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Abstract
Hepatic steatosis as the most prevalent liver disorder 
can either be related to alcoholic liver disease (ALD) 
or non-alcoholic fatty liver disease (NAFLD). In both 
conditions, hepatocytes excessively accumulate fat-
containing vacuoles within their cytoplasm, which is the 
key histological feature. In contrast to ALD, NAFLD is 
commonly associated with metabolic syndrome, obes-
ity and insulin resistance. To determine increased liver 
fat content, liver biopsy is currently considered the gold 
standard. Besides the invasive technique, various other 
non-invasive techniques have been developed, such as 
ultrasound, computed tomography (CT), magnetic reso-
nance spectroscopy (MRS) and magnetic resonance im-
aging (MRI) based methods. Among these techniques, 
ultrasound and CT provide only qualitative information 
about hepatic steatosis, whereas MRS- or MRI-based 

methods are able to determine even small amounts of 
fat accurately. These non-invasive magnetic resonance 
techniques have already proven their great potential, 
especially in longitudinal and cross-sectional studies 
regarding various metabolic conditions and medical 
treatment regimens. In this review, the most common, 
non-invasive MRS/MRI techniques for assessment of in-
trahepatic lipid content are described with their inherent 
advantages and limitations.
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INTRODUCTION
Hepatic steatosis is a common finding during liver exami-
nation and is found in a broad spectrum of  diseases. It is 
related to an increased deposition of  triglycerides within 
the cytoplasm of  hepatocytes. Besides alcoholic liver dis-
ease (ALD), intrahepatic accumulation of  lipids can also 
be associated with obesity, insulin resistance and metabolic 
syndrome, and is then termed non-alcoholic fatty liver dis-
ease (NAFLD). NAFLD is constantly gaining prevalence 
throughout the western world and is related to obesity as 
an increasing problem in recent decades[1,2]. Nevertheless, 
NAFLD can also be found in non-obese subjects with a 
body mass index within the normal range. Those patients 
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often suffer from insulin resistance. Thus, intrahepatic fat 
fraction denotes an interesting metabolic parameter for 
longitudinal or cross-sectional studies regarding various 
metabolic conditions. Moreover, it is considered an inde-
pendent risk factor for insulin resistance and atherosclero-
sis[3-7]. The current gold standard for quantification of  in-
trahepatic lipid content is based on invasive liver biopsies 
and subsequent histological analysis. However, due to its 
invasive character, it is not useful for longitudinal studies 
or metabolic studies on otherwise healthy subjects.

Magnetic resonance spectroscopy (MRS) and mag
netic resonance imaging (MRI) provide non-invasive 
means to accurately quantify intrahepatic lipid content[8-10]. 
In contrast to other modalities such as ultrasound and 
computed tomography (CT), MRI/MRS are capable 
of  detecting even small amounts of  intrahepatic lipid 
accumulation[10]. Therefore, MRI/MRS are especially 
useful to measure changes in hepatic steatosis during 
various treatment regimens. During recent years, clinical 
and research investigations have been performed on this 
subject.

This review gives an overview of  various magnetic-
resonance-based methods that are capable of  quantifying 
intrahepatic lipid content non-invasively. Different strate
gies of  1H-MRS, as well as phase-sensitive and frequency-
selective MRI methods are described.

1H-MRS
In 1993, Longo et al[11,12] first published their results of  
1H-MRS of  liver parenchyma and correlated the data with 
CT studies and biopsies. In these studies, they found an 
excellent agreement between the different investigated 
methods. Since then, several studies have been performed 
that have further verified these results by means of  whole-
body MR scanning[13-15].

However, various strategies have been developed 
to obtain volume-selective 1H-MR spectra from liver 
parenchyma in vivo. Spectra are usually recorded from 
volumes ranging from 1 to 27 cm3, which are small 
enough to be positioned well in the liver parenchyma. 
To record reliable spectra from pure liver parenchyma, 
voxels have to be carefully placed in order to avoid 
artificial signal contributions from surrounding adipose 
tissue or intrahepatic blood vessels.

Two main strategies are used for single-voxel spec
troscopy (SVS): point resolved spectroscopy (PRESS) 
or stimulated-echo acquisition mode (STEAM)[16,17]. 
The PRESS acquisition scheme (multi-echo single-shot 
technique) uses a 90°-180°-180° pulse sequence with 
long echo time (TE) and allows for better visualization of  
metabolites with long T1 relaxation times. In contrast, the 
STEAM sequence applies a 90°-90°-90° pulse sequence 
and is less sensitive to J-coupling effects. The STEAM 
sequence provides shorter TE and lower signal yield 
compared to PRESS, which is usually not a limitation for 
fat quantification in the liver. However, both techniques 
can be applied for intrahepatic fat quantification in clinical 
examinations.

Since both techniques only provide spectra of  a small 
sub-region of  the liver parenchyma, so-called spectro
scopic imaging techniques with 2D or even 3D matrices 
of  spectra have been developed to obtain detailed infor
mation on lipid distribution[18,19]. Compared to SVS, 
these techniques are rarely used clinically for routine 
investigation of  liver parenchyma, due to their rather long 
acquisition and post-processing times[20,21]. In most cases 
of  NAFLD, hepatic lipid distribution has been shown to 
be relatively homogeneous, which allows one to quantify 
intrahepatic fat fraction by only one single representative 
voxel[22-24]. However, it should be noted that significant 
differences in sub-regions of  both liver lobes have also 
been reported[13].

The above-mentioned 1H-MRS techniques have been 
applied in studies investigating NAFLD in the general 
adult population[25]. Moreover, an increasing number of  
longitudinal clinical studies have been performed evaluating 
intrahepatic fat fraction in the obese population or patients 
at risk for developing type 2 diabetes[26-31]. Intrahepatic fat 
fraction has also been evaluated in morbidly obese patients 
undergoing bariatric surgery[32-35]. Moreover, additional 
cross-sectional studies have revealed different intrahepatic 
fat fractions depending on genetic background or hormo
nal status of  the examined subjects[36-42].

All of  these MRS fat quantification techniques have 
been shown to be safe and non-invasive alternatives to 
the current invasive gold standard (liver biopsy). They 
have been tested regarding their accuracy and have 
shown high intra-individual reproducibility in repeated 
measurements[13,23,25]. However, one has to consider 
that MR spectroscopic fat quantification relies on deter
mination of  overall volume fraction of  lipids in the liver 
parenchyma. In contrast, in histological examinations, the 
percentage of  hepatocytes that show distinct fat droplets 
is used for quantification. Thus, the reported percentage 
values that characterize steatosis from MR examinations 
might differ from those in histological analysis. On the 
other hand, data from MRI and histology correlate with 
each other and both techniques allow, nevertheless, for 
reliable quantification of  intrahepatic lipid content.

It should be also mentioned that spectroscopic examin
ations are especially recommended for assessment of  
small lipid fractions in the liver, because sensitivity to low 
signal intensities from fat is higher than for imaging-based 
strategies. Furthermore, water and fat signals can be well 
distinguished.

FAT-SENSITIVE IMAGING METHODS
1H-MRS capabilities are still not available on all standard 
clinical scanners and require dedicated prerequisites 
including spectroscopic sequences and post-processing 
software. Therefore, 1H-MRS still remains a research tool 
for clinical studies and is usually not used in daily routine 
liver examinations. There are, nevertheless, MRI sequences 
that allow for reliable and accurate quantification of  
intrahepatic lipid content.
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Techniques based on differences in signal phase of 
water and fat
So-called in-phase/opposed-phase (IP/OP) techniques 
are available on most MR units and can be performed 
easily in routine examinations. Using this technique, T1-
weighted images can be acquired extremely fast, with 
the use of  multi-segment phased array coils and parallel 
imaging techniques. Moreover, T1-weighted gradient echo 
sequences can cover most of  the liver parenchyma within 
a single breath-hold[43-46]. The IP/OP technique is based 
upon the fact that, during TE, transverse magnetization 
vectors of  fat and water develop a phase difference that 
results in decreased overall length of  the magnetization 
vector under OP conditions. At a main magnetic field 
strength of  1.5 T, the frequency shift between fat and 
water is approximately 220 Hz, which results in OP 
conditions at a TE of  about 2.4 ms and in-phase con
ditions at a TE of  about 4.8 ms[47-49]. The hepatic fat 
fraction can then be quantified by calculating the loss of  
signal intensity in OP images compared to IP images[50-52], 
as shown in Figure 1. From congruent sets of  IP and 
OP images, acquired within the same breath-hold, the fat 
fraction can be calculated pixel-wise and misregistration 
errors can be avoided. Thus, maps of  intrahepatic fat 
fraction can be obtained to estimate liver fat content and 
show differences in regional fat distribution.

However, not only the phase difference between water 
and fat protons contribute to the observed signal loss in 
OP images, but also additional transverse and longitudinal 
relaxation effects may play a major role. Recent studies 

have shown that especially transverse relaxation time 
can vary largely between different individuals, as well 
as intra-individually in the time-course of  longitudinal 
studies[46,53,54]. These changes in transverse relaxation time 
are mainly due to increased iron deposition in the liver 
parenchyma; either artificially acquired or, for example, 
hemochromatosis-associated[55]. It has been shown that 
transverse relaxivity correlates well with serum ferritin 
levels[53,56]. Thus, transverse relaxation time of  liver paren
chyma has to be measured additionally using a multi-echo 
gradient echo sequence. The data necessary for estimation 
of  T2* can than be obtained within a single additional 
breath-hold. Integration of  individual T2* values in the 
calculation of  the fat fraction requires a somewhat more 
sophisticated approach[57].

In contrast, longitudinal relaxation times are relatively 
stable throughout the population and individual calcu
lation requires additional time-consuming sequences. 
Therefore, it seems legitimate for the general population 
to account for longitudinal relaxivity using constant values 
for longitudinal relaxation time of  liver parenchyma.

Compared to the above-described gradient-echo-based 
IP/OP technique, Dixon et al[47] described in 1984 the use 
of  a spin-echo technique with a small timing-offset of  
the 180° refocusing pulse, which is used to create a so-
called OP image. The IP image is then acquired using a 
conventional spin-echo sequence. From these two images, 
fat- and water-selective images can be subsequently 
obtained. However, sensitivity to magnetic field inhomoge
neity cannot be neglected and has prevented the wides
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Figure 1  T1-weighted gradient echo images recorded with OP (parts A and C) and IP (B and D) conditions. A and B show a lean subject with almost equal signal 
intensity of the liver under OP (A) and IP (B) conditions, since no intrahepatic lipid storage is present. In contrast, C and D show an obese subject with lower signal intensity 
under OP conditions compared to IP conditions, which indicated relevant intrahepatic lipid storage. 

A B

C D
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pread routine clinical usage of  the Dixon technique. 
Since its introduction more than 20 years ago, several 
modifications have been reported that have aimed at 
overcoming its inherent limitations[45,48,58,59]. Three-point 
Dixon methods have been developed that additionally 
acquire a third image with a phase shift of  -180° or 360°.  
Then, using three different images and sophisticated 
phase-correction algorithms, true fat- and water-selective 
images are derived from the recorded data. This technique 
allows one to distinguish which constituent (water or fat) is 
predominant in each voxel[60-66]. Acquiring all three images 
in a single breath-hold is often not possible, whereas 
recording in multiple breath-holds poses the problem of  
misregistration artefacts due to variable positions of  the 
liver parenchyma.

Another approach was first described by Reeder  
et al[67-69] and is termed the IDEAL technique (iterative 
decomposition of  water and fat with echo asymmetry and 
least squares estimation). Using optimized echo shifts and 
gradient echo imaging, it provides robust quantification 
of  the intrahepatic fat fraction. This technique allows 
for fat quantification even in the presence of  moderate 
inhomogeneities of  the static magnetic field, which are 
often encountered in examinations of  extremely obese 
patients on wide-bore MRI scanners. However, it is not 
free of  limitations. Liu et al[70] have reported techniques 
for reduction of  noise bias and longitudinal relaxation 
effects that affect quantification of  the hepatic fat fraction 
in the IDEAL technique. These drawbacks can be 
partially overcome by small- or dual-flip angle approaches, 
magnitude discrimination and phase-constrained methods. 
Besides its capabilities in measuring parenchymal fat 
content, the IDEAL method has also been used for fat 
suppression in clinical studies of  various body regions[71-75].

Techniques based on frequency selective excitation
Previous studies have described a so-called spectral-spatial 
excitation technique to quantify fat content accurately in 
parenchymal organs and muscles[57,76]. A combination of  
chemical shift selectivity and slice-selective excitation in 
gradient echo or spin echo imaging sequences provides a 
high sensitivity to detect even small amounts of  fat[23,49,77,78]. 

Furthermore, spatial information about parenchymal 
lipid distribution is also obtained. Slice-selectivity is 
implemented using six equidistant radio frequency pulses 
(time increment between pulses, 2.38 ms at 1.5 T) with 
nearly binomial amplitude ratios. These radio frequency 
pulses excite the methylene and methyl signal of  fatty 
acids (0.8-2.0 ppm) selectively, as shown in Figure 2. 
Thus, signal contributions from water protons are below 
the noise level. To achieve this optimal spectral-spatial 
excitation, relatively homogeneous static magnetic fields 
are required, which makes adequate shimming procedures 
necessary. However, especially in wide-bore MR scanners 
that are designed to examine extremely obese patients, 
the inhomogeneity of  the static magnetic field is often 
problematic. Even time-consuming shimming procedures 
might fail. For quantitative assessment of  intrahepatic 
fat, adjacent subcutaneous or visceral fat is used as an 
internal reference because it contains almost 100% fat. 
The spectral-spatial excitation method is capable of  detec
ting even small amounts of  lipids (starting at 1%-2% 
volume fraction of  fat in the liver), with additional spatial 
information about its distribution[23]. However, some 
advantages and disadvantages of  this technique should 
be noted. As a result of  highly selective visualization of  
fat, the technique offers relatively low soft tissue contrast 
compared to conventional gradient echo sequences (Figure 
3). Moreover, only a small number of  representative slices 
can be acquired during a single breath-hold. Since only a 
reference region-of-interest in subcutaneous adipose tissue 
adjacent to liver parenchyma is needed for quantification 
of  fat fraction, the calculation of  intrahepatic lipid content 
can easily be done. Furthermore, there is no need for 
additional time-consuming sequences that are necessary to 
correct for transverse and longitudinal relaxation effects.

CONCLUSION
Several non-invasive methods have been developed for 
quantification of  intrahepatic fat content using whole-body 
MRI scanners. Being aware of  the inherent advantages 
and disadvantages of  each technique, one has to choose 
carefully the appropriate method for specific examination 
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Figure 2  A and B show fat-selective spectral-spatial imaging of the body trunk. A lean subject with almost no intrahepatic lipid storage (A) and an obese subject 
with markedly increased lipid storage in the liver parenchyma is shown (B).
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circumstances, as well as for hard- and software capabilities. 
Correctly applied, each technique (MRS/MRI) provides 
accurate data on intrahepatic fat fraction, correlating well 
with findings in liver biopsies, which is often considered as 
the current gold standard. The methods described above 
provide non-invasive quantification of  the intrahepatic fat 
fraction, and give a reliable basis for longitudinal clinical 
and research studies. Thus, the influence of  various medical 
treatments and diseases on intrahepatic lipid storage can be 
easily investigated in a non-invasive way.
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Figure 3  Three subjects with different intrahepatic lipid contents are compared. The subject in row (a) shows intrahepatic lipid content of about 20%; the 
subject in row (b) shows intrahepatic lipid content of about 10%; and the subject in row (c) shows intrahepatic lipid content in the normal range (about 1%). The figure 
shows IP (column Ⅰ) and OP (column Ⅱ) images of a T1-weighted gradient echo sequence. Column Ⅲ shows the results of a fat-selective spectral-spatial imaging 
sequence, and column Ⅳ shows the results from single-volume 1H-MRS using a STEAM sequence.
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