
increased moderately at the silenced loci after 5-Aza-dC 
treatment. 

CONCLUSION: Hypermethylation of DNA in promoter 
CpG islands is related to transcriptional silencing of 
tumor suppressor genes. Histone H3-K9 methylation in 
different regions of the promoters studied correlates 

with DNA methylation status of each gene in gastric 
cancer cells. However, histone H3-K9 acetylation 

and H3-K4 methylation inversely correlate with DNA 
methylation status of each gene in gastric cancer 
cells. Alteration of DNA methylation affects histone 
modification.

© 2007 WJG. All rights reserved.
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INTRODUCTION
Multiple recent reviews have shown that virtually all 
human cancer types have epigenetic abnormalities 
that collaborate with genetic changes to drive cancer 
development and progression[1-7]. Hypermethylation of  
DNA in promoter CpG islands of  tumor suppressor 
genes (TSGs) is known to inhibit transcriptional initiation 
and cause permanent silencing of  the genes, which play 
a crucial role in carcinogenesis[1,2]. It was reported that 
hypermethylation of  DNA in promoter CpG islands and 
diminished expression are present in a number of  tumor-
related genes in gastric cancer, which is one of  the major 
current causes for cancer death in Asian countries[8]. 
For example, silencing of  the cyclin-dependent kinase 

inhibitor p16 gene induced by hypermethylation can 
lead to disruption of  cell cycle regulation and provide a 
growth advantage to affected cells[9]. A mismatch repair 
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Abstract
AIM: To identify the relationship between DNA hyper-
methylation and histone modification at a hyperme-
thylated, silenced tumor suppressor gene promoter in 
human gastric cancer cell lines and to elucidate whether 
alteration of DNA methylation could affect histone 
modification.

METHODS: We used chromatin immunoprecipitation 
(ChIP) assay to assess the status of histone acetylation 
and methylation in promoter regions of the p16 and 
mutL homolog 1 (MLH1) genes in 2 gastric cancer cell 
lines, SGC-7901 and MGC-803. We used methylation-
specific PCR (MSP) to evaluate the effect of 5-Aza-2’- 
deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their 
combination treatment on DNA methylation status. 
We used RT-PCR to determine whether alterations of 
histone modification status after 5-Aza-dC and TSA 
treatment are reflected in gene expression. 

RESULTS: For the p16  and MLH1 genes in two cell lines, 
silenced loci associated with DNA hypermethylation were 
characterized by histone H3-K9 hypoacetylation and 
hypermethylation and histone H3-K4 hypomethylation. 
Treatment with TSA resulted in moderately increased 

histone H3-K9 acetylation at the silenced loci with no 
effect on histone H3-K9 methylation and minimal effects 
on gene expression. In contrast, treatment with 5-Aza-
dC rapidly reduced histone H3-K9 methylation at the 
silenced loci and resulted in reactivation of the two 
genes. Combined treatment with 5-Aza-dC and TSA was 
synergistic in reactivating gene expression at the loci 
showing DNA hypermethylation. Similarly, histone H3-K4 
methylation was not affected after TSA treatment, and 
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gene, MLH1, is often silenced with aberrant CpG island 
hypermethylation in gastric cancers[10,11]. Except for 
DNA methylation, recent studies have demonstrated the 
importance of  histone modification as another epigenetic 
mechanism in the organization of  chromosomal domains 

and gene regulation[12-18]. Acetylation of  H3-K9 and 
methylation of  H3-K4 are associated with open chromatin 

configurations such as that found at transcriptionally active 

promoters. In contrast, methylation of  H3-K9 is a marker 

of  condensed, inactive chromatin of  the sort associated 
with the inactive X-chromosome and pericentromeric  
heterochromatin[16,17,19,20]. 

It has also been shown that histone modification 
is crucial to the process of  DNA methylation in some 
organisms and abrogation of  H3-K9 methylation in 
Neurospora results in loss of  DNA methylation[21]. It was 
reported that histone H3-K9 methylation directly correlates 
with DNA methylation of  some tumor suppressor genes, 
while histone H3-K9 acetylation and histone H3-K4 
methylation inversely correlate with DNA methylation 
of  some tumor suppressor genes[22]. These data suggest a 
functional linkage between DNA methylation and histone 
modifications in gene repression. To better understand 
the relationship between DNA methylation and histone 
modification in cancer-associated gene silencing, we 
performed ChIP assay to assess the methylation and 
acetylation of  H3-K9 and the methylation of  H3-K4 at 
the p16 and MLH1 genes in two gastric cancer cell lines. 
We also treated the gastric cancer cell lines with the DNA 
methylation inhibitor, 5-Aza-dC, and the histone deacetylase 

inhibitor, TSA, to elucidate whether alteration of  DNA 
methylation affects histone modification.

MATERIALS AND METHODS
Cell lines and culture conditions
Two cell l ines derived from human gastric cancer, 
SGC-7901 and MGC-803, were cultured in RPMI 1640 
supplemented with 10% fetal bovine serum(Gibco), 
penicillin (100 IU/mL) and streptomycin (100 μg/mL), 
and incubated in a humidified incubator containing  
50 mL/L CO2 at 37℃.

Treatment with 5-Aza-dC and TSA  
TSA and 5-Aza-dC were purchased from Sigma. TSA was 
dissolved in absolute ethanol at a stock concentration of  
3.3 mmol/L and stored at -80℃. 5-Aza-dC was dissolved 
in water at a stock concentration of  1 mmol/L and stored 
at -80℃. Cells were seeded at a low density in a 100 
mm tissue culture dish and incubated for 24 h prior to 
treatment with 5-Aza-dC and TSA. 5-Aza-dC (5 μmol/L)  
was used for 72 h in the treatment. Culture medium 
containing 5-Aza-dC was exchanged every 24 h. TSA  
(300 nmol/L）was used for only 24 h in the treatment. 
5-Aza-dC was used for 48 h followed by TSA for an 
additional 24 h in the combined treatment. Mock-
treatment with an identical volume of  absolute ethanol or 
water was used as a control.

Methylation-specific PCR
The genomic DNA was modified by bisulfite treatment, 
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as described previously[23]. DNA was purified using a 
Wizard DNA clean-up system (Promega), precipitated 
with ethanol, and resuspended in 30 μL of  Tris-EDTA 
buffer. Two microliters of  the aliquot was used as a 
template. The primers used for MSP and additional PCR 
conditions are described elsewhere[22]. PCR products 
were separated by electrophoresis on 2% agarose gels 
and quantitated with the FluorChem 2.0 system. The 
experiment was repeated three times.

RT-PCR analysis of p16 and MLH1 expression
Total cellular RNA was extracted from each of  the two 
cell lines with TriZOL (Invitrogen) according to the 
manufacturer’s protocol. RNA was resuspended in nuclease-
free water and quantitated with a spectrophotometer. 

Reverse transcription (RT) reactions were done on 2 μg of  
total RNA following the manufacturer’s protocol (Promega). 
cDNA was amplified by PCR using primers as described 
previously. Reaction conditions for each PCR are described 
elsewhere[24]. PCR products were resolved on 2% agarose 
gels and quantitated using the Fluor Chem 2.0 system. The 
level was determined by quantifying the intensities of  the 
PCR product versus glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH).  The experiment was repeated three times.

Chromatin immunoprecipitation assay
ChIP assays were performed as described previously with 
some modifications[24]. Briefly, proteins were cross-linked 
to DNA by adding formaldehyde directly into the culture 
medium to a final concentration of  4 g/L for 20 min at 
37℃. After washing, the cell pellets were resuspended in 
500 μL lysis buffer and sonicated thirty-five times, 2 s each. 
The average fragment size after sonication was 500 bp. 
The lysate (500 μL) was then divided into three fractions. 
The first and second fractions (200 μL each) were diluted 
in 1800 μL of  lysis buffer, and the third fraction (100 μL) 
was used as an input control. The first lysate was incubated 
overnight at 4℃ with 5 μL anti-Lys-9 acetylated histone 
H3 antibody, 5 μL anti-Lys-9 dimethylated histone H3 
antibody, or 5 μL anti-Lys-4 dimethylated histone H3 
antibody (all antibodies from Upstate Biotechnology) 

overnight at 4℃. The second lysate was incubated with 
Tris-EDTA buffer (5 μL) as a negative control. Immune 

complexes were collected with 20 μL protein A-sepharose 
beads for 1 h at 4℃ with agitation. The cross-links were 
reversed by heating the sample at 65℃ for 5 h. After 
elution, the samples were digested with proteinase K. 
DNA was recovered by phenol extraction, precipitated 
with ethanol, and resuspended in Tris-EDTA buffer.

PCR analysis of immunoprecipitated DNA
Ampl i f i c a t ion was ca r r i ed ou t w i th 2 μL o f  an 
immunoprecipitated DNA, a control without antibody 
o r a 1 : 10 d i l u t i on o f  i npu t DNA tha t wa s no t 
immunoprecipitated. The primers used for ChIP and 
PCR conditions are described elsewhere[22]. We selected 
P16-3, P16-6, MLH1-2 and MLH1-3. PCR products were 
electrophoresed on 2% agarose gels and quantitated with 

the FluorChem 2.0 system. The level of  histone acetylation 
and methylation in each immunoprecipitation was measured 
by quantifying the intensities of  the PCR product in 



immunoprecipitated DNA versus input DNA diluted at 1:10 
(total chromatin). The experiment was repeated three times. 

RESULTS
MSP analysis for each promoter region after treatment 
with 5-Aza-dC, TSA or their combination 
The two cell lines showed a characteristic DNA methy-
lation status in each promoter region. As shown in Figure 
1, p16 was hypermethylated (both alleles methylated) 
in MGC-803 and partially methylated (only one allele 
methylated) in SGC-7901. MLH1 was hypermethylated in 
MGC-803 but not methylated in SGC-7901.

5-Aza-dC and combined 5-Aza-dC and TSA resulted 
in demethylation of  p16 and MLH1 in MGC-803, in 
which the silenced gene was associated with DNA 
hypermethylation. In contrast, TSA alone did not affect the 
DNA methylation status of  p16 and MLH1.
 
RT-PCR analysis for expression and reactivation of p16 
and MLH1 after treatment with 5-Aza-dC, TSA or their 
combination 
As shown in Figure 2, p16 was expressed in SGC-7901 and 
minimally affected by TSA. p16 was silenced in MGC-803 
and TSA was not able to activate gene expression. In 
contrast, 5-Aza-dC alone reactivated expression of  
the p16 in MGC-803. Similar results were obtained in 
MLH1, which was expressed in SGC-7901 but silenced in 
MGC-803. TSA had no effect on gene expression, while 
5-Aza-dC reactivated the silenced gene. The combined 

treatment with 5-Aza-dC and TSA increased gene 
expression.

ChIP assay for histone H3-K9 methylation across the 
promoter of TSG and change after treatment with 5-Aza-
dC, TSA or their combination 
The results of  ChIP studies were almost  identical in 
different regions of  each promoter, and the values for each 
gene were averaged to present the data. In the promoter 
region of  the p16 gene, H3-K9 methylation was higher 
for MGC-803 than for SGC-7901. Similar results were 
seen at MLH1. SGC-7901 having no promoter DNA 
methylation at this locus, showed a low degree of  H3-K9 
methylation. MGC-803 had a higher degree of  H3-K9 
methylation across the promoter (Figures 3 and 4). 

TSA alone had no effect on H3-K9 methylation, 
irrespective of  DNA methylation status. In contrast, 
5-Aza-dC had effects on H3-K9 methylation at the silenced 
loci, reducing histone H3-K9 methylation in the promoter 
showing partial methylation or hypermethylation (the 
promoter region of  p16 in both cell lines and the promoter 
region of  MLH1 in MGC-803). The combination of  
5-Aza-dC and TSA had similar effects on histone H3-K9 
methylation.

ChIP assay for histone H3-K9 acetylation across the 
promoter of TSG and change after treatment with 5-Aza-
dC, TSA or their combination 
The promoter region of  the p16 gene showed a higher 
degree of  H3-K9 acetylation in SGC-7901 (partially 
methylated) than in MGC-803 (hypermethylated). Similar 

results were seen in the MLH1 gene showing a low degree 
of  H3-K9 acetylation in all parts of  the promoter region 
in MGC-803. In contrast, a higher degree of  H3-K9 
acetylation was detected in SGC-7901 (both alleles non-
methylated) at all MLH1 regions studied (Figures 4  
and 5A).

For the p16 gene, treatment with TSA alone had no 
effect on H3-K9 acetylation in the SGC-7901 (partial DNA 
methylation) but slightly increased H3-K9 acetylation in the 
silenced MGC-803. Identical results were seen in MLH1. 
5-Aza-dC increased H3-K9 acetylation at the loci with 

DNA hypermethylation (p16 and MLH1 in MGC-803) 

but had no effect on the loci with partial or no DNA 
methylation (p16 and MLH1 in BGC-7901). However, 
the combination of  5-Aza-dC and TSA increased H3-K9 

   M        U       M        U       M        U       M        U

     Ctrl        Aza           TSA          Aza + TSA

7901

   803

p16

7901

   803

MLH1

Figure 1  MSP analysis for promoter regions of gastric cancer cells after treatment 
with 5-Aza-dC, TSA or their combination. M: Methylated alleles; U: Unmethylated 
alleles; Ctrl: No treatment.
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Figure 2  Expression and reactivation of p16 and MLH1 in gastric cancer cells 
after treatment with 5-Aza-dC, TSA or their combination. Ctrl: No treatment.
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        Ctrl            Aza                 TSA          Aza + TSA

Figure 3  Status of histone H3-K9 methylation across TSGs and change in gastric 
cancer cells after treatment with 5-Aza-dC, TSA or their combination. Ctrl: No 
treatment; IP: Immunoprecipitated DNA; NAC: No-antibody control; IN: Input DNA 
from whole-cell lysate.
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acetylation effectively at all loci irrespective of  DNA 

methylation status. The results of  ChIP studies were 
almost identical in different regions of  each promoter.

ChIP assay for histone H3-K4 methylation across the 
promoter of TSG and change after treatment with 5-Aza-
dC, TSA or their combination 
For the p16 and MLH1 genes, H3-K4 methylation was 
higher in SGC-7901 than in MGC-803. TSA did not 
affect H3-K4 methylation. However, 5-Aza-dC, or the 
combination of  5-Aza-dC and TSA, increased H3-K4 
methylation at all silenced loci in MGC-803. Little change in 
H3-K4 methylation was observed in SGC-7901, where only 

partial or no methylation was observed (Figures 4 and 5B). 

DISCUSSION
Silencing of  tumor suppressor genes is related to epigenetic 

regulation of  both DNA methylation and histone 
modification[25]. In the present study, hypermethylation in 
promoter CpG islands was significantly associated with p16 
and MLH1 silencing. Furthermore, aberrantly silenced and 
DNA hypermethylated genes in gastric cancer cells were 
characterized by histone H3-K9 hypermethylation, H3-K4 
hypomethylation and H3-K9 hypoacetylation. 

DNA methylation and histone modification may act 
synergistically or antagonistically on gene expression[26,27]. 
We carried out ChIP assays to explore the relationship 
between DNA methylation and histone modifications. 
ChIP is a powerful technique to test for the presence 
of  certain DNA-binding proteins that might modulate 
chromatin structure and/or transcriptional characteristics 
of  the specific region of  DNA with which they are 
associated. We made use of  polyclonal antibodies 
generated against methylated and acetylated histone H3, 
all of  which are proteins linked to chromatin modification 
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Figure 4  Summary of quantitative analysis for ChIP assays. Ratios of precipitated DNA over input DNA were used to calculate the relatively precipitated fold enrichment on 
the y axis. 
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Figure 5  Status of histone H3-K9 acetylation (A) and histone H3-K4 methylation (B) across TSGs and change in gastric cancer cells after treatment with 5-Aza-dC, TSA or 
their combination. Ctrl: No treatment; IP: Immunoprecipitated DNA; NAC: No-antibody control; IN: Input DNA from whole-cell lysate.
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and regulation of  transcription. In colorectal cancer, 
histone H3-K9 methylation directly correlates and histone 
H3-K4 methylation inversely correlates with DNA 
methylation of  p16, MLH1 and the O6-methylguanine-
DNA methyltransferase gene, MGMT[22]. We demonstrated 

that histone H3-K9 methylation correlated, and histone 
H3-K9 acetylation and H3-K4 methylation inversely 
correlated very well with DNA methylation of  p16, MLH1 
in SGC-7901 and MGC-803. 

To further explore the relationship between DNA 
methylation and histone modification, we treated 
cancer cel ls with 5-Aza-dC and TSA. 5-Aza-dC, a 
DNA methyltransferase inhibitor, is sufficient to cause 
demethylation of  the promoter region and reactivate 
expression of  the hypermethylated, silenced gene[28,29]. 
TSA, a specific histone deacetylase (HDAC) inhibitor, 
has been permitted evaluation of  the role of  HDAC in 
silencing a variety of  methylated genes[14]. It was reported 
that re-expression of  DNA hypermethylated and silenced 
cancer genes can be induced through 5-Aza-dC-induced 

DNA demethylation, demethylated genes and the active 
marks, acetylated H3-K9 and methylated H3-K4 can 
be detected in HCT116 and DKO colon cancer[29-34]. 

However, one silencing mark, dimethylated H3-K9, is 
strikingly decreased[34]. In our study, when the CpG islands 
were hypermethylated, TSA increased histone acetylation, 
but had almost no effect on gene expression. In contrast, 
5-Aza-dC reactivated expression of  hypermethylation- 
induced s i lenced genes. Our f indings on histone 
acetylation are consistent with previous reports linking 
the effect of  DNA methylation and histone deacetylation 
on transcriptional silencing, demonstrating that DNA 
methylation is dominant over histone deacetylation in 
maintaining a silent state at hypermethylated promoters[22]. 
Furthermore, TSA and 5-Aza-dC play a different role 
in histone methylation. In the present study, 5-Aza-dC, 

but not TSA, could reactivate expression of  the silenced 

genes and completely reverse key histone methylations 

surrounding the gene promoter, indicating that reactivation 
of  silenced genes correlates much better with decreased 
histone H3-K9 methylat ion and increased H3-K4 
methylation than with increased H3-K9 acetylation. We 
speculate that histone methylation plays a critical role in 
the maintenance of  promoter DNA methylation-associated 
gene silencing in gastric cancer.

After 5-Aza-dC treatment, we observed a complete 
reversal of  histone modification at the p16 and MLH1 
promoter in MGC-803 cells. Acetylated H3-K9 and methyl-
H3-K4 levels were increased, whereas methyl-H3-K9 
levels decreased, suggesting that DNA hypermethylation 
may be essential for maintaining histone modification 
at gene promoters s i lenced due to aber rant DNA 
hypermethylation. DNA methylation plays a direct role 
in both genes silencing and maintaining a repressive 

histone modification at a hypermethylated gene promoter 
in cancer. Data show that DNMT1 interacts with HDAC 
activity in complexes bound to DNA, suggesting that it 
can recruit histone modifiers to DNA[33-35]. It was reported 
that DNA modification itself, or components of  the 
DNA methylating machinery such as DNMTs or methyl-
CpG binding proteins, can directly interact with histone 

methyltransferases or proteins in regions containing DNA 
methylation and allow them to set up an alterative histone 

modification[2], showing that histone methylation depends 
on DNA methylation.
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