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Abstract
AIM: To investigate whether the apoptotic activities 
of 8-bromo-7-methoxychrysin (BrMC) involve reactive 
oxygen species (ROS) generation and c-Jun N-terminal 
kinase (JNK) activation in human hepatocellular carci-
noma cells (HCC). 

METHODS: HepG2, Bel-7402 and L-02 cell lines were 
cultured in vitro  and the apoptotic effects of BrMC were 
evaluated by flow cytometry (FCM) after propidium 
iodide (PI) staining, caspase-3 activity using enzyme-
linked immunosorbent assay (ELISA), and DNA agarose 
gel electrophoresis. ROS production was evaluated by 
FCM after dichlorodihydrofluorescein diacetate (DCHF-
DA) probe labeling. The phosphorylation level of JNK 
and c-Jun protein was analyzed by Western blotting.

RESULTS: FCM after PI staining showed a dose-depen-
dent increase in the percentage of the sub-G1 cell pop-

ulation (P  < 0.05), reaching 39.0% ± 2.8% of HepG2 
cells after 48 h of treatment with BrMC at 10 μmol/L. 
The potency of BrMC to HepG2 and Bel-7402 (32.1% 
± 2.6%) cells was found to be more effective than the 
lead compound, chrysin (16.2% ± 1.6% for HepG2 cells 
and 11.0% ± 1.3% for Bel-7402 cell) at 40 μmol/L and 
similar to 5-flurouracil (33.0% ± 2.1% for HepG2 cells 
and 29.3% ± 2.3% for Bel-7402 cells) at 10 μmol/L. 
BrMC had little effect on human embryo liver L-02 cells, 
with the percentage of sub-G1 cell population 5.4% ± 
1.8%. Treatment of HepG2 cells with BrMC for 48 h also 
increased the levels of active caspase-3, in a concentra-
tion-dependent manner. z-DEVD-fmk, a caspase-3-
specific inhibitor, prevented the activation of caspase-3. 
Treatment with BrMC at 10 μmol/L for 48 h resulted in 
the formation of a DNA ladder. Treatment of cells with 
BrMC (10 μmol/L) increased mean fluorescence inten-
sity of DCHF-DA in HepG2 cells from 7.2 ± 1.12 at 0 h  
to 79.8 ± 3.9 at 3 h and 89.7 ± 4.7 at 6 h. BrMC did not 
affect ROS generation in L-02 cells. BrMC treatment failed 
to induce cell death and caspase-3 activation in HepG2 
cells pretreated with N-acetylcysteine (10 mmol/L).  
In addition, in HepG2 cells treated with BrMC (2.5, 5.0, 
10.0 μmol/L) for 12 h, JNK activation was observed. 
Peak JNK activation occurred at 12 h post-treatment and 
this activation persisted for up to 24 h. The expression 
of phosphorylated JNK and c-Jun protein after 12 h with 
BrMC-treated cells was inhibited by N-acetylcysteine 
and SP600125 pre-treatment, but GW9662 had no ef-
fect. SP600125 substantially reduced BrMC-induced cell 
death and caspase-3 activation of HepG2 cells. N-acet-
ylcysteine and GW9662 also attenuated induction of cell 
death and caspase-3 activation in HepG2 cells treated 
with BrMC.

CONCLUSION: BrMC induces apoptosis of HCC cells 
by ROS generation and sustained JNK activation.
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INTRODUCTION
Epidemiological and intervention studies in both hu-
mans and animals have shown that regular consumption 
of  fruits, vegetables, and tea is associated with decreased 
risk of  cancer[1]. Fruits, vegetables, and tea provide es-
sential nutrients and many diet-derived phenolics, in 
particular flavonoids, which have been demonstrated 
to exert potential anticarcinogenic activities[2]. Chrysin 
(5,7-dihydroxyflavone, ChR), a natural and biologically 
active flavone extracted from many plants, honey, and 
bee propolis, has been shown to inhibit cell proliferation 
and induce apoptotic cell death in a variety of  cancer 
cells. Investigations into the molecular mechanisms un-
derlying the inhibition of  cell proliferation and induction 
of  apoptosis by ChR have shown that ChR inhibited the 
growth by downregulating expression of  proliferating 
cell nuclear antigen in HeLa cells[3], induced apoptosis 
through caspase activation and Akt inactivation in leuke-
mia cells[4-7], and induced cell cycle arrest in human colon 
carcinoma cells, human esophageal adenocarcinoma 
OE33 cells and human lung adenocarcinoma cells[8-10]. 
Nevertheless, poor oral bioavailability has been a major 
limitation for the successful use of  dietary flavonoids as 
cancer chemotherapeutic agents[11]. It has been reported 
that ChR halogenated derivatives had stronger bioac-
tivities than the lead compound[12]. The higher hepatic 
metabolic stability and intestinal absorption of  the meth-
ylated polyphenols make them more favorable than the 
unmethylated polyphenols for development as potential 
cancer chemopreventive agents[13]. Our previous study 
showed that the effect of  8-bromo-7-methoxychrysin 
(BrMC) on the inhibition of  proliferation and induction 
of  apoptosis in a colon cancer cell line, HT-29, and a 
gastric cancer cell line, SGC-7901, was stronger than that 
of  ChR[14-17]. However, the molecular mechanisms of  in-
duced apoptosis in human hepatocellular carcinoma cells 
(HCC) by BrMC were not clear.

Although flavonoids are generally considered as an-
tioxidants, they can also generate reactive oxygen species 
(ROS) depending on their structure and molecular envi-
ronment[18]. A number of  flavonoids exert direct and in-
direct pro-oxidant effects by inhibiting the mitochondrial 

respiratory chain complexes I by inducing glutathione 
(GSH) depletion[19-23]. In addition, Kachadourian et al[19-24] 
have reported that chrysin is a potent inducer of  ROS 
generation and GSH depletion in A549, HL-60, and PC-3 
cells. We here demonstrate that BrMC induces apoptosis 
of  human HCC at least partly by promoting generation 
of  ROS, and ROS-dependent sustained activation of  c-Jun 
N-terminal kinase (JNK).

MATERIALS AND METHODS
Cell culture and reagents
Human HCC HepG2 [AFP(+), no tumorigenicity in im-
munosuppressed mice], Bel-7402 [AFP(+),with high fre-
quency of  tumorigenicity], and human embryo liver L-02 
cells were maintained in RPMI 1640 supplemented with 
10% fetal bovine serum, 2 mmol/L glutamine, 100 mg/L 
penicillin, and 100 mg/L streptomycin, and incubated in 
a humidified atmosphere of  5% CO2 at 37℃. BrMC was 
synthesized as described previously[14]. ChR was purchased 
from the Sigma Chemical Co. (St Louis, MO, USA). BrMC 
and ChR were dissolved in dimethyl sulfoxide (DMSO) to 
a final concentration of  0.1% in media. N-acetylcysteine 
(NAC), and GW9662 were obtained from Sigma. Cas-
pase-3 substrate N-acetyl-Asp-Glu-Val-Asp-p-nitroanilide 
(Ac-DEVD-pNA), and the caspase-3 specific inhibitor 
Z-Asp-Glu-Val-Asp-CH2F (Z-DEVD-fmk), were ob-
tained from Calbiochem (La Jolla, CA, USA). Dichlo-
rodihydrofuorescein diacetate (DCHF-DA) was from 
Molecular Probes Inc. (Eugene, OR, USA). Rabbit anti-
human total JNK was from Cell Signaling Technology 
(Beverly, MA, USA); mouse anti-human phospho-JNK, 
phospho-c-Jun, total c-Jun and β-actin were from Santa 
Cruz Biotechnology (Santa Cruz, CA, USA). Horseradish 
peroxidase-conjugated anti-rabbit and anti-mouse second-
ary antibodies were from Cell Signaling Technology. The 
commercial anti-hepatoma agent 5-flurouracil (5-FU) was 
obtained from Sigma Chemical Co. and was used as an 
apoptotic inducer positive control whereas 0.1% DMSO 
was used as a negative control.

Flow cytometry with propidium iodide staining
As previously described[25], cells were treated with serum-
free medium for 24 h, followed by treatment with media 
containing different concentrations of  test agents for 48 h.  
Cells were collected and prepared as a single cell suspen-
sion by mechanical blowing with phosphate-buffered saline 
(PBS), washed with cold PBS twice, fixed with 700 mL/L  
alcohol at 4℃ for 24 h, stained with propidium iodide 
(PI), and cell apoptosis was detected using flow cytometry 
(FCM; American BD Company, FACS 420).

DNA agarose gel electrophoresis
As previously described[26], cells were treated with serum-
free medium for 24 h, followed by treatment with media 
containing different concentrations of  test agents for 48 h. 
Cells were washed twice with PBS and DNA was extract-
ed with Apoptotic DNA Ladder Detection Kit (Bodataike 
Company, Beijing) according to the manufacturer’s in-
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structions. The extracted DNA was kept at 4℃ overnight. 
Then 8.5 μL of  DNA sample was mixed with 1.5 μL of  
6 × buffer solution, electrophoresed on 20 g/L agarose 
gel containing ethidium bromide at 40 V, and observed 
through the DBT-08 gel image analysis system.

Caspase-3 activity assay
To evaluate caspase-3 activity, cell lysates were prepared 
after treatment with test agents. Assays were performed 
in 96-well microtiter plates by incubating 20 μg cell ly-
sates in 100 μL reaction buffer (1% NP-40, 20 mmol/L 
Tris-HCl (pH 7.5), 137 mmol/L NaCl, 10% glycerol) 
containing the 5 μmol/L caspase-3 substrate (DEVD-
pNA). Lysates were incubated at 37℃ for 2 h. Thereafter, 
the absorbance at 405 nm was measured with an enzyme-
labeling instrument (ELX-800 type). In the caspase inhib-
itors assay, cells were pretreated with a caspase-3 specific 
inhibitor (10 μmol/L, Z-DEVD-fmk) for 1 h prior to 
addition of  test agents.

Determination of ROS
Intracellular ROS accumulation was measured by FCM 
using the fluorescent probe DCHF-DA. Briefly, cells were 
incubated with 10 μmol/L of  DCHF-DA for 30 min at 
37℃ in the dark after treatment with various concentrations 
of  test agents. After incubation, the cells were washed with 
PBS and analyzed within 30 min by FCM equipped with 
an air-cooled argon laser tuned to 488 nm. The specific 
fluorescence signals corresponding to DCHF-DA were col-
lected with a 525 nm band pass filter. As a rule, 10 000 cells 
were counted in each determination.

Western blotting analysis
As previously described[27], cells were collected, washed 3 
times with PBS, lysed in cell lysate containing 0.1 mol/L 
NaCl, 0.01 mol/L Tris-Cl (pH 7.6), 0.001 mol/L EDTA 
(pH 8.0), 1 μg/mL aprotinin, 100 μg/mL PMSF, and then 
centrifuged at 13 000 × g for 10 min at 4℃. Extracted 
protein sample (25 μg total protein/lane) was added in the 
same volume of  sample buffer solution and subjected to 
denaturation at 100℃ for 10 min, then electrophoresed on 
100 g/L or 60 g/L sodium dodecyl sulfate polyacrylamide 
gel electrophoresis at 100 mA for 3 h, and finally trans-
ferred onto polyvinylidene fluoride membrane (PVDF) 
(Millipore). The PVDF membrane was treated with Tris-
Buffered Saline Tween-20 (TBST) containing 50 g/L 
skimmed milk at room temperature for 2 h, followed by 
incubation with the first antibodies phospho-JNK, total 
JNK, phospho-c-Jun, total c-Jun and β-actin (1:1000 dilu-
tion), respectively, at 37℃ for 2 h. After being washed with 
TBST for 30 min, the corresponding secondary antibody 
was added and incubated at room temperature for 1 h.  
Bound antibody was visualized using chemiluminescent 
substrate (ECL; Amersham, Arlington Heights, IL, USA). 
Total JNK, total c-Jun and β-actin (1:1000 dilution) were 
used as an internal control. Images were scanned, fol-
lowed by densitometry analysis with UN-SCAN-IT soft-
ware (Silk Scientific).

Statistical analysis
The database was set up with the SPSS 15.0 software 
package (SPSS Inc., Chicago, IL, USA) for analysis. Data 
were represented as mean ± SD. The means of  multiple 
groups were compared with one-way analysis of  variance, 
after the equal check of  variance, and two-two compari-
sons of  the means were performed using the least signifi-
cant difference method. Statistical comparison was also 
performed with two-tailed t-test when appropriate. P < 
0.05 was considered statistically significant.

RESULTS
Effects of BrMC on apoptosis in human HCC
To determine whether BrMC selectively induces apopto-
sis of  human HCC, the human HCC lines HepG2 and 
Bel-7402 and human embryo liver L-02 cells were treated 
with increasing concentrations of  BrMC for 48 h. Apop-
totic cell death was examined by: (1) cell population with 
sub-G1 contents of  DNA using FCM after PI staining; 
(2) caspase-3 activity determined by enzyme-linked immu-
nosorbent assay; and (3) DNA fragmentation observed by 
DNA agarose gel electrophoresis. Figure 1A shows that 
there is a dose-dependent increase in the percentage of  
sub-G1 cell population (P < 0.05), reaching 39.0% ± 2.8% 
of  HepG2 cells after 48 h of  treatment with BrMC at  
10 μmol/L. The potency of  BrMC in HepG2 and 
Bel-7402 (32.1% ± 2.6%) cells was found to be more ef-
fective than the lead compound, chrysin (ChR, 16.2% ± 
1.6% for HepG2 cells and 11.0% ± 1.3% for Bel-7402 
cells) at 40 μmol/L and similar to 5-FU (33.0% ± 2.1% 
in HepG2 cells and 29.3% ± 2.3% in Bel-7402 cells) at  
10 μmol/L. BrMC had little effect in human embryo liver 
L-02 cells, with the percentage of  the sub-G1 cell popula-
tion 5.4% ± 1.8%. Compared with HepG2 cells, Bel-7402 
cells were less sensitive to BrMC. Parallel to the cell lethal 
effect and the enhanced caspase-3 activity, treatment of  
HepG2 cells with BrMC for 48 h increased the levels of  
active caspase-3, in a concentration-dependent manner  
(Figure 1B). Requirement of  caspase activity for BrMC-
induced apoptosis was examined using a caspase-3-specific 
inhibitor, z-DEVD-fmk. The data showed that z-DEVD-
fmk was able to prevent activation of  caspase-3 (Figure 1B).  
Similarly, treatment with BrMC at 10 μmol/L for 48 h  
resulted in the formation of  a DNA ladder (Figure 2). 
These results indicate that BrMC selectively induced apop-
totic cell death of  HCC in a caspase-dependent fashion.

Effects of BrMC on ROS generation in HepG2 cells
Because oxidative damage plays an important role in an-
ticancer effects of  ChR[19], we subsequently examined the 
level of  intracellular ROS in HepG2 and L-02 cells after 
treatment with BrMC using an oxidation-sensitive fluores-
cent probe DCHF-DA, which is oxidized to 2’,7’-dichlo-
rofluorescein (DCF) in the presence of  ROS. Figure 3A  
shows that treatment of  cells with BrMC (10 μmol/L) 
increased mean fluorescence intensity of  DCF in HepG2 
cell from 7.2 ± 1.12 at 0 h to 79.8 ± 3.9 at 3 h and 89.7 ± 
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4.7 for 6 h. However, BrMC did not affect ROS genera-
tion in L-02 cells. BrMC treatment failed to induce ROS 
generation in HepG2 cells pretreated with 10 mmol/L 
NAC. We next investigated whether generation of  ROS 
induced by BrMC was accompanied by apoptotic cell 
death after BrMC treatment. To determine a link between 
elevation of  the intracellular ROS level and apoptotic cell 
death in BrMC-treated cells, HepG2 cells were pre-incu-
bated with the thiol-containing antioxidant NAC before 
treatment with BrMC. BrMC treatment failed to induce 
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Figure 1  Effects of 8-bromo-7-methoxychrysin on the percentage sub-G1 cell population (A), caspase-3 activity (B) in human hepatocellular carcinoma 
HepG2, Bel-7402 and human embryo liver L-02 cells. aP < 0.05 vs treatment with dimethyl sulfoxide (DMSO); bP < 0.05 vs treatment with chrysin (ChR); cP < 0.05 
vs treatment with Z-Asp-Glu-Val-Asp-CH2F (Z-DEVD-fmk) plus BrMC. 5-FU: 5-flurouracil.

2000 bp
1500 bp
750 bp
500 bp

200 bp

100 bp

BrMC (10 μmol/L)
DMSO 0.1% M

 -     +    -   +
+    -    -   -

HepG2  Bel-7402 Figure 2  Effects of 8-bromo-7-
methoxychrysin on DNA fragmen-
tation in human hepatocellular 
carcinoma HepG2 and Bel-7402 
cells. DMSO: Dimethyl sulfoxide.

Yang XH et al . ROS and JNK in BrMC-induced HCC apoptosis



cell death and caspase-3 activation in cells pretreated with 
10 mmol/L NAC (Figure 4). These observations suggest 
that a selective increase in the intracellular ROS level after 
BrMC treatment in HCC is required in the cell death path-
way, accompanied by activation of  caspase-3.

Effects of BrMC on JNK activation in HepG2 cells
It is well known that many therapeutic agents trigger 
apoptosis via activation of  stress-related signaling path-
ways including JNK-mediated ones[28]. JNK plays distinct 
roles in cell death. Transient activation of  JNK is believed 
to be antiapoptotic whereas persistent activation is pro-
apoptotic[29,30]. Here we examined the effect of  BrMC-
induced JNK activation. JNK activation was measured 
by Western blotting analysis of  phosphorylated JNK 
and its downstream target c-Jun. In HepG2 cells treated 
with BrMC (2.5, 5.0, 10.0 μmol/L) for 12 h, JNK activa-
tion was observed (Figure 5A). Time course experiments 
revealed peak JNK activation at 12 h post-treatment and 
this activation persisted for up to 24 h (Figure 5B).

Effects of BrMC-stimulated JNK activation on induction 
of apoptosis and caspase-3 activation in HepG2 cells 
It has been reported that ChR derivatives induce apop-
tosis of  human HCC and human gastric cancer cells by 

activating peroxisome proliferator-activated receptor-γ 
(PPARγ)[17,26]. One of  the important components in ROS 
signaling is JNK activation[31]. These results prompted us 
to investigate whether NAC, an antioxidant, and GW9662, 
a blocker of  PPARγ, and JNK inhibitor SP600125 affected 
the phosphorylated JNK protein level in HepG2 cells 
treated with BrMC. Figure 6A shows that the expression 
of  phosphorylated JNK protein after 12 h with BrMC-
treated cells was inhibited by NAC and SP600125 pre-
treatment, but GW9662 had no effect. To examine the 
effects of  BrMC-stimulated JNK activation on induction 
of  apoptosis and caspase-3 activation in HepG2 cells, we 
used the JNK inhibitor SP600125 to investigate the role of  
JNK in BrMC-induced cell death and caspase-3 activation. 
SP600125 substantially reduced BrMC-induced cell death 
and caspase-3 activation of  HepG2 cells (Figure 6B-D).  
In addition, NAC and GW9662 also inhibited induction of  
cell death and caspase-3 activation in HepG2 cells treated 
with BrMC (Figure 6B-D). These results suggest that ROS 
production and JNK activation are required for BrMC-
induced cell death and caspase-3 activation in HepG2 cells.

DISCUSSION
Our previous study showed that the effect of  BrMC on 
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the inhibition of  proliferation and induction of  apoptosis 
in a colon cancer cell line HT-29 and gastric cancer cell 
line SGC-7901 was stronger than that of  ChR[14,16]. In ad-
dition, it has been reported that ChR is a potent inducer 
of  ROS generation and GSH depletion in A549, HL-60, 
and PC-3 cells[19,20]. In this study, we firstly showed that 
BrMC selectively induced apoptotic cell death of  human 
HCC in a caspase-dependent fashion, with little effect on 
human embryo liver L-02 cells (Figures 1 and 2). The po-
tency of  BrMC in HepG2 and Bel-7402 cells was found 
to be greater than ChR and similar to 5-FU. Secondly, 
we indicated that BrMC selectively induced apoptosis of  
HepG2 cells and was accompanied by ROS generation. 
However, BrMC did not affect ROS generation of  L-02 
cells (Figures 3 and 4). Furthermore, we demonstrated that 
BrMC induced sustained activation of  JNK in HepG2 
cells in a ROS-dependent manner (Figures 5 and 6).

ROS have been associated with carcinogenesis but 
also, paradoxically, with mitochondrial-mediated cell death 
in cancer cells. The overproduction of  ROS as a central 

event in mitochondrial-mediated apoptosis is now well 
documented[32-35]. The antioxidant properties of  flavonoids 
have been associated with their cardioprotective and neu-
roprotective properties, yet such an association is much 
less certain concerning their cancer preventive properties. 
In the case of  flavonoids, however, their chemopreventive 
properties may rather rely on eliminating precancerous 
cells because of  their prooxidant properties in vivo. This is 
likely the case of  apigenin and ChR, where their cytotoxic-
ity may result from a combination of  interference with the 
mitochondrial respiratory chain and multidrug resistance 
protein-mediated GSH depletion[36,37]. It is worth noting 
that the bee product propolis, which is known to exert 
antimicrobial, antiviral, and cancer preventive properties, 
contains ChR, a poor antioxidant, as one of  its major 
components[38]. Intracellular ROS mediate multiple cel-
lular responses, including protein kinase activation[39], cell 
cycle progression[40], myeloid cell differentiation[41,42], and 
apoptotic and necrotic cell death[43]. It has been reported 
in several studies that depletion of  intracellular GSH plays 

3390 July 21, 2010|Volume 16|Issue 27|WJG|www.wjgnet.com

BrMC (μmol/L)

ChR (μmol/L)

p-JNK

JNK

Relative ratio

p-c-Jun

c-Jun

Relative ratio

-             40.0            -              -              -

-              -             2.5          5.0          10.0

1.00         3.24          2.16         3.35         3.57

1.00           1.89          1.38        1.91        1.87

β-actin

BrMC 
10.0 μmol/L

p-JNK

JNK

Relative 
p-JNK/JNK

p-c-Jun

c-Jun

Relative 
p-c-Jun/c-Jun

1.00         1.12         2.13         3.27        3.21

1.00          1.57         2.14        2.23       3.17

0             3           6            12           24       h

β-actin

A B

Figure 5  Effects of 8-bromo-7-methoxychrysin on the level of phosphorylated Jun N-terminal kinase and phosphorylated c-Jun in HepG2 cells (Western 
blotting, mean ± SD, n = 3). 8-bromo-7-methoxychrysin (BrMC) elevated the level of phosphorylated Jun N-terminal kinase (JNK) and phosphorylated c-Jun in a 
concentration-dependent manner (A) and in a time-dependent manner (B). The ratio of p-JNK/JNK or p-c-Jun/c-Jun was normalized to 0 h or the untreated group.
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Figure 4  Effects of N-acetylcysteine on 8-bromo-7-methoxychrysin-induced apoptosis rate (A) and caspase-3 activity (B) in HepG2 cells. aP < 0.05 vs 
treatment with medium (0 h) or dimethyl sulfoxide (DMSO); cP < 0.05 vs treatment with N-acetylcysteine (NAC) plus 8-bromo-7-methoxychrysin (BrMC).
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a critical role in initiating apoptosis by ChR[10,19]. This is 
likely caused by the reversible interaction between ChR 
and GSH. In present study, we found that the ChR deriva-
tive, BrMC promoted accumulation of  ROS products in a 
concentration-dependent manner in HepG2 cells but not 
in L-02 cells (Figure 3). NAC is an antioxidant agent and 
mainly known as a ROS scavenger. It reduces ROS gen-
eration and protects the cells from oxidative stress. BrMC-
induced apoptosis of  HepG2 cells was accompanied by 
ROS generation. It has been reported that arsenic triox-
ide-induced ROS generation was inhibited by NAC treat-
ment[44]. We used NAC as an antioxidant to investigate the 
ROS generation induced by BrMC. NAC treatment not 
only reduced ROS generation but also attenuated induc-
tion of  apoptosis in HepG2 cells (Figures 3 and 4). All 
together, these results indicate that induction of  ROS gen-
eration contributes to BrMC-induced apoptosis in HepG2 
cell line.
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In this study, we investigated the signaling pathways af-
fected by BrMC in HepG2 cells. We show that BrMC per-
sistently activates JNK and induces apoptosis of  HepG2 
cells (Figures 5 and 6). BrMC-activated signaling pathways 
appear to activate executioner caspases because caspase 3 
activity was enhanced in cells exposed to BrMC (Figure 1).  
JNK is implicated in mediating endoplasmic reticulum 
stress-induced apoptosis[45]. It has been shown that triterpe-
noids activate JNK leading to apoptosis[46,47]. In the present 
study, we detected both JNK activation and apoptotic cell 
death in cells exposed to BrMC. In addition, the presence 
of  the JNK inhibitor SP600125 attenuated BrMC-induced 
apoptosis of  HepG2 cells, indicating that BrMC-induced 
apoptosis is also JNK dependent (Figures 5 and 6). Col-
lectively, we conclude that JNK activation mediates BrMC-
induced apoptosis in the HepG2 cell line. We noted that 
SP600125 inhibited BrMC-induced c-Jun phosphorylation 
completely, but only partially prevented induction of  apop-
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tosis by BrMC in HepG2 cells (Figure 5). Thus, we cannot 
role out the possibility that other mechanisms also partici-
pate in BrMC-induced apoptosis in the HepG2 cell line.

It has been documented in several studies that deple-
tion of  intracellular GSH plays a critical role in initiating 
apoptosis by chrysin[10,19]. Zou et al[46]recently showed that 
triterpenoids deplete intracellular GSH, resulting in JNK-
dependent apoptosis in human lung cancer A549 cells. In 
this study, we found that the presence of  NAC blocked the 
effects of  BrMC not only in generating ROS but also in ac-
tivating JNK and triggering apoptotic cell death (Figure 6). 

In summary, the present study has shown that BrMC 
promotes accumulation of  intracellular ROS, resulting in 
sustained activation of  JNK, leading to apoptosis in hu-
man HCC but not in human embryo liver L-02 cells. While 
further investigation is required to provide evidence for the 
efficacy of  this HCC therapy in a nude mouse model and 
whether it reaches an effective dose in vivo, these results 
highlight a new mechanism responsible for BrMC-induced 
apoptosis, and raise the possibility that BrMC may be 
promising as a candidate for human HCC therapy.
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