
it comprises the third most common cancer type to occur 
in men and women and was the second leading cause of  
death among cancer patients in the United States during 
2006[1].

Different surgical approaches can guarantee low 
recurrence rates and high survival expectancy in stagesⅠ
to Ⅲ colon neoplasm patients[2]. Furthermore, adjuvant 
chemotherapy administration has been shown to effectively 
improve those rates[3]. However, the subset of  stage Ⅱ 
colon cancer patients to whom adjuvant therapy should 
be offered is still to be addressed[4]. In fact, different 
molecular pathology studies and genomic/proteomic 
investigations are working on that task[5]. 

In contrast, metastatic colorectal cancer is still far 
away from being a curable condition and the main goals 
in the treatment of  stage Ⅳ colorectal cancer are to 
decrease tumor-related symptoms or, alternatively, to 
prolong symptom-free survival with tolerable toxicity[6,7]. 
However, the emergence of  the h ighly se lect ive 
therapeutic antibodies bevacizumab and cetuximab has 
definitely improved the survival of  patients with metastatic 
CRC[8,9]. This fact has intensively boosted the search for 
other targeted therapies directed to other fundamental 
checkpoints in colorectal tumorigenesis[10,11]. 

Thus, due to colorectal cancer clinical and economic 
relevance, its basic and clinical research has become one of  
the most funded among all tumor types in most developed 
countries. However, the straightforward translation of  
basic research findings into colorectal cancer therapies is 
still underway. 

In the present paper, a summarized view of  some 
of  the new available approaches on colorectal cancer 
translational research is provided. 

TRANSLATIONAL RESEARCH IN CANCER: 
DEFINING CONCEPTS
Translation of  the exciting novel findings made in basic 
laboratories into testable hypotheses for evaluation in 
clinical trials is the ultimate aim of  translational research 
in oncology[12-14]. Between a laboratory breakthrough and 
a real achievement in the clinic, there must be translational 
research. Thus, the job of  the translational researcher is 
to take the knowledge gained in the laboratory and lay the 
groundwork needed to develop a new diagnostic tool for a 
human tumor or a novel drug to be tested in a clinical trial 
in human beings (Figure 1). 

In other words, in order to improve human health, 
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Abstract
Defining translational research is still a complex task. 
In oncology, translational research implies using 
our basic knowledge learnt from in vitro  and in vivo 
experiments to directly improve diagnostic tools and 
therapeutic approaches in cancer patients. Moreover, 
the better understanding of human cancer and its use to 
design more reliable tumor models and more accurate 
experimental systems also has to be considered a good 
example of translational research. The identification 
and characterization of new molecular markers and 
the discovery of novel targeted therapies are two 
main goals in colorectal cancer translational research. 
However, the straightforward translation of basic 
research findings, specifically into colorectal cancer 
treatment and vice versa  is still underway. In the present 
paper, a summarized view of some of the new available 
approaches on colorectal cancer translational research 
is provided. Pros and cons are discussed for every 
approach exposed. 
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INTRODUCTION TO COLORECTAL 
CANCER
In the current century, despite the recent achievements in 
the treatment of  advanced colorectal carcinoma (CRC), 
this tumor remains a major public health concern. In fact, 
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scientific discoveries must be translated into practical 
applications. Such discoveries typically start at “the bench” 
with basic research, in which scientists study disease at a 
molecular or cellular level[15-19], and then move on to the 
clinical level, or the patient’s “bedside”[20-22]. Scientists are 
increasingly aware that this bench-to-bedside approach to 
translational research should really be a two-way highway 
(Figure 1). Basic scientists provide clinicians with new 
tools to be used in patients and for assessment of  their 
impact whereas physician-scientists formulate the clinically 
relevant questions to be tested by basic researchers in a 
better controlled and more simplified system. Actually, 
discoveries travel from the clinic to the laboratory in the 
form of  clinical observations, human tissue, diagnostic 
images, and blood samples, which researchers use to 
further unlock the molecular and cellular features of  
cancer (Figure 1). 

Often, translational research involves animal studies 
designed to mimic human conditions[23-26]. Such studies 
are generally performed with the same care and scrutiny 
as the best-planned human clinical trials, and comprise 
a complex set of  supporting laboratory techniques that 
aim to determine how and why the new diagnostic tool 
or therapy works or fails in these models. Translational 
research studies may involve many years of  investigation 
on tools and techniques, to try to estimate how safe and 
how effective the new treatment or diagnostic procedure 
will be in human trials. 

One of  the main scopes of  translational research in 
cancer implies the identification and characterization of  
molecular markers[12]. These can be employed as diagnostic 
and prognostic tools but also for drug responsiveness 
assessment or even for targeted therapy design. Molecular 
markers of  tumor responsiveness to drugs would help 
to select the patient populations that would most likely 
respond to the drug and identify therapeutic indications. 
Molecular markers of  drug activity in normal tissue would 
allow pharmacodynamic monitoring of  patients that 
could aid optimization of  drug dosing and scheduling to 
maximize patient response[27]. Furthermore, biological 
markers involved in tumor initiation and progression can 
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be specifically targeted by new drugs such as therapeutic 
antibodies[8,9] or anti-tumor vaccines[18]. 

In fact, another main goal in cancer research is targeted 
therapy[22]. Translational research is particularly feasible 
now because of  the new understanding of  what causes 
cancer in different individuals, which relates to different 
combinations of  genetic events. This understanding has 
come primarily from the work of  basic research scientists. 
Until fairly recently, the only effective armamentaria 
in cancer therapy were surgery, radiation therapy, and 
chemotherapy. These treatments generally affect neoplastic 
cells but also non-cancer tissues, leading to the often 
serious toxicity that characterizes most of  traditional 
cancer treatments[28]. While these standard therapies 
will continue to play an important role in the treatment 
of  patients with cancer, they can be vastly aided in this 
process by targeted drugs, which literally target the 
aberrant molecular pathways that are actually involved in 
tumor initiation and progression. Therefore, specifically 
delivering the targeted drug to the malignant cell and 
its closest environment can significantly relieve cancer 
treatment related collateral effects[27]. 

However, since extensive libraries of  cytotoxic 
compounds are being developed for antitumor effect 
testing, it is becoming more and more common to find 
new therapies that are successfully developed, tested and 
commercialized against certain tumors but the ultimate 
molecular mechanisms involved in tumor response are not 
clearly known[29]. In those cases, the translational process 
is rather directed from clinical findings to basic cellular 
and molecular experiments (from “the bedside” to “the 
bench”), trying to unravel the complex pathway in which 
the new compound is playing a definitive role and the 
specific target or group of  them that results inhibited. 
Therefore, the bidirectional nature of  translational research 
needs to be emphasized[30]. 

IMPLEMENTING TRANSLATIONAL 
RESEARCH IN COLORECTAL CANCER
There is still a widening gap between basic research and 
clinical practice, particularly for colorectal cancer. This 
might be due to the genetic and molecular complexity of  
this tumor, the lack of  the ideal in vivo model for colorectal 
cancer, and the difficulties found in reproducing animal 
results into clinical trials in patients. 

The principal directions toward which translational 
research has spread and grown in colorectal cancer in 
recent years are genomics and proteomics, oncogenic 
pathways assessment and new targeted therapies discovery 
(Table 1).

Genomics and proteomics: Searching for new biomarkers 
and potential target genes
In the last years, there has been an increasingly high effort 
in the use of  genome information in biomedical sciences. 
This genome information has greatly expanded the insight 
into the genetic basis of  cancer, comprising one of  the 
main fields of  interest in translational cancer research. 
Traditional methods of  identifying novel targets involved 
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Figure 1  Factors involved in translational research: Interaction between basic 
scientists, clinicians and the environment.



in cancer progression were based on studies of  individual 
genes. The following understanding, however, has also 
shown that gene analysis alone is not sufficient to explain 
why cancer appears and progresses[31]. 

Now, the use of  DNA microarrays facilitates the 
analysis of  the expression of  thousands of  genes at 
the same time and rapidly[32,33]. Microarray analysis has 
been used for gene expression analysis of  different 
neoplasms[34,35], including CRC[36-39]. However, the 
application of  DNA microarray technology for analysis of  
CRC is of  limited value since it fails to offer direct protein 
expression measurements[36,40]. In addition, it is already 
known that important pathways in colon tumorigenesis 
are regulated at the posttranscriptional level where RNA 
expression data cannot offer any further information. 
In fact, due to the alternative splicing of  both mRNA 
and proteins, combined with protein posttranslational 
modifications, one gene can encode a considerable protein 
population. Actually, the proteome comprises all proteins 
that result from the whole genome. In contrast to the 
genome, the proteome is rather a dynamic parameter 
constituted by proteins and reflects both the intrinsic 
genetic program of  the cell as well as the impact of  its 
surrounding environment.

However, only a few studies have looked for a further 
insight into the function and/or importance of  individual 
genes and their application to the proteome research of  
a tumor. Some of  these genes have been proposed as 
candidate cancer biomarkers[41-43]. More recently a number 
of  proteomic studies have also addressed the identification 
of  potential targets in CRC[44-46]. 

In the proteomics field, several different technical 
strategies have been developed and applied to CRC 
translational research over the last years. Each one has its 
own advantages and drawbacks that should be considered 
before deciding the experimental design[47]. 

The technique leading the field for a long time was 
the two-dimensional polyacrilamide gel electrophoresis 
(2D-PAGE)[48]. The 2D-PAGE is based on the separation 
on a gel of  the protein content of  a sample in two 
dimensions according to mass and charge. The gels are 
stained and spots in samples are compared among different 

gels. However, a number of  serious disadvantages such 
as its lack of  real high-throughput capability (one sample 
per gel) is responsible for having been replaced by more 
advanced and capable techniques. Similar to 2D-PAGE, 
the two-dimensional difference gel electrophoresis 
(DIGE)[44,46] strengthened the 2D platform by allowing 
the detection and quantization of  differences between 
three samples resolved on the same gel, or across multiple 
gels, when linked by an internal standard. Again, it also 
is a low-throughput technology that does not permit the 
comparison of  many samples in a feasible manner.

Other low-throughput proteomic techniques have 
recently evolved for cancer protein profiling such as liquid 
chromatography coupled to tandem mass spectrometry 
detection (LC-MS/MS)[49], isotope-coded affinity tag 
(ICAT)[50] and a variation of  the latter, isotope tags for 
relative and absolute quantification (iTRAQ)[51], (both 
consist of  a differential tagging of  proteins from samples 
that are compared using isotope-coded affinity tag in an 
isotope-dilution mass spectrometry experiment). 

A study conducted by Wu et al[52] has recently compared 
some of  these diverse proteomic strategies (2D-DIGE, 
ICAT and iTRAQ) on HCT-116 colon epithelial cells 
concluding that regarding the number of  peptides detected 
for each protein by each method, the global-tagging 
iTRAQ technique was more sensitive than the cysteine-
specific ICAT method, which in turn was as sensitive as, if  
not more sensitive than, the 2D-DIGE technique.

Nevertheless, as aforementioned, one of  the most 
important goals in protein profiling in oncology is the 
discovery of  new biomarkers[53]. The use of  molecular 
markers in t rans la t iona l research has expanded 
considerably during the last 3 decades, and this increased 
analysis of  specific molecular changes has been associated 
with a concomitant decline in the use of  more general and 
less specific histochemical stains and biochemical assays. 
Some of  the applications for molecular markers include 
diagnosis, early detection, and prognosis. Also, specific 
molecular markers are used to study the biology of  the 
disease, to identify targets for novel therapies (e.g., use of  
Herceptin), and to aid the selection of  specific therapies, 
as previously mentioned.

Therefore, cancer proteomic studies might identify 
disease-related biomarkers for early cancer diagnosis 
and new surrogate biomarkers for therapy efficacy and 
toxicity, but also for guidance of  optimal anticancer 
drug combinations, enabling tailor-made therapy[54]. 
Furthermore, they could lead to new pharmacological 
targets. However, a crucial requisite for this purpose is 
to be able to perform a systematic analysis of  a large 
number of  proteins in an easy, reproducible, time-efficient 
and cost-effective way. High throughput technologies are 
therefore warranted. 

Protein microarrays for instance[55], (targeted proteins 
bind to spotted probes on a “forward” microarray and 
specific probes bind to targeted proteins in spotted 
samples on a “reverse” microarray; bound proteins are 
detected by direct fluorescent labeling or by labeled 
secondary antibodies), provide a high throughput approach 
in terms of  number of  probes per “forward” array and 

Table 1  Translational research technologies in colorectal cancer

Genomics Proteomics

   DNA microarrays    2D-PAGE
   DIGE
   LC-MS/MS
   ICAT
   iTRAQ
   Protein microarrays
   MALDI-TOF
   SELDI-TOF
   Tissue microarrays

Oncogenic pathways Preclinical models
   AS-ODN    Min mice
   miRNAs    Msh2, Msh4, Msh6 deficient mice
   siRNAs    Apc163 8N mice

   Smad4/Apc mice
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number of  samples per “reverse” array with the advantage 
of  previously knowing the biomarker identity. On the 
other hand, the synthesis of  many different probes is 
necessary, the identity of  biomarkers has to be known and 
cross-reactivity of  probes along with possible impaired 
binding of  proteins with post-translational modifications 
(PTM) exists. 

In 2002, the Nobel committee acknowledged the 
advances in mass spectrometry of  biopolymers with the 
recognition of  the discovery of  electrospray ionization 
(ESI) mass spectrometry[56,57] and for the discovery of  
soft laser desorption (SLD) ionization, which led to the 
development of  matrix-assisted laser desorption ionization 
(MALDI)[58]. These discoveries for peptides, proteins 
and other macromolecules have been revolutionary, 
providing easy measurements of  molecular weight 
with unprecedented accuracy. Because the dominant 
ions generated under SLD and MALDI conditions 
are singly charged, the technique is most often used 
in combination with a time-of-flight (TOF) analyzer 
to extend the m/z range to 100 000 Da and beyond[58]. 
MALDI-TOF technology is a highly capable tool allowing 
the measurement of  up to 1536 samples per plate, also 
possessing access to PTM. On the negative side, this 
technique is unsuitable for high molecular weight proteins 
(> 100 kDa) and sample fractioning is needed when 
measuring complex samples. 

Surface-enhanced laser desorption ionization time-of-
flight (SELDI-TOF) technology is a variant of  MALDI-
TOF in which a selected part of  a protein mixture is 
bound to a specific chromatographic surface and the rest 
is washed away[47]. Although SELDI-TOF technology 
only permits 96 samples to be tested by bioprocessor, 
fractioning of  the sample is not necessary and direct 
application of  the whole sample is possible. However, 
compared to MALDI-TOF, SELDI-TOF provides lower 
resolution and mass accuracy but requires smaller amounts 
of  starting material. SELDI-TOF is also unsuitable for 
proteins heavier than 100 kDa. 

SELDI-TOF is equally useful for the analysis of  cell 
lysates from cell lines and tissue[59], however, in clinical 
practice its ultimate value derives from its application to 
easily accessible body fluids as serum or urine. In fact, in 
the last years several serum biomarker proteins have been 
identified through this technical approach[60-62].

In addition, low and high throughput techniques have 
been shown to be complementary and its combination can 
lead to a more efficient outcome[63]. 

In summary, compared to the genome, the proteome 
provides a more reliable picture of  a biological status and 
is, thus, expected to be more useful than gene analysis for 
evaluating, for example, disease presence, progression and 
response to treatment. 

A totally different approach for protein profiling 
has recently emerged in translational cancer research. 
To evaluate the clinical significance of  newly detected 
potential cancer genes, it is usually required to examine 
a high number of  well-characterized primary tumors. 
Using traditional methods of  molecular pathology, this 
was a time consuming job that exploited precious tissue 

resources. However, a high throughput tissue analysis 
approach, [tissue microarray (TMA) technology], has been 
developed[64-66]. Using this TMA technology, samples from 
up to 1000 different tumors are arrayed in one recipient 
paraffin block, sections of  which can be used for all kinds 
of  in situ analyses[22,67]. 

Sections from TMA blocks can then be utilized for the 
simultaneous analysis of  DNA, RNA or protein tumor 
levels. TMA protein analysis has also been performed in 
CRC samples for prognostic evaluation[68-72]. However, 
even though it has been suggested that minute arrayed 
tissue specimens are representative of  their donor tissues, 
highly heterogeneous cancer types and low levels of  
protein expression could account for underestimating 
determined protein expression levels in certain tumors[68,73].

There are multiple different types of  TMAs that can 
be utilized in cancer research including multi tumor arrays 
(containing different tumor types), tumor progression 
arrays (tumors of  different stages) and prognostic arrays 
(tumors with clinical endpoints). The combination 
of  multiple different TMAs allows a very quick but 
comprehensive characterization of  biomarkers of  interest. 

Despite what proteomics have added to translational 
research in cancer, there are some novel approaches 
that combine the information provided by genomic and 
proteomic assays run in parallel in order to complement 
the translational impact of  both procedures[74]. This has 
also been applied to CRC profiling. Kwong et al[75], for 
instance, studied gene and protein expression performed in 
parallel across progressive stages of  human CRC. For this 
purpose, they applied cDNA microarray and 2D-PAGE 
technologies in parallel to analyzed samples collected from 
60 CRC cases at various stages of  disease progression. Of  
47 genes analyzed, 12 (26%) showed significant correlation 
between mRNA level and protein levels, suggesting that 
protein abundance is regulated at the transcriptional level. 
The remaining 31 genes showed either a non-significant 
correlation between mRNA and protein expression levels 
or, in 28% of  the genes, a negative correlation. Therefore, 
the authors conclude that posttranscriptional mechanisms 
play an important role in the regulation of  gene products 
activities in CRC, underline the importance of  analyzing 
gene expression at multiple levels and claim that genomic 
and proteomic approaches actually complement each 
other.

In another recent study to identify new biomarkers, 
Madoz-Gurpide et al[76] investigated the feasibility of  
expressing soluble proteins corresponding to up-regulated 
genes in surgically resected CRC samples. They used cDNA 
microarrays (CNIO Oncochip)[77] to identify differentially 
expressed genes in malignant compared to normal samples 
isolated from 22 different CRC patients. After investigating 
different sources of  cDNA clones for protein expression, 
from 29 selected genes, 21 different proteins were finally 
expressed soluble with, at least, one distinct fusion 
protein. Additionally, seven of  these potential markers 
were tested for antibody production and/or validation, 
confirming six of  them to be overexpressed in CRC 
tissues by immunoblotting and TMA analysis[76]. Authors 
suggest that this kind of  approach may provide relevant 
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biological information of  the neoplastic processes and 
lead to a better characterization of  potentially interesting 
markers in a quite straightforward way for early diagnosis 
or individualized prognosis assessment. 

Oncogenic pathways: Validating target candidates 
The previously reviewed development of  genomics and 
proteomics in cancer research has yielded an uncountable 
number of  new potential oncogenic mediators and 
checkpoints, in CRC, worth further investigating. These 
novel gene-depending elements, potential new targets 
for future drugs, are commonly involved in a variety 
of  molecular pathways and their intimate upstream/
downstream regulators as well as their crosstalk networks 
and functional relevance still need to be addressed. 

Most widely used experimental methods for molecular 
pathway research in oncology are performed on fairly well-
controlled in vitro systems. Recent cell biology achievements 
and discoveries however, have led to more reliable and 
physiologically relevant settings where observations on cell 
behavior and cell fate under particular conditions can be 
imported into in vivo experiments employing animal cancer 
models and even translating findings into new human 
therapeutic trials.

In the last few years, several approaches to find 
molecules able to inhibit the expression of  genes (so-
called gene-silencing molecules) involved in colorectal 
cancer progression and therapeutic resistance have 
been pursued. Sequence-specific gene suppression 
strategies using antisense oligonucleotides (AS-ODN), 
ribozymes and deoxyribozymes were initially described 
and developed[78-82]. AS-ODN derivatives, depending on 
their type, recruit RNase H to cleave the target mRNA or 
inhibit translation by steric hindrance. Ribozymes though, 
directly bind to RNA via Watson-Crick base pairing and 
cleave the phosphodiester backbone of  the RNA target 
by transesterification. Similarly, deoxyribozymes also bind 
to their RNA substrates via Watson-Crick base pairing and 
specifically cleave the target RNA.

Currently, in addition to their value in target valida-
tion studies, different AS-ODN strategies are under 
evaluation in phase Ⅱ and Ⅲ clinical trials, particularly 
in hematological malignancies, malignant melanoma and 
prostate cancer[83,84]. However, consolidating AS-ODN as a 
broadly applicable functional genomic and therapeutic tool 
has proven difficult. For instance, difficulties in delivery of  
the AS-ODN into target tissues, instability of  AS-ODN  
in vivo, poor oral availability, uncertainties about the precise 
mode of  action, and toxic effects in animal and human 
studies have been argued[80,83]. Moreover, a number of  
class effects are observed with AS-ODN that are unrelated 
to the specific targeted mRNA sequence. Acute effects 
include activation of  the alternative complement pathway 
and inhibition of  the intrinsic coagulation pathway. 
In fact, given repeated doses of  AS-ODN to animals, 
accumulation of  AS-ODN and/or metabolites occurs 
in the form of  basophilic granules in various tissues, 
including the kidney, lymph nodes and liver. Although 
several approaches are known to overcome some of  these 
difficulties[85], very few contributions have firmly supported 

the use of  AS-ODN technology in CRC research[86-88]. 
But in the field of  gene-silencing molecules, the most 

recent and fascinating tools discovered for studying gene 
regulation and gene expression control are microRNAs 
(miRNAs) and small interfering RNA (siRNAs). miRNAs 
and siRNAs are typically 21 to 25 nucleotide RNA 
molecules that induce gene silencing by RNA interference 
(RNAi)[89-91]. Since the description of  RNA interference 
(RNAi) in 1998[92], this gene-silencing technology has been 
developed into a widely used methodology in basic as well 
translational research. RNAi was originally discovered as a 
naturally occurring pathway in plants and invertebrates[92]. 
Once long double-s t randed RNA molecu les a re 
inserted into these organisms, they are processed by the 
endonuclease Dicer into siRNAs. These siRNAs are 
subsequently incorporated into the multicomponent RNA-
induced silencing complex (RISC), which unwinds the 
duplex and uses the anti-sense strand as a guide to look 
for homologous mRNAs and degrade them, as previously 
reviewed by others[93,94]. More strikingly, synthetic short 
siRNAs (20-25 bp) can be either delivered exogenously 
or expressed endogenously from RNA polymerase Ⅱ or 
Ⅲ promoters (in the form of  siRNAs or short hairpin 
(sh)RNAs that are processed by Dicer into functional 
siRNAs) and used as a new powerful technology for 
achieving specific down-regulation of  target mRNAs in 
mechanistic research or even therapeutic development in 
CRC[11,95-98]. 

Testing targeted therapies: Preclinical modeling in
colorectal cancer
Once potential targets are discovered and their expression 
is successfully inhibited in vitro, the safety, efficacy and 
feasibility of  their inhibitors need to be evaluated in 
animal models in which human disease can be faithfully 
reproduced. In fact, in the last years, the need of  relevant 
in vivo models in colorectal cancer research has prompted 
many investigators to work on developing reliable, 
reproducible and human colorectal cancer-mimicking 
animal models[25,99,100]. 

However, in colorectal cancer, much has been 
learned from human inherited syndromes, such as 
familial adenomatous polyposis (FAP) and hereditary 
non-polyposis colorectal cancer (HNPCC)[101-103]. That 
knowledge in fact, has been translated into the design and 
development of  CRC animal models. 

Although several rat models have been created for the 
study of  colorectal cancer[104-106], in this review, we will 
focus our attention on mouse models which have profusely 
evolved in the last few years because of  their abundant 
genetic/genomic information, and easy mutagenesis using 
transgenic and gene knockout technology. Genetically 
engineered mice have become essential tools in both 
mechanistic studies and drug development in CRC, as 
previously reviewed by others[107]. In fact, mice provide 
unique opportunities to define and identify genes that are 
involved in colorectal cancer progression.  

The first mouse model obtained to carry a mutation in 
the adenomatous polyposis coli (APC) tumor suppressor 
gene was named multiple intestinal neoplasia (Min)[108]. 
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The Min mutation results in a truncated protein and 
induces the development of  multiple intestinal adenomas 
(even more than one hundred) and a reduced lifespan 
of  on average 150 d in heterozygous mice. Posterior 
models carrying mutations in different APC alleles have 
also been developed and each one possesses its own 
clinical manifestations. However, the majority of  them 
shows small intestine adenomas and colonic tumors and 
distant metastases are rarely observed. Interestingly, it has 
been shown that different mutations in the APC gene, 
in Apc1638N mice for instance, confer distinct tumor 
susceptibility phenotypes and that fact resembles the 
heterogeneity observed in human FAP families[109]. Other 
models of  hereditary non-polyposis colorectal cancer 
(HNPCC) have been developed through the mutation 
of  several mismatch repair genes. One representative 
example are Msh2 deficient mice that are fertile and 
develop normally, however, these animals develop T-cell 
lymphomas early in their life and die because of  the 
disease. Msh2 deficient mice that survive more than 6 
months develop gastrointestinal adenomas, carcinomas 
and skin tumors and can also be used for tumorigenesis 
studies[110].

Finally, other more recent models have also been 
developed to better study colorectal cancer. Smad4 
heterozygous mice bearing Apc mutations present an 
enhanced progression and a more malignant phenotype[111]. 
Othe r comb ina t ions r e spons ib l e fo r i nc r ea sed 
gastrointestinal tumorigenesis are APC and oncogenic 
KRAS that seem to be synergistic in enhancing Wnt 
signaling[112].

CONCLUSIONS
Translational research is a key developing field in biome-
dicine. The direct application of  basic research findings 
to the patient’s diagnosis and treatment is even more 
important in cancer. In addition, clinical observations can 
dramatically contribute to basic research improvement 
and relevant enhancement. Colorectal cancer, due to its 
epidemiological importance and economic impact, is one 
of  the main entities in which translational research is a 
reality today. 

However, there still is a long way to go until basic 
researchers and clinical investigators share information and 
work together in colorectal cancer research on a daily basis. 

Several new technologies and tools have demonstrated 
a great value in cancer and are in fact responsible for 
the last crucial pieces of  research work allowing a new 
conception of  cancer diagnosis and treatment. Among 
them, the development of  new biomarkers for colorectal 
cancer combining proteomics and genomics is especially 
relevant. 

Also, anti-sense strategies have recently opened the 
path for new target-specific therapy development. These 
new therapeutic discoveries need to be tested in preclinical 
animal models. 

Since extensive validation of  the above mentioned 
research fields is necessary, adequate funding is required. 
This may imply some adjustments in the current funding 
policy because it involves non-innovative studies. 

Furthermore, the pool of  researchers/clinicians capable 
of  performing translational research must be increased. 
Additionally, there should be an enhanced participation 
of  patients in clinical trials and an optimization of  the 
efficiency of  these trials using validated surrogate markers. 
Only when these conditions are fulfilled the 'post-genomic' 
era of  biomedical research will have unprecedented 
opportunities to innovate and improve therapy for cancer.

 COMMENTS
Background
In the present paper, a summarized view of some of the new available approaches 
on colorectal cancer translational research is provided. Translational research 
in colorectal cancer comprises the identification and characterization of new 
molecular markers and the discovery of novel targeted therapies. The better 
understanding of human cancer and the design of more reliable tumor models 
and more accurate experimental systems is also part of translational research in 
cancer.

Research frontiers
The principal directions toward which translational research has spread and grown 
in colorectal cancer in recent years are genomics and proteomics, oncogenic 
pathways assessment and new targeted therapies discovery.

Innovations and breakthroughs
To our knowledge, there is no other published paper specifically focused on 
translational research in colorectal cancer. Therefore, we consider this review as a 
unique and inspiring one.

Applications 
The main objective of this manuscript is to help scientists and physicians working 
on colorectal cancer determine which findings have been already achieved and 
which others are still underway and provide a better knowledge of new tools 
and techniques available for this purpose. This focus might inspire other authors 
in their own research projects and emphasize the need of a new approach to 
colorectal cancer research. 

Terminology
Translational research: Investigation directed to the link of basic and clinical 
research in order to better define aims and better control tools and experimental 
systems. Genomics: Part of the bioscience that studies the genome and its impli-
cations in disease appearance, progression and response to treatment. Proteom-
ics: Part of the bioscience responsible for peptide and protein investigation and 
their role in the diagnosis, treatment and research of disease. Targeted therapies: 
Group of drugs specifically designed to a certain target of the tumor cell such as 
growth factor receptors, membrane proteins and others.

Peer review
This manuscript is a very good and complete review of the topic exposed.
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