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Abstract
AIM: To investigate the anti-diabetogenic mechanism 
of Nardostachys jatamansi  extract (NJE).

METHODS: Mice were injected with streptozotocin via  

a tail vein to induce diabetes. Rat insulinoma RINm5F 
cells and isolated rat islets were treated with interleukin-
1β and interferon-γ to induce cytotoxicity.

RESULTS: Treatment of mice with streptozotocin re-
sulted in hyperglycemia and hypoinsulinemia, which 
was confirmed by immunohistochemical staining of the 
islets. The diabetogenic effects of streptozotocin were 
completely abolished when mice were pretreated with 
NJE. Inhibition of streptozotocin-induced hyperglycemia 
by NJE was mediated by suppression of nuclear factor 
(NF)-κB activation. In addition, NJE protected against 
cytokine-mediated cytotoxicity. Incubation of RINm5F 
cells and islets with NJE resulted in a significant reduc-
tion in cytokine-induced NF-κB activation and down-
stream events, inducible nitric oxide synthase expres-
sion and nitric oxide production. The protective effect of 
NJE was further demonstrated by the normal insulin se-
cretion of cytokine-treated islets in response to glucose.

CONCLUSION: NJE provided resistance to pancreatic 
β-cell damage from cytokine or streptozotocin treat-
ment. The β-cell protective effect of NJE is mediated 
by suppressing NF-κB activation.
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INTRODUCTION
Type 1 diabetes mellitus is an autoimmune disease that 
causes selective destruction of  insulin producing β-cells 
in the islets of  Langerhans. In early-stage disease, infiltra-
tion of  inflammatory cells into the pancreatic islets can be 
observed histologically[1]. The inflammatory cells produce 
and release cytokines, including interleukin-1β (IL-1β), tu-
mor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). 
IL-1β, alone or in combination with TNF-α or IFN-γ, 
upregulates inducible nitric oxide synthase (iNOS), and 
produces high levels of  nitric oxide (NO) in pancreatic 
islets[2,3]. NO is produced by the oxidation of  L-arginine to 
L-citruline by NOS, and generation of  excess NO can in-
hibit mitochondrial metabolism, protein modification, and 
DNA cleavage; any one of  which could lead to impaired 
insulin secretion and β-cell death[4,5]. Streptozotocin (STZ) 
is a diabetogenic agent that is toxic to pancreatic β-cells 
and is commonly used in diabetes research[6]. Streptozoto-
cin contains a nitroso moiety and releases NO during its 
metabolism[7]. In rodents, STZ activates poly-ADP ribose 
polymerase, depletes cellular NAD and ATP, breaks DNA 
strands, and initiates β-cell necrosis[8].

NO production is regulated by transcription factors 
that bind to specific sites in the iNOS promoter. Nuclear 
factor (NF)-κB, which can be activated by cytokines and 
STZ, has been implicated as a key signaling mediator in 
iNOS induction[9,10]. When inactive, NF-κB is located in 
the cytosol complexed with NF-κB inhibitory factor (IκB). 
Various inducers cause complex dissociation, presumably 
via IκB phosphorylation. Released NF-κB translocates to 
the nucleus, where it interacts with recognition sites to me-
diate gene transcription[11]. We and others have shown that 
NF-κB-dependent NO production is involved in the dys-
function and destruction of  β-cells, which suggests NO 
involvement in autoimmune diabetes pathogenesis[9,12-15].

Nardostachys jatamansi (N. jatamansi) is used in Ayurvedic 
medicine to treat mental disorders, hyperlipidemia, hyper-
tension, and convulsions[16-18]. Various sesquiterpenes such 
as lignans and neolignans are present in root extracts of  
this plant[19]. N. jatamansi is suggested to protect cells and 
tissues through its antioxidative properties[20,21]. We found 
that N. jatamansi extract (NJE) protects against develop-
ment of  acute cerulean-induced pancreatitis[22]. However, 
as far as we are aware, no studies have reported on the an-
tidiabetic effects of  NJE. Therefore, in this study we ex-
amined the effect of  NJE on cytokine- or STZ-stimulated 
pancreatic β-cell damage and the resultant development 
of  type 1 diabetes.

MATERIALS AND METHODS
Cell culture and reagents
Rat pancreatic β-cell line RINm5F was from the American 

Type Culture Collection and were grown at 37℃ in a hu-
midified 5% CO2 atmosphere in RPMI 1640 medium (Gib-
co BRL, Grand Island, NY, USA), supplemented with 10% 
fetal bovine serum and 2 mmol/L glutamine, 100 U/mL  
penicillin, 100 μg/mL streptomycin, and 2.5 μg/mL  
amphotericin B. IL-1β and IFN-γ were obtained from 
R&D Systems (Minneapolis, MN, USA). All reagents were 
from Sigma (St. Louis, MO, USA), unless otherwise noted.

Preparation of NJE
N. jatamansi was from a standard commercial source (Omni 
Herb, Seoul, Korea), and its identity was confirmed at the 
Korean Drug Test Laboratory (Seoul, Korea). Voucher 
specimens (NO; Oh/wh/nj-43) were deposited at the 
School of  Oriental Medicine Herbarium, Wonkwang 
University. NJE was prepared by decocting 200 g of  
dried herbs with 1800 mL boiling distilled water for ap-
proximately 2 h. The extract was filtered, freeze-dried and 
stored at 4℃.

Type 1 diabetes induction
Specific pathogen-free male ICR mice, weighing 25-30 g, 
were purchased from Orientbio Inc. (Seoungnam, Korea) 
and housed at our animal facility for 1 wk. All mice were 
kept under specific pathogen-free conditions with free ac-
cess to a standard commercial diet and were used at 5-6 wk 
of  age. To induce diabetes, mice were injected via the tail 
vein with 80 mg/kg STZ dissolved in 0.1 mol/L sodium 
citrate buffer (pH 4.0), prepared within 5 min of  admin-
istration. Mice were divided into the following groups: 
(1) non-treated controls; (2) STZ; (3) NJE; and (4) NJE 
+ STZ (n = 5 for each group). Control animals received 
citrate buffer alone. Group 4 received intraperitoneal injec-
tions of  125 mg/kg NJE daily for 3 d before administra-
tion of  STZ. The day on which STZ was first administered 
was defined as day 1. At day 5, mice were sacrificed by 
decapitation without anesthesia and trunk blood was col-
lected in pre-chilled tubes that contained 1 mg/mL EDTA. 
Plasma glucose was assayed using the glucose oxidase-per-
oxidase method, and plasma insulin was measured using a 
radioimmunoassay kit (Linco Research, St. Charles, MO, 
USA). All experimental procedures were approved by the 
Institutional Animal Care and Use Committee at Chonbuk 
National University, Jeonbuk, Korea.

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide assay for cell viability
The viability of  cultured cells was determined by the re-
duction of  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) to formazan. RINm5F cells were 
seeded overnight in clear, flat-bottomed 96-well tissue 
culture plates at 105 cells/well in 100 μL medium. Cells 
were pretreated with NJE as indicated for 3 h, then IL-
1β (1 U/mL) and IFN-γ (100 U/mL) were added for an 
additional 48 h. Cells were washed twice with PBS, and 
MTT was added (100 μg/100 μL PBS). After incubation 
at 37℃ for 1 h, 100 μL DMSO was added to dissolve 
the formazan crystals, and absorbance was measured at 
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570 nm using a Spectra MAX PLUS spectrophotometer 
(Molecular Devices, Sunnyvale, CA, USA).

NO measurement
Biologically produced NO is rapidly oxidized to nitrite and 
nitrate in aqueous solutions. NO production was measured 
as nitrite concentration in cell-free culture supernatants 
using a colorimetric assay. Briefly, 5 × 105 RINm5F cells 
or 30 islet samples were pretreated with the indicated con-
centrations of  NJE for 3 h prior to the addition of  IL-1β 
(1 U/mL) and IFN-γ (100 U/mL). After 24 h, 100 μL ali-
quots of  culture supernatant were incubated with 100 μL  
of  a modified Griess reagent of  a 1:1 mixture of  1% sul-
fanilamide in 30% acetic acid and 0.1% N-(1-naphthyl) 
ethylenediamine dihydrochloride in 60% acetic acid, at 
room temperature for 5 min, and the absorbance was 
measured at 540 nm using a spectrophotometer (Ultrospec 
2100 pro; Amersham Biosciences). NO concentration was 
determined from a linear standard curve of  serial dilutions 
of  sodium nitrite in a working medium.

Whole cell and nuclear protein extracts
Cells, islets, or pancreatic tissues were washed with PBS 
and lysed in CytoBuster protein extraction buffer (Nova-
gen, Madison, WI, USA). Lysate was centrifuged at 10 000 
× g for 5 min at 4℃, and the supernatant was used as 
whole cell protein extract. Cytosolic and nuclear extracts 
were prepared from cells using NE-PER Nuclear and 
Cytoplasmic Extraction Reagent (Pierce Biotechnology, 
Rockford, IL, USA).

Western blotting analysis
RINm5F cells (5 × 106) or 30 islet samples were homog-
enized in 100 μL ice-cold lysis buffer (20 mmol/L HEPES, 
pH 7.2, 1% Triton X-100, 10% glycerol, 1 mmol/L PMSF, 
10 μg/mL leupeptin, 10 μg/mL aprotinin) and 20 μg pro-
tein separated by SDS-PAGE and transferred to nitrocellu-
lose membranes. Blots were probed with 1 μg/mL primary 
antibody against p50, p65, iNOS, actin, or PCNA (Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) and detected 
with horseradish peroxidase-conjugated IgG (Zymed, South 
San Francisco, CA, USA).

Electrophoretic mobility shift assay
NF-κB activation was assayed using a gel mobility shift 
assay with nuclear extracts from control and treated cells. 
An oligonucleotide that contained the κ-chain binding 
site (κB, 5′-CCGGTTAACAGAGGGGGCTTTCC-
GAG-3′) was used as a probe. The two complementary 
strands were annealed and labeled with [α-32P]dCTP. 
Binding reactions that contained labeled oligonucleotide 
(10 000 cpm), 10 μg nuclear extract protein, and binding 
buffer (10 mmol/L Tris-HCl, pH 7.6, 500 mmol/L KCl, 
10 mmol/L EDTA, 50% glycerol, 100 ng poly (dI·dC),  
1 mmol/L dithiothreitol) in a final volume of  20 μL 
were incubated for 30 min at room temperature. Reac-
tions were separated on 4% polyacrylamide gels in 0.5 × 
Tris-borate buffer, and the gels were dried and visualized 

by autoradiography. Specificity of  the DNA/NF-κB 
interaction was demonstrated by competitive assays with 
50-fold excess unlabeled oligonucleotide.

RNA isolation and real-time RT-PCR
RNA was isolated from RINm5F cells or islets using Tri
zol reagent (Invitrogen, Carlsbad, CA, USA). RNA was 
precipitated with isopropanol and dissolved in DEPC-
treated distilled water. Total RNA (2 μg) was treated with 
RNase-free DNase (Invitrogen), and first-strand cDNA 
was generated using random hexamer primer in a first-
strand cDNA synthesis kit (Applied Biosystems, Foster 
City, CA, USA). Specific primers for iNOS were designed 
using primer express software (Applied Biosystems): 
iNOS (accession No. NM_012611), 5′-TGTGCTAATGC-
GGAAGGTCAT-3′ (forward), and 5′-CGACTTTCCT-
GTCTCAGTAGCAAA-3′ (reverse). Control 18S rRNA 
was purchased from Applied Biosystems and was used as 
the invariant control. Real-time RT-PCR mixtures consist-
ed of  10 ng reverse transcribed total RNA, 167 nmol/L  
forward and reverse primers, and 2 × PCR Master Mix 
in a final volume of  10 μL. Reactions were carried out in 
384-well plates using the ABI Prism 7900HT Sequence 
Detection System (Applied Biosystems). All experiments 
were performed in triplicate.

Glucose-stimulated insulin secretion assay
Pancreatic islets were isolated from 250-300 g male Sprague-
Dawley rats, using the collagenase digestion method[23]. Islets 
were cultured for 24 h with IL-1β and IFN-γ in the presence 
or absence of  NJE, then washed three times in Krebs-Ring-
er bicarbonate buffer (25 mmol/L HEPES, 115 mmol/L  
NaCl, 24 mmol/L NaHCO3, 5 mmol/L KCl, 1 mmol/L 
MgCl2, 2.5 mmol/L CaCl2, 0.1% bovine serum albumin, pH 
7.4), which contained 3 mmol/L D-glucose. Insulin secre-
tion assays were performed with either 5.5 or 20 mmol/L 
D-glucose. All experiments were performed in triplicate.

Immunohistochemistry
Immunohistochemical staining was performed with the 
DAKO Envision system (DAKO, Carpinteria, CA, USA), 
which used dextran polymers conjugated with horserad-
ish peroxidase to avoid contamination with endogenous 
biotin. Pancreases were removed and immediately placed 
in fixative (10% formalin solution in 0.1 mol/L PBS). His-
tological sections of  4 μm were cut from formalin-fixed, 
paraffin-embedded tissue blocks. After deparaffinization, 
tissue sections were treated using a microwave antigen 
retrieval procedure in 0.01 mol/L sodium citrate buffer. 
After blocking endogenous peroxidase, the sections were 
incubated with Protein Block Serum-Free (DAKO) to 
block nonspecific staining, then with anti-insulin antibody 
(Santa Cruz Biotechnology). Peroxidase activity was de-
tected with 3-amino-9-ethylcarbazole. 

Statistical analysis
Statistical analyses were performed using ANOVA and 
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Duncan’s tests. Differences with P < 0.05 were consid-
ered statistically significant.

RESULTS
Anti-diabetic effect of NJE in mice
Mice injected with STZ gradually became hyperglycemic, 
with an increased incidence of  diabetes observed start-
ing at day 3. At day 5, the average blood glucose level 
of  mice injected with STZ was 344 ± 52.8 mg/dL. Mice 
that were pretreated with NJE were fully resistant to dia-
betes development (Figure 1A), and treatment with NJE 
alone did not affect blood glucose concentration. In ad-
dition, the mean plasma insulin level at day 5 in the STZ 
group decreased by 84.2% compared with the control 

(from 1.9 ± 0.1 to 0.3 ± 0.1 ng/mL), while the severity 
of  hypoinsulinemia was attenuated in mice pretreated 
with NJE (Figure 1A). These results indicate that NJE is 
protective against STZ-induced diabetes.

The preventative effect of  NJE on STZ-induced dia-
betes was histologically examined. Pancreatic tissues at  
5 d after STZ administration, with or without NJE pre-
treatment, were subjected to hematoxylin and eosin (HE) 
staining and immunohistochemistry. STZ-treated mice 
showed degenerative and necrotic changes and islet shrink-
age (Figure 1B, b), as well as weak insulin-reactivity in a 
few β-cells (Figure 1B, f). However, tissues from STZ-
treated mice pretreated with NJE showed round, nearly 
normal, and clearly defined islets that were strongly posi-
tive for insulin (Figure 1B, d and h).
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To elucidate the antidiabetogenic mechanism of  NJE, 
we examined its effect on STZ-induced NF-κB activation. 
Figure 1C is a representative electrophoretic mobility shift 
assay (EMSA) that shows the 32P-DNA/NF-κB complex 
formed with nuclear extracts from the pancreas 30 min 
after STZ administration. The findings were similar to 
those of  our previous study, with STZ treatment result-
ing in increased NF-κB binding to DNA[10]. This complex 
was not detected in pancreatic nuclear extracts from NJE-
pretreated mice. Taken together, these results show that 
NJE inhibits NF-κB activation and prevents type 1 diabe-
tes development in mice.

NJE prevented cytokine-mediated cell death in RINm5F 
cells
We investigated the antidiabetogenic effect of  NJE at the 
cellular level. Untreated RINm5F cells or cells pretreated 
with NJE for 3 h were exposed to cytokine for 48 h, and 
viability was assessed using an MTT assay. Treatment 
with cytokine significantly reduced cell viability to 39.8% 
± 0.6% of  the controls (Figure 2A). Conversely, NJE in-
creased the viability of  cytokine-treated RINm5F cells in 
a concentration-dependent manner. Treatment with NJE 
alone did not affect cell viability at the concentrations 
used in this study (data not shown).

NO production was also evaluated. In 24 h, control 
RINm5F cells generated 9.8 ± 0.5 μmol/L nitrite, while cy-
tokine-treated cells generated 34.2 ± 2.7 μmol/L (Figure 2B).  
A concentration-dependent reduction in cytokine-me-
diated nitrite production was observed in RINm5F cells 
treated with cytokine plus NJE. Near complete inhibition 
of  nitrite production was observed in cells that were pre-
treated with 100 μg/mL NJE. 

To investigate the regulatory effects of  NJE on NO 
production, we examined the effects of  NJE on cytokine-
induced iNOS mRNA and protein expression, using real-
time RT-PCR and Western blotting. Cytokine increased 
iNOS mRNA and protein levels (Figure 2C). However, 
when cells were treated with NJE prior to cytokine treat-
ment, mRNA and protein levels decreased in a concentra-
tion-dependent manner. Treatment with 100 μg/mL NJE 
completely blocked iNOS expression.

NF-κB was implicated in STZ toxicity (Figure 1C). 
Therefore, the effect of  NJE on the cytokine-stimulated 
translocation of  NF-κB from the cytosol to the nucleus 
in RINm5F cells was examined. Nuclear extracts from 
cytokine-stimulated RINm5F cells showed increased NF-
κB binding activity (Figure 3A, lane 2), as well as increased 
nuclear levels of  p65 and p50 subunits (Figure 3B), com-
pared to those of  unstimulated cells. In contrast, cytokine-
induced NF-κB activation was markedly suppressed by 
NJE pretreatment, which suggested that NJE inhibited 
iNOS expression by suppressing NF-κB activation. We 
previously have reported that IκBα, but not IκBβ, is 
the major participant in cytokine-induced NF-κB activa-
tion[23]. Therefore, we investigated IκBα levels in the cy-
tosol following cytokine treatment (Figure 3B). Cytokine-
treated RINm5F cells showed a decreased level of  IκBα 

protein in the cytosol compared to a similar fraction from 
unstimulated cells; however, increased IκBα degradation 
as a result of  cytokine treatment was markedly suppressed 
by pretreatment with NJE.

NJE suppressed the cytokine-induced NF-κB pathway and 
preserved glucose-stimulated insulin secretion in rat islets
We further assayed the preventive effects of  NJE using rat 
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pancreatic islets isolated from male Sprague-Dawley rats. 
Incubation of  rat islets with cytokine for 24 h resulted in a 
2.8-fold increase in NO production (Figure 4A). Real time 
RT-PCR and Western blotting revealed that iNOS mRNA 
and protein levels were markedly increased by cytokines 
(Figure 4A). Consistent with results from RINm5F cells, 
pretreatment of  islets with NJE abolished the cytokine ef-
fects and reduced NO production and iNOS expression to 
the level of  those of  control islets. Additionally, treatment 
with cytokine increased NF-κB DNA binding activity in 
islets (Figure 4B), and pretreatment of  islets with NJE 
completely abolished these effects. To add functional data, 
NJE protection against cytokine-induced impairment of  
glucose-stimulated insulin secretion (GSIS) was evaluated. 
After 24 h of  cytokine exposure, insulin secretion was as-
sayed in response to 20 mmol/L glucose. Control islets se-

creted 3.4 ± 0.4 ng/mL insulin, while cytokine-treated is-
lets secreted significantly less, at 1.2 ± 0.2 ng/mL (P < 0.01) 
(Figure 4C). However, pretreatment with NJE blocked the 
cytokine effect and maintained islet cell insulin secretion 
to levels similar to those of  the controls. In addition, treat-
ment with NJE alone did not affect insulin secretion in 
response to glucose (data not shown).

DISCUSSION
In this study, we present a mode of  action for NJE pro-
tection against development of  type 1 diabetes. Intraperi-
toneal administration of  NJE prevented diabetes develop-
ment after STZ and preserved β-cell mass. In addition, 
NJE protected β-cells from cytokine toxic challenge in 
RINm5F cells and islets.

We demonstrated that NJE prevented STZ-induced 
diabetes in mice. STZ destroys islet cells through several 
mechanisms, including the production of  reactive oxygen 
species (ROS)[24], activation of  pancreatic NF-κB[25], and 
induction of  pronounced immune and inflammatory 
responses[26]. STZ-treated mice showed marked islet de-
struction and relatively small numbers of  insulin-positive 
β-cells, while NJE pre-treated mice showed well-defined 
islets and strong insulin staining. An EMSA revealed 
increased NF-κB binding activity in pancreatic nuclear 
extracts derived from STZ-treated hyperglycemic dia-
betic mice. However, pretreatment with NJE prevented 
NF-κB activation, which resulted in the maintenance of  
plasma glucose and insulin levels in the normal range. NF-
κB participates in the transcriptional regulation of  pro-
inflammatory genes, and their activation results in the pro-
duction of  pro-inflammatory mediators[27,28]. Therefore, 
NF-κB might be a key regulator in local cytokine response 
pathways in STZ-mediated β-cell destruction. Alternative-
ly, the NJE anti-diabetic effect could be related to its anti-
oxidative properties. Several studies have confirmed that 
NJE is an ROS scavenger[20,21], and that ROS induces NF-
κB activation[29,30], which suggests that ROS scavenging by 
NJE suppresses STZ-induced NF-κB activation. Taken 
together, these results suggest that manipulation of  NF-
κB activity by NJE in pancreatic β-cells allows these cells 
to withstand and survive STZ-mediated immune attack.

NJE not only protected against STZ-induced diabetes, 
but also protected RINm5F cells and rat islets against cy-
tokine toxicity. IL-1β has been implicated in early events 
in β-cell destruction. Suppression of  IL-1β production or 
inhibition of  its interaction with corresponding cellular 
receptors significantly inhibits IL-1β-mediated deleteri-
ous effects on β-cells[31,32]. IL-1β exerts its main effects 
through the NF-κB pathway[33-35]. IFN-γ alone does not 
stimulate iNOS expression in rodent or human islets, but 
it reduces the concentration of  IL-1β required to induce 
iNOS expression in rat islets, and a combination of  IL-
1β and IFN-γ is required to induce iNOS expression and 
β-cell dysfunction in mouse and human islets[36]. In addi-
tion to cytokines, different intracellular pathways that lead 
to β-cell death (e.g. oxidative stress, chemical generation 
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Figure 3  NJE inhibits cytokine-induced NF-κB activation in RINm5F cells. 
RINm5F cells were pretreated with NJE for 3 h, and IL-1β (1 U/mL) and IFN-γ 
(100 U/mL) were added. After 30 min, NF-κB DNA binding was analyzed by 
EMSA (A), and translocation of p65 and p50 to the nucleus and IκBα degradation 
in the cytosol (B) were determined by Western blotting. β-actin and PCNA were 
used as loading controls for cytosolic and nuclear proteins, respectively.
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of  NO, mitogen-activated protein kinase activation, JAK-
STAT activation, and endoplasmic reticulum stress) par-
tially converge at NF-κB[12,14,37,38]. Hypothetically, this gives 
us, employing only one approach, the ability to block NF-
κB signaling, to save β-cell mass and thereby prevent dia-
betes development. In this model, NJE completely inhibits 
NO production in IL-1β- and IFN-γ-stimulated RINm5F 
cells and islets, through suppression of  NF-κB-dependent 
iNOS expression, thereby protecting RINm5F cells and 
islets from IL-1β and IFN-γ cytotoxicity. In addition to 
increased cell viability, we observed the preservation of  
insulin secretion in NJE pretreated rat islets. The molecu-
lar mechanism by which NJE inhibits NF-κB activation 
by IL-1β and IFN-γ appears to involve both inhibition of  
IκBα degradation and translocation of  p65 and p50 into 
the nucleus.

Flavonoids comprise the most common group of  
plant polyphenols and provide much of  the flavor and 
color to fruits and vegetables. Several flavonoids have been 
shown to inhibit the expression of  NF-κB-dependent 
cytokines, iNOS, and cyclooxygenase-2 genes[39]. Therefore, it 
would be interesting to analyze flavonoid composition in 
NJE extracts. 

In summary, this study is believed to be the first to 
demonstrate that NJE has a β-cell protective effect. Specif-

ically, NJE protected β-cells from cytokine-induced injury 
in vitro and counteracted the development of  type 1 diabe-
tes in response to STZ in vivo. This β-cell protective effect 
might be mediated, at least in part, by suppressing NF-κB 
activation. NJE did not cause serious side effects in mice, 
therefore, it could be a therapeutic alternative for rescuing 
β-cells in cases of  ongoing β-cell destruction.

COMMENTS
Background
Type 1 diabetes mellitus is an autoimmune disease that causes selective de-
struction of insulin-producing β-cells in the islets of Langerhans. Once those 
cells are destroyed, they do not ever produce insulin again. Type 1 diabetes 
affects younger individuals and requires lifelong insulin treatment. Without treat-
ment, the blood glucose rises to levels which can cause hyperglycemia. Type 1 
diabetes cannot be prevented. There is no practical way to predict who will de-
velop the disease because most people who develop it are otherwise healthy. 
Therefore, the best way to control type 1 diabetes is understanding the disease 
better and finding a therapeutic regimen to preserve functional β-cell damage.
Research frontiers
Cytokines such as interleukin (IL)-1β and interferon (IFN)-γ, which are released 
during islet inflammation, are believed to participate in β-cell damage during 
the development of autoimmune type 1 diabetes. Evidence has suggested that 
activation of nuclear factor (NF)-κB in response to cytokines is an important com-
ponent of the signal that triggers β-cell death. For this reason, NF-κB has been 
targeted for preventing type 1 diabetes development.
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Figure 4  NJE inhibits cytokine-induced activation of NF-κB and maintains glucose-stimulated insulin secretion in rat islets. Rat islets were treated with IL-1β 
(1 U/mL) and IFN-γ (100 U/mL) with or without 3 h pretreatment with NJE. Nitrite production and iNOS mRNA and protein expression (A) were determined after 24 h, and 
NF-κB DNA binding (B) was determined 1 h later; C: Rat islets (10 islets/500 µL) were treated with IL-1β (1 U/mL) and IFN-γ (100 U/mL) with or without 3 h pretreatment 
with NJE. Following 24 h incubation, glucose-stimulated insulin secretion was quantified. The results of triplicate samples are expressed as the mean ± SE. bP < 0.01 vs 
untreated controls; cP < 0.05, dP < 0.01 vs cytokine.
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Innovations and breakthroughs
Nardostachys jatamansi is used in Ayurvedic medicine to treat mental disor-
ders, hyperlipidemia, hypertension, and convulsions. N. jatamansi has been 
suggested to protect cells and tissues through its antioxidative properties. How-
ever, no studies to date have reported the antidiabetic effects of N. jatamansi. 
In this study, the authors observed that N. jatamansi extract (NJE) had antidia-
betic effects in in vitro and in vivo models of diabetes. 
Applications 
NJE did not cause serious side effects in vivo, therefore, it might be a therapeutic 
alternative for rescuing β-cells in cases of ongoing β-cell destruction. NJE-treated 
islets can also be used to increase islet survival in an allograft transplantation 
model.
Terminology
IL-1β and IFN-γ are cytokines that are secreted from infiltrated inflammatory 
cells into the pancreatic islets. Streptozotocin is a diabetogenic drug and par-
ticularly toxic to pancreatic β-cells.
Peer review
The article is written well, however, there are many major queries which have 
to be answered by the authors. Authors have to report on the phytochemical 
constituents of the extract (at least qualitative analysis).
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