important role in the maintenance of  intestinal 
homeostasis. TLR4 recognizes LPS, and transduces a 
proinflammatory signal through the adapter molecule 
myeloid differentiation marker 88 (MyD88)[86]. DSS 
treatment of  TLR4 KO and MyD88 KO mice has been 
shown to induce earlier and more severe colitis compared 
to that in wild-type mice, which suggests that TLR4 
signaling through MyD88 is an important suppressor of  
the inflammatory response to chemical injury[87].

Bacterial flagellin specifically stimulates TLR5 and 
activates MAPK and NF-κB-related signaling pathways, 
which leads to the production of  macrophage inflammatory 
protein 3α (MIP3α) and IL-8[89]. Flagellin exposure 
exacerbates inflammation in DSS-induced colitis, but not 
in the intact colon[88]. By contrast, a TLR2 specific agonist, 
peptidoglycan or lipoteichoic acid, does not cause any 
inflammatory response[90].

Lastly, TLR9 is critical for the recognition of  the CpG 
motif  of  bacterial DNA[91]. DSS-induced colitis is less 
severe in TLR-9 KO mice[92], and treatment of  mice with an 
adenovirus expressing CpG-ODN that is known to block 
CpG effects results in significant amelioration of  DSS-
induced colitis[92], which indicates that ODN inhibition of  
the immune-stimulating properties of  bacterial DNA may 
offer a novel and specific tool for the treatment of  IBD.

Enzymes
Although intestinal epithelial cells constitutively express 
COX-1, COX-2 is induced only during inflammatory 
conditions. Enzymatic activity of  these COX isoforms 
produces prostaglandins (PGs) that have proinflammatory 
roles mediating fever, hyperalgesia, vascular permeability 
and edema. However, PGs also have a protective role 
against gastrointestinal injury[93]. The linkage between 
COX-2 and PGE2 for protection against colitis has 
been highlighted in various studies. For example, 
COX-2 KO mice are more susceptible to DSS-induced 
colitis, which correlates with their inability to produce 
PGE2[94]. Kabashima et al[95] have used mice deficient in 
prostaglandin receptor EP4 and examined the roles of  
prostanoids in DSS-induced colitis; their mice developed 
severe colitis, which suggests that EP4 maintains intestinal 
homeostasis by keeping mucosal integrity and down-
regulating immune responses. It has also been shown 
that COX-2-derived PGE2 is important in TLR4-related 
mucosal repair[96], and that COX-2 has a protective effect 
against acetic-acid-induced colitis[97,98]. These results 
suggest that COX-2 has a pivotal role in the maintenance 

of  mucosal homeostasis.  However, there is controversy 
about whether COX-2 inhibitors worsen symptoms of  
human IBD[99].

Through the use of  DNA microarray analysis, our 
group has demonstrated that several detoxification-
associated molecules, which contribute to the prevention 
of  inflammation by regulating physiological balance under 
normal conditions, are highly down-regulated in CECs in 
chronic colitis[100]. Among the up-regulated detoxification-
associated molecules, carbonic anhydrase (CAR)-Ⅳ 
is an important enzyme involved in the suppression 
of  acidification, by regulating mucosal bicarbonate 
concentration[101]. Unexpectedly, inhibition of  CAR-Ⅳ 
suppresses the severity of  DSS-induced colitis but enhances 
CEC proliferation, which raises the possibility that CAR-Ⅳ 
may have a pathogenic role under inflammatory conditions.  
Microarray analysis also identifies chitinase 3-like-1 (CHI3L1) 
as being specifically up-regulated in inflamed mucosa[102]. 
The expression of  CHI3L1 protein is detectable in LP and 
CECs in several murine colitis models, and also in IBD 
patients, but is absent in normal controls. Anti-CHI3L1 
antibody administration significantly ameliorates DSS-
induced colitis, which suggests that inhibition of  CHI3L1 
activity may be a novel therapeutic approach for IBD. Our 
group is currently investigating this possibility by utilizing 
murine models of  chronic colitis.

As well, IL-1β-converting enzyme (ICE), also known 
as caspase-1, is an intracellular protease that cleaves the 
precursors of  IL-1β and IL-18 into active cytokines[103,104]. 
ICE deficiency results in protection from DSS-induced 
colitis, accompanied by the reduced release of  the 
proinflammatory cytokines IL-18, IL-1β and IFN-γ[105].

Lastly, recent studies have identified Vanin-1 as being 
involved in the regulation of  innate immunity. Vanin-1 is 
an epithelial ectoenzyme with pantetheinase activity, which 
is involved in the metabolic pathway of  pantothenate 
(vitamin B5), and provides cysteamine to tissues[106]. Vanin-1 
deficiency protects from TNBS-induced colitis. Additionally, 
by antagonizing PPARγ, Vanin-1 promotes the production 
of  inflammatory mediators by intestinal epithelial cells[107]. 
This study suggests that Vanin-1 is an epithelial sensor of  
stress that exerts control over innate immune responses in 
tissues. As such, it has been proposed as a potential new 
therapeutic target for IBD.

Hormones
It has been demonstrated that adipose tissue secretes a 
variety of  biologically active molecules[108]. Adiponectin 
(APN) is an adipose tissue-derived hormone and is 
considered to be a member of  the expanding family of  
adipokines[109]. APN has a protective role against DSS-
induced murine colitis, but not TNBS-induced disease[110], 
by inhibiting the production of  chemokines such as 
monocyte chemoattractant protein-1 and MIP-2 in CECs, 
and the subsequent inflammatory response. However, a 
proinflammatory role for APN in synovial fibroblasts[111] 
and CECs[112] has recently been suggested. APN exerts 
proinflammatory activity in the colon by producing 
proinflammatory cytokines and inhibiting the bioactivity 
of  protective growth factors such as bFGF and heparin-
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binding epidermal growth factor. It is interesting to note 
that APN KO mice are highly protected from both DSS- 
and TNBS-induced colitis[112].

Finally, leptin, a regulator of  food intake and energy 
expenditure, can also modulate immune and inflammatory 
responses. Leptin-deficient (ob/ob) mice exhibit less 
severe colitis compared to wild-type mice in DSS and 
TNBS models, while replacement of  leptin in ob/ob mice 
converts disease resistance to susceptibility, which indicates 
that leptin deficiency accounts for the resistance to acute 
DSS- and TNBS-induced colitis[113]. It has also been shown 
that phosphorylation of  STAT3 and induction of  COX-2 
are absent in the colon of  ob/ob mice[113]. Therefore, 
leptin represents a functional link between the endocrine 
and immune systems.

CONCLUSION
Dysregulated immune responses initiated by microbial-
host interactions contribute to the development and 
perpetuation of  both murine colitis and, most likely, to 
human IBD. In this process, intestinal epithelial cells 
play important roles linking innate and acquired immune 
responses. In this review, we have focused primarily on 
the role of  functionally distinct factors in the pathogenesis 
of  chemically-induced models of  intestinal inflammation 
during acute, recovery and chronic phases. The increasing 
clinical use of  biological therapy in human IBD illustrates 
the potential benefits that may be derived from molecular 
analysis of  immunopathogenesis. However, the long-term 
effects of  such therapy have still not been determined, and 
concerns regarding potentially increased risks of  infection 
or tumor development have been raised, given the essential 
roles of  innate and acquired immunity in host defense. In 
this respect, topical treatment would have the advantage of  
selectively targeting local immune responses while sparing 
systemic immune protective mechanisms. Therefore, 
we need to find agents that have more targeted effects 
or take advantage of  local delivery systems that target 
diseased lesions, such as is seen with oligonucleotide-based 
therapeutics. The different animal models provide an easy 
means to study factors involved in pathogenesis and to test 
new therapeutic agents for human IBD.
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