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Abstract
The adenosine monophosphate-activated protein kinase 
(AMPK) and p70 ribosomal S6 kinase-1 pathway may 
serve as a key signaling flow that regulates energy me-
tabolism; thus, this pathway becomes an attractive tar-
get for the treatment of liver diseases that result from 
metabolic derangements. In addition, AMPK emerges as 
a kinase that controls the redox-state and mitochondrial 
function, whose activity may be modulated by antioxi-
dants. A close link exists between fuel metabolism and 
mitochondrial biogenesis. The relationship between 
fuel metabolism and cell survival strongly implies the 
existence of a shared signaling network, by which he-
patocytes respond to challenges of external stimuli. The 
AMPK pathway may belong to this network. A series of 
drugs and therapeutic candidates enable hepatocytes 
to protect mitochondria from radical stress and increase 

cell viability, which may be associated with the activation 
of AMPK, liver kinase B1, and other molecules or com-
ponents. Consequently, the components downstream of 
AMPK may contribute to stabilizing mitochondrial mem-
brane potential for hepatocyte survival. In this review, 
we discuss the role of the AMPK pathway in hepatic 
energy metabolism and hepatocyte viability. This infor-
mation may help identify ways to prevent and/or treat 
hepatic diseases caused by the metabolic syndrome. 
Moreover, clinical drugs and experimental therapeutic 
candidates that directly or indirectly modulate the AMPK 
pathway in distinct manners are discussed here with 
particular emphasis on their effects on fuel metabolism 
and mitochondrial function.
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INTRODUCTION
Metabolic regulation of  carbohydrate, lipid and protein, 
and synthesis of  proteins and lipids are the principal func-
tions of  the liver, as well as xenobiotic detoxification. The 
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function and survival of  organisms are dependent on the 
dynamic control of  energy metabolism. The regulation of  
fuel metabolic processes can be mediated by hormones 
and other endogenous ligands in response to changes in 
energy status. Diverse signaling pathways contribute to 
the regulation of  energy metabolism, which is associated 
with the activation of  cell surface and nuclear receptors in 
hepatocytes. Thus, the modulation of  specific pathways 
can provide therapeutic strategies for hepatic diseases that 
result from metabolic derangements[1].

In a variety of  hepatic diseases, abnormal fat accumu-
lation in the liver is often a prerequisite metabolic event 
for further pathogenesis[2]. Lipotoxicity can lead to the 
generation of  oxidative stress and inflammation, ultimately 
causing apoptosis[3]. Programmed cell death is elicited by 
cell surface death receptors, the caspase cascade, deranged 
mitochondrial metabolism, and energy deficiency. Mito-
chondria, cytoplasmic organelles in eukaryotic cells, play a 
key role in energy utilization such as oxidative phosphory-
lation; dysfunction of  mitochondria is closely related with 
apoptosis[4].

The relationship between fuel metabolism and cell 
survival strongly implies the existence of  a shared signal-
ing network, which is responsible for the regulation of  
both phenomena. Emerging evidence indicates that the 
adenosine monophosphate (AMP)-activated protein kinase 
(AMPK) and p70 ribosomal S6 kinase-1 (S6K1) pathway 
serves as a key pathway that regulates fuel energy metabo-
lism. In addition, it has been suggested that AMPK controls 
the redox-state and mitochondrial function. In this review, 
we focus on the role of  the AMPK pathway in hepatic fuel 
metabolism in conjunction with cell survival. Moreover, 
clinical drugs and experimental therapeutic candidates that 
activate the AMPK-S6K1 pathway in distinct manners are 
discussed here with particular reference to their roles in mi-
tochondrial function and energy metabolism.

FUEL METABOLISM AND SIGNALING 
PATHWAYS IN THE LIVER
The liver plays a central role in fuel metabolism, and thus 
regulates dynamic catabolic and anabolic processes to 
maintain energy homeostasis of  organisms. Breakdown 
products of  carbohydrate and lipid (i.e. glucose and fatty 
acids) are common energy sources which are converted to 
adenosine-triphosphate (ATP) in mitochondria. In addi-
tion, mitochondria have many other metabolic functions, 
such as regulation of  membrane potential, cellular metab-
olism, calcium signaling (including calcium-induced apop-
tosis), and apoptosis. During the process of  catabolism, 
the mitochondrion serves as the main source of  energy 
for the cell because it converts nutrients into energy via 
cellular respiration[5]. Most of  the oxygen delivered to cells 
or organs is consumed by mitochondria for ATP genera-
tion. When the energy is excessive in the cell, mitochon-
drial energy production is inhibited so that glucose and 
free fatty acids can be stored as glycogen and fat through 
anabolic processes.

AMPK signaling pathways for fuel metabolism 
AMPK: AMPK is a heterotrimer complex that consists 
of  a catalytic subunit (α1/2) and two regulatory subunits 
(β1/2 and γ1/2/3), and functions as a serine/threonine 
protein kinase[6]; AMPK activation is mediated by phos-
phorylation of  threonine-172 in the catalytic domain 
of  the α subunit[7]. The activity of  AMPK can be regu-
lated by upstream kinases, which include liver kinase B1 
(LKB1)[8], Ca2+/calmodulin-dependent protein kinase 
kinase (CaMKK) β[9], and transforming growth factor 
β-activated kinase-1[10]. Both LKB1 and CaMKK increase 
the AMPK activity through direct phosphorylation of  
threonine-172 in the α subunit. In addition, LKB1 is con-
stitutively active as a major upstream kinase. The upstream 
signaling molecules of  LKB1 may include protein kinase 
C (PKC)-ζ[11], protein kinase A[12], and p90 kDa ribosomal 
S6 kinase[13]. The fact that the calcium/calmodulin com-
plex regulates CaMKK suggests that AMPK may be in-
volved in Ca2+ modulation in cells.

AMPK regulates energy homeostasis in various or-
gans through response to hormones and nutrient signals. 
AMPK physiologically responds to the change in the 
AMP:ATP ratio, and thus serves as an intracellular sensor 
for energy homeostasis[7]. In addition to ATP production 
with switching off  from anabolic processes in tissues, 
the activation of  AMPK affects whole body fuel utiliza-
tion and induces fatty acid oxidation and glucose uptake 
in skeletal muscle and heart, but inhibits lipogenesis and 
adipocyte differentiation[6-7]. In the liver, AMPK inhibits 
gluconeogenesis and synthesis of  glycogen, fatty acid and 
cholesterol. Since AMPK plays a key role in metabolic 
regulation, it is recognized as an important target for met-
abolic disorders such as obesity, diabetes, and metabolic 
liver diseases. 

S6K1: S6K1 is a mitogen-activated serine/threonine 
protein kinase that is associated with growth and cell 
cycle progression. In translational processes, S6K1 phos-
phorylates the S6 protein of  the 40S ribosomal subunit. 
Phosphoinositide-3 kinase (PI3K)-the mammalian target 
of  rapamycin (mTOR) regulates S6K1 as a distinct path-
way from the Ras/mitogen-activated protein kinase cas-
cade[14]. S6K1 signaling suppresses catabolic events such 
as lipolysis in adipose tissue and fatty acid oxidation in 
muscle, both of  which stimulate ATP generation[15]. Since 
S6K1 is sensitive to nutrients including amino acids, nu-
trients negatively regulate insulin signaling by phosphory-
lating insulin receptor substrate-1 (IRS1) through S6K1 
activation. Thus, S6K1 may also affect the regulation of  
nutrient and hormone signaling pathways under normal 
and pathological conditions (e.g. obesity, diabetes, and 
cancer). Moreover, S6K1 may play a role in the balance 
between survival and death in tissues including the liver. 
It is noteworthy that AMPK activation leads to inhibition 
of  the mTOR/S6K1 pathway through tuberous sclerosis 
protein 2 (TSC2) phosphorylation[16]. The regulation of  
S6K1 by AMPK is now recognized as an important regu-
latory step, by which cells maintain energy metabolism.
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AMPK as a target for metabolic diseases
Nonalcoholic fatty liver disease (NAFLD) is defined as a 
common liver disease ranging from steatosis to nonalco-
holic steatohepatitis, and cirrhosis[2]. Moreover, NAFLD 
is considered as a main hepatic component of  metabolic 
syndrome[17]. The characteristics of  metabolic syndrome 
are obesity, insulin resistance, and cardiovascular disorders. 
In obese people mostly with insulin resistance, excessive 
fat is deposited in the liver and the raised hepatic lipid 
amount is closely associated with pathogenic processes of  
the syndrome[18,19].

Hepatic steatosis by liver X receptor-α-sterol regula-
tory element, binding protein-1c: A variety of  condi-
tions such as excess delivery of  fatty acids, decreased 
oxidation of  hepatic fatty acid and/or impaired synthesis 
or secretion of  very low-density lipoprotein increase the 
sources of  hepatic lipids, leading to fatty liver disease. 
The amount of  accumulated fat is also increased by lipo-
genesis; emerging evidence supports the importance of  
de novo lipogenesis in abnormal hepatic fat accumulation 
in NAFLD patients[20,21]. Lipogenesis is transcriptionally 
regulated by the membrane-bound sterol regulatory ele-
ment, binding protein-1c (SREBP-1c), which belongs 
to the basic helix-loop-helix-leucine zipper family. In 
the nucleus, SREBP-1c activates transcription of  genes 
involved in lipogenesis, as supported by the finding that 
the overexpression of  SREBP-1c in transgenic mice pro-
motes the development of  fatty liver. In animal models 
of  insulin-resistant diabetes and obesity, the increased 
synthesis of  fatty acids contributes to the development 
of  hepatic steatosis.

Liver X receptor-α (LXRα), a transcriptional nuclear 
receptor, is a key regulator of  lipogenic genes encoding 
for the enzymes that promote hepatic fat accumulation 
(e.g. fatty acid synthase, FAS; acetyl-CoA carboxylase, 
ACC; and stearoyl-CoA desaturase-1, SCD-1)[22,23]. Li-
gand activation of  LXRα promotes induction of  the 
lipogenic genes through SREBP-1c, causing increases in 
fatty acid synthesis and progression to steatosis, hyper-
triglyceridemia, and steatohepatitis[22]. Thus, SREBP-1c 
is an important target gene of  LXRα. Since the LXRα-
SREBP-1c pathway activates lipogenesis in the liver, it is 
an attractive target for the treatment of  hepatic steatosis 
and hepatitis. In clinical situations, the expression of  
SREBP-1c and lipogenic genes including ACC and FAS 
is enhanced in NAFLD patients[24,25]. In addition, increas-
es in LXRα target gene expression (e.g. ACC and FAS) 
were observed in the patients with fatty liver, which was 
accompanied by SREBP-1c activation, but not activation 
of  carbohydrate responsive element-binding protein[26].

The AMPK-S6K1 pathway is involved in the regula-
tion of  LXRα-SREBP-1c and thus in LXRα-induced 
lipogenesis; chemical activation of  AMPK in conjunction 
with its inhibition of  S6K1 leads to the intervention of  
hepatic steatosis (Figure 1)[27]. As an example, AMPK ac-
tivation by oltipraz treatment inhibits S6K1 activity, which 
inhibits the activity of  LXRα[27] and prevents the ability of  
activated LXRα to bind the LXR binding site upstream 

of  the genes including SREBP-1c and CYP7A1. There-
fore, the consequent repression of  SREBP-1c expression 
contributes to decreased synthesis of  fat in the liver[27]. 

Repeated alcohol consumption decreases the produc-
tion of  adiponectin secreted from adipocytes[28]. Adi-
ponectin increases hepatic fatty acid oxidation through 
AMPK activation[29]. Therefore, it is tempting to speculate 
that AMPK activity is repressed as hepatic function dete-
riorates in alcoholic patients. Similarly, AMPK activity was 
decreased in animals which consumed alcohol for 4 wk[30]. 
As a compensatory response, alcohol consumption in-
creased lipogenesis in the liver, which may also result from 
the reduced rate of  fatty acid oxidation. Thus, pharmaco-
logical activation of  AMPK may be of  help in treating he-
patic steatosis. Peroxisome proliferator-activated receptors 
(PPARs) play a role in sensing nutrient levels and regulat-
ing lipid and glucose metabolism[31]. Thiazolidinediones 
(TZDs) and fibrates that activate PPARγ and PPARα, re-
spectively, are prescribed for patients with diabetes and/or  
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Figure 1  Adenosine monophosphate-activated protein kinase pathway 
in hepatic fuel metabolism. Adenosine monophosphate-activated protein 
kinase (AMPK), a metabolic energy sensor, negatively regulates protein syn-
thesis through inhibition of the mammalian target of rapamycin (mTOR)-S6 
kinase-1 (S6K1) pathway. The inhibitory effect of AMPK on liver X receptor-α 
(LXRα)-dependent triglyceride synthesis is opposed by the action of S6K1. 
AMPK also shuts down glycogen synthesis via inhibitory phosphorylation of 
glycogen synthase. AMPK as a fuel sensor induces glucose transport and fat 
oxidation in response to metabolic stress such as energy deprivation, and also 
increases mitochondrial biogenesis. AMPK counteracts energy depletion by 
stimulating energy production and limiting energy utilization. Endocannabinoids 
such as 2-arachidonoylglycerol derived from hepatic stellate cells decrease 
AMPK phosphorylation resulting in downregulation of lipogenic action. 2-AG: 
2-arachidonoylglycerol; CB1R: Cannabinoid 1 receptor; HSC: Hepatic stellate 
cell; IR: Insulin receptor; Raptor: Regulatory-associated protein of mTOR; IRS1: 
Insulin receptor substrate-1; PI3K: Phosphoinositide-3 kinase; TSC1: Tuberous 
sclerosis complex 1; pS: Phospho-serine; pT: Phospho-threonine; SREBP-1c: 
Sterol regulatory element binding protein-1c.
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dyslipidemia. In those taking PPARγ agonists, insulin-me-
diated adipose tissue uptake and storage of  free fatty acids 
are augmented with the inhibition of  hepatic fatty acid 
synthesis, which may result in part from indirect activation 
of  AMPK[32,33]. 

Hepatic insulin resistance: Insulin signaling is impor-
tant in maintaining homeostasis of  glucose, lipid, and 
protein metabolism, and thus induces anabolism in tis-
sues. In addition, it has effects on normal growth and 
development. Insulin receptor and its associated protein 
IRS1 relay signal transmission to the PI3K-Akt pathway, 
which consequently increases mTOR-S6K activity. Acti-
vation of  the mTOR-S6K1 pathway by insulin may lead 
to fat accumulation in adipose tissue, hypertrophy of  
skeletal muscle, growth of  pancreatic β cells, and protein 
synthesis[15]. Therefore, the control of  insulin signaling is 
tightly regulated by a negative feedback mechanism. In 
fact, the downstream components of  the insulin recep-
tor give inhibitory autoregulatory signals to upstream 
molecules along the insulin-signaling pathway or through 
unrelated pathways that cause insulin resistance. In par-
ticular, phosphorylation of  IRS proteins on serine resi-
dues is a key step in the processes of  physiological and 
pathological conditions. So, the kinases that phosphory-
late IRS1/2 have been extensively studied.

Hepatic steatosis alone, or to a greater degree in com-
bination with endotoxin challenge, makes the liver suscep-
tible to oxidative damage and thus facilitates the pathologic 
process of  hepatitis. The cytokines produced by accumu-
lated fat with or without endotoxin cause insulin resis-
tance. In particular, tumor necrosis factor α (TNFα) and 
interleukin-6 (IL-6) lead to insulin resistance through mul-
tiple mechanisms. These include c-Jun N-terminal kinase 
1 (JNK1)-mediated serine phosphorylation of  IRS-1, IκB 
kinase-dependent nuclear factor-κB activation, and sup-
pressors of  cytokine signaling-3 (SOCS-3) induction[34-36]. 
Since TNFα increases insulin resistance in peripheral or-
gans, inhibition of  TNFα activity and/or its decreased ex-
pression would be of  help to overcome insulin resistance. 
However, IL-6 displays pleiotropic functions in a tissue-
specific and time-dependent manner. IL-6 confers insulin 
resistance in hepatocytes through activation of  SOCS 
protein through the Jak/Stat pathway to inhibit tyrosine 
phosphorylation of  IRS1[36], while IL-6 increases insulin 
sensitivity by stimulating basal glucose transport in 3T3-L1 
adipocytes[37], smooth muscle[38] and chondrocytes[39]. Acute 
treatment with IL-6 increases insulin sensitivity due to 
AMPK activation[40], while chronically elevated IL-6 leads 
to impaired insulin signaling and cellular insulin resistance 
via activating SOCS-3[36] and reducing the expression of  
the adiponectin, GLUT4, IRS1 mRNA, IRS-1 protein and 
its tyrosine phosphorylation[41,42].

Glucose is overproduced in the liver of  patients with 
type 2 diabetes[43]. Because AMPK serves as an energy-
saving mechanism, its activation decreases hepatic gluco-
neogenesis. The experimental results using gene knock-
outs, pharmacological means, or adenoviral activation 
of  AMPK support the role of  AMPK in the regulation 

of  glucose production in the liver. Consistently, hepatic 
glucose production increased to show hyperglycemia and 
glucose intolerance in liver-specific AMPKα2 deficient 
mice. Hence, it is highly likely that the hepatic AMPKα2 
isoform is critical for repressing hepatic glucose produc-
tion and maintaining fasting blood glucose levels in the 
physiological range[44]. Consistently, AMPK activation 
by adenovirus expressing a constitutively active form of  
AMPKα2 as well as by 5-aminoimidazole-4-carboxamide-
1-β-D-ribofuranoside (AICAR, a direct AMPK activator) 
or metformin reduced glucose output[45-47].

Activation of  S6K1 exerts a negative feedback ac-
tion on insulin signaling. As an example, TNFα secreted 
by non-parenchymal cells activates S6K1 in pathologic 
states. The important role of  S6K1 on insulin resistance 
was proven by a study using S6K1-null mice[48,49]. A key 
role for mTOR-S6K1 regulation of  insulin resistance was 
also supported by the finding that rapamycin blocked 
IRS1 phosphorylation[50,51], confirming the importance 
of  S6K1 activity in inducing insulin resistance. Hence, 
insulin resistance induced by abnormal conditions such 
as hyperinsulinemia, obesity and excess nutrient avail-
ability is accompanied by an increase in S6K1 activity[48,52]. 
The result of  a study using a knockout model proved 
the critical role of  S6K1 and its physiological feedback 
importance to IRS1/2 and PI3K for insulin resistance. 
In an experimental model, the inhibitory effect of  high-
fat diet consumption on the insulin receptor-PI3K path-
way is also mediated by S6K1. In our laboratory, it was 
found that the inhibitory modulation of  S6K1 activity by 
beneficial candidates reversed insulin resistance and hy-
perglycemia[50]. In particular, oltipraz treatment inhibited 
S6K1 through AMPK activation. Consistently, a dominant 
negative mutant of  AMPK abrogated S6K1 phosphoryla-
tion[50]. AMPK activation by other drugs like metformin 
and rosiglitazone also contribute to insulin sensitivity en-
hancement[47,53]. Similarly, other agents that inhibit insulin 
resistance also antagonize S6K1 activation downstream of  
AMPK[50]. So, these agents have the effects of  improving 
insulin sensitivity through a mechanism involving AMPK-
mediated S6K1 inhibition in hepatocytes[50].

JNK1 is activated by various stress signals such as cy-
tokines or oxidative stress, and thus the activity of  JNK1 
increases under prediabetic or diabetic conditions. This 
important kinase is also implicated in the phosphoryla-
tion of  IRS1/2[54-56], interfering with insulin action. The 
JNK pathway is stimulated by oxidative stress conditions, 
increased flux of  free fatty acids and TNFα production, 
which contributes to developing insulin resistance. The 
importance of  JNK activation is supported by the find-
ing that a deficiency of  JNK1 prevented insulin resistance 
in an experimental model[54]. Moreover, JNK mediates 
dysfunction of  insulin secretion from β cells[57]. Hence, 
inhibition of  JNK by chemical means may help improve 
insulin resistance and ameliorate hepatic energy metabo-
lism[54,58]. For example, isoliquiritigenin from various natu-
ral herbs including licorice has a JNK-inhibitory effect. 
Thus, isoliquiritigenin is capable of  repressing lipogenesis 
in the liver and protecting hepatocytes from oxidative 
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injury inflicted by fat accumulation through a novel JNK-
dependent pathway that acts as an upstream component 
of  LXRα (unpublished data).

CYTOPROTECTIVE EFFECT OF AMPK
An energy flux is a crucial factor for cell viability. To keep 
the energy supply constant, eukaryotic cells use AMPK 
as a mechanism to monitor ATP production and expen-
diture. As a consequence of  its sensitivity to AMP levels, 
AMPK is activated by treatment with drugs including 
metformin and TZDs as well as by conditions of  meta-
bolic stress that repress ATP production (e.g. hypoxia 
or glucose deprivation). Thus, AMPK activation causes 
upregulation of  ATP-producing catabolic pathways. 
However, AMPK inhibits ATP-consuming pathways in-
cluding synthesis of  fatty acids, cholesterol, glycogen, and 
proteins[59]. Although AMPK signaling is intricately tied to 
energy metabolism and homeostasis, it is also critical for 
various physiological processes including inflammation, 
and proliferation[60,61]. It is noteworthy that the AMPK-
associated pathway may suppress apoptosis induced by 
glucocorticoids[62], hyperglycemia[63], hepatic ischemia-
reperfusion[64] and oxidative stress[65-69]. AMPK activation 
has a beneficial effect on cell viability via protection of  mi-
tochondria from apoptosis: phosphorylation of  glycogen 
synthase kinase 3β (GSK3β)[66], and phosphorylation of  
Bad, which leads to inhibition of  cytochrome c release and 
attenuation of  caspase-3 activity[70]. AMPK is also impli-
cated in other pathophysiological responses in various cell 
types: a decrease in endoplasmic reticulum (ER) stress[71], 
DNA damage repair[72,73], autophagy[74,75], and the antioxi-
dant defense system[65-69]. This review focuses on the role 
of  AMPK in hepatocyte viability.

Regulation of autophagy and cell survival
Regulation of  cellular balance between biosynthesis and 
turnover is crucial for the maintenance of  metabolic 
homeostasis. Autophagy is an evolutionally conserved 
pathway for self-digesting of  cytoplasmic components 
and organelles by lysosomal degradation[76]. Autophagy 
contributes to cell survival via removal of  long-lived 
proteins and damaged organelles, thus this event plays 
a role in adaptive protection upon starved conditions[77]. 
In addition, a recent study showed that autophagy 
regulates lipid metabolism by inducing lipid utilization in 
hepatocytes, implicating a possible link with metabolic 
diseases[78]. The autophagic processes are regulated by 
several signal transduction mechanisms. Among them, 
AMPK activation induces autophagy in response to 
diverse stress conditions including energy depletion, ER 
stress, and hypoxia. The action of  AMPK is mediated by 
the inhibition of  mTOR-dependent signaling, which is a 
central inhibitory pathway of  autophagy[79]. The AMPK-
induced autophagy exerts a cytoprotective effect, which 
can be regulated by upstream kinases such as LKB1[74,75]. 
However, the role of  S6K1 inhibition by AMPK in 
the modulation of  autophagy is unclear. Despite these 
primarily defensive effects, autophagy mediates cell death 

under certain conditions[77], thus further study would help 
understand the role of  AMPK in autophagy-associated 
cell viability.

Protection of mitochondria from external stress
Insulin resistance has been associated with a reduction in 
mitochondrial oxidative phosphorylation and ATP pro-
duction, and thus downregulates the expression of  genes 
encoding for oxidative metabolism[80-82]. Thus, mitochon-
drial dysfunction is frequently observed in the metabolic 
syndrome[82]. Under mitochondrial dysfunction caused by 
several endogenous or exogenous stimulants, it is difficult 
to maintain redox-homeostasis. In this situation, changes 
in mitochondrial membrane permeability (MMP) cause 
the release of  proapoptotic mediators that can damage 
DNA and lead to apoptosis[83,84]. Oxidative stress inhibits 
endoplasmic reticulum calcium pumps, releasing calcium 
into the cytoplasm from endoplasmic reticulum. The 
cytoplasmic calcium is taken up by mitochondria, which 
makes the mitochondrial permeability transition pore 
(mPTP)[85,86]. In basal conditions, the mPTP is closed but 
opens in response to stress, allowing passage of  small 
molecules. Opening of  the mPTP causes MMP transition 
and cytochrome c release, inducing apoptosis. A number 
of  studies have shown that chemical inhibitors of  the 
mPTP have the ability to prevent the release of  cyto-
chrome c and protect cells from death[87]. Excess reactive 
oxygen species may enhance the opening of  the mPTP, 
and cause mitochondrial depolarization and cytochrome c 
leakage[88,89]; the release of  cytochrome c from mitochon-
dria to cytoplasm activates procaspase-9 and Apaf-1, and 
stimulates apoptosome formation and caspase-3 activation 
so that it induces cell death[90].

AMPK-associated signaling mediates hepatocyte 
viability
AMPK: AMPK responds to external stress as a modu-
lator of  cell viability or death. In many cases, AMPK 
activation exerts a cytoprotective effect[62-64,66]. Chemical 
activation of  AMPK protected cells from arachidonic 
acid-induced apoptosis and restored MMP. In this mod-
el, cell viability depended on mitochondrial function; 
treatment of  the AMPK activator (e.g. oltipraz and res-
veratrol) protected cells from mitochondrial injury. Thus, 
the direct or indirect AMPK activators have the ability 
to protect cells from mitochondrial oxidative stress. This 
mitochondrial protective effect could be reversed by 
either compound C treatment or overexpression of  the 
dominant negative mutant of  AMPKα. In our laborato-
ry, the AMPK-dependent antioxidant and cytoprotective 
effects had been tested with AICAR. Cellular H2O2 pro-
duction increased by arachidonic acid treatment impairs 
mitochondrial function, and promotes apoptosis. Thus, 
arachidonic acid propagates apoptotic signals due to 
oxidative stress alone or in combination with an increase 
in mitochondrial Ca2+ uptake[91]. In this model, AICAR 
exhibited a cytoprotective effect against injury caused 
by arachidonic acid so that it abolished reactive oxygen 
species production in the cell. The data showing that 
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compound C treatment induced MMP transition indicate 
that AMPK is necessary for MMP regulation. AMPK in-
creases its activity through TSC2 phosphorylation, which 
leads to translational suppression and cell size reduction 
under the situation of  energy deprivation. Moreover, the 
phosphorylation of  TSC2 protects cells from apoptosis 
induced by energy deprivation[16], suggesting that the 
downstream components of  AMPK may be responsible 
for MMP regulation.

In a recent study, resveratrol, a polyphenolic com-
ponent found in grapes and red wine, was shown to 
protect mitochondria from oxidative stress in an AMPK-
dependent manner. AMPK activation by resveratrol de-
pended on LKB1, but not CaMKK. Thus, LKB1 activa-
tion protects cells from apoptosis under the condition of  
energy stress[92]. The importance of  LKB1 for AMPK-
dependent cytoprotection is also supported by the result 
of  the sauchinone study: sauchinone exerted a protective 
effect against MMP transition via LKB1 activation[69]. 
The upstream components that activate LKB1 include 
SIRT1[93], nitric oxide synthase[94], and protein kinase A[12]. 
In addition, we identified the formation of  poly (ADP-
ribose) (PAR) as the upstream event, by which resveratrol 
activates LKB1[66]. PAR polymerase (PARP) represents a 
nuclear enzyme that plays a role in DNA damage repair 
through PAR formation. In an energetic process, PAR 
causes rapid depletion of  NAD+, decreases ATP produc-
tion, and thus leads to cell death[75]. In contrast, PARP 
prevents cell death through LKB1-AMPK-mediated 
autophagy activation[75], which may be associated with 
LKB1. Sometimes, AMPK activation may cause apopto-
sis; sustained AMPK activation (> 10 h) triggered hepato-
cyte death through JNK and caspase-3 activation. In this 
process, p53, Bax and Fas ligand are upregulated or acti-
vated by activated JNK[95]. Hence, AMPK-dependent cell 
survival may rely on cell type, environmental conditions 
and on the duration of  this kinase activation[95].

Mn-superoxide dismutase (Mn-SOD) as a mitochon-
drial enzyme converts the superoxide anion to hydro-
gen peroxide, and plays a role in cytoprotection[96]. Pro-
oxidants like paraquat and dinitrophenol induce Mn-SOD 
in the liver[97,98]. Treatment with metformin or AICAR, 
an AMPK activator, increases the expression of  MnSOD 
mRNA, suggesting that Mn-SOD induction may be cou-
pled to the AMPK-associated pathway.

GSK3β: GSK3β is a constitutively activated serine/threo-
nine kinase in normal state. This enzyme is well known as 
a regulator of  glycogen metabolism, gene expression, and 
cell cycle progression[99]. GSK3β is inactivated by serine 
9 phosphorylation[100], enabling cells to suppress mPTP 
opening[101] and prevent apoptosis of  hepatocytes[66]. 
Hence, this kinase may contribute to cell viability against 
external stress (e.g. ischemia/reperfusion injury). It has 
also been recognized that inhibitory phosphorylation of  
GSK3β prevents phosphorylation of  voltage-activated 
anion channel, and promotes binding of  GSK3β with 
adenine nucleotide translocase. In our study, GSK3β 
inhibition protected mitochondria from mPTP opening 

and contributed to cell survival against severe oxidative 
stress[66], as also supported by other reports[102,103]. This 
contention is supported by the finding that treatment by a 
direct AMPK activator (i.e. AICAR) leads to GSK3β inhi-
bition (Figure 2), as mediated with Raf1/ERK/p90 kDa 
ribosomal S6 kinase[104]. Some other cytoprotective com-
pounds also act as AMPK activators, which include resve-
ratrol and isoliquiritigenin, and cause GSK3β inhibition[66]. 
Thus, GSK3β phosphorylation may lie downstream of  
AMPK. 

PKC: In certain situations, necrosis may also be pro-
grammed through specific pathways. Hepatocytes un-
dergo necrosis several hours after H2O2 treatment in as-
sociation with PKC activation and/or AMPK inhibition, 
as evidenced by a decrease in cell death by PKC inhibitor 
treatment. Interestingly, PKC inhibition results in AMPK 
upregulation, suggesting that these two pathways are in-
versely coupled to each other[105]. Apparently, these path-
ways are linked to a cytoprotective effect, as shown by de-
creased H2O2-induced necrosis after treatment with PKC 
inhibitor or AMPK activator. Consistently, compound 
C treatment (an AMPK inhibitor) abrogated the ability 
of  PKC inhibitor to protect cells, suggesting that PKC 
inhibitors have a cytoprotective effect through AMPK up-
regulation. 
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Figure 2  Adenosine monophosphate-activated protein kinase regulation 
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S6K1: In S6K1-/- hepatocytes, caspase-8 and Bid (a pro-
apoptotic protein) were both down-regulated relative to 
control. A deficiency of  S6K1 was not sensitive to the 
cascades of  death receptor activation, as shown by no 
caspase-8 activation or FLIPL degradation in hepatocytes 
challenged by TNF-α or anti-Fas antibody treatment. The 
finding that Bid cleavage, cytochrome c release, caspase-3 
activation, and DNA laddering were all attenuated by a 
deficiency of  S6K1 raises the importance of  S6K1 in the 
apoptotic process. Consistently, the lack of  S6K1 did not 
diminish the BclxL/Bim ratio in cells deprived of  serum, 
and thus prevented cytochrome c release and DNA frag-
mentation[106]. In an animal model, S6K1 deficiency enabled 
hepatocytes to survive against concanavalin A-induced 
apoptosis[106]. Inhibition of  S6K1 may activate survival 
pathways through PI3K/Akt and ERK pathways. How-
ever, hepatocytes deficient in S6K1 underwent apoptosis 
on serum withdrawal when combined with PI3K or ERK 
inhibitor treatment[106]. In this sense, S6K1 inhibition along 
with Akt and ERK inhibitors, would enhance the efficacy 
of  cancer chemotherapy for hepatocarcinoma[106]. In our 
oxidative stress model, rapamycin, an inhibitor of  mTOR-
S6K1 activity that causes dissociation of  raptor from 
mTOR by binding FK506 binding protein 12, had no effect 
on apoptosis elicited by arachidonic acid + iron, suggesting 
that the inhibition of  S6K1 alone may not be sufficient to 
promote cell viability. Overall, the inhibition of  S6K1 may 
contribute to protecting hepatocytes from liver failure, and 
if  so, it might result from improvement in insulin signaling.

AMPK REGULATION OF ENERGY 
METABOLISM AND CELL SURVIVAL
A series of  beneficial compounds with the abilities of  

AMPK activation are listed in Table 1 and Figure 3, which 
may have liver-protective effects against external stimuli. 
Thus, the compounds that have modulating activities on 
metabolism may also have cytoprotective effects (Figure 4). 
In these actions, LKB1-dependent AMPK activation may 
be one of  the key molecular pathways for cell survival. A 
number of  studies have shown how AMPK responds to 
an increase in AMP as an energy sensing enzyme. In this 
way, it integrates diverse signal inputs, controls a number 
of  metabolic enzymes in various cell types, and adapts 
cellular processes to the energy status. Since AMPK acti-
vation may not always be on the side of  cell survival, the 
specific AMPK pathways responsible for cell viability still 
remain to be elucidated.

CLINICAL IMPLICATIONS
Metformin is a major drug used in the treatment of  type 
2 diabetes. AMPK activation by metformin suppresses 
hepatic glucose production and lowers blood glucose 
levels[47,112]. In addition, metformin has been shown to 
reverse fatty liver disease in humans[113,114]. TZDs belong 
to another important class of  antidiabetic drugs that 
augment systemic insulin sensitivity. In diabetic patients, 
pioglitazone decreases hepatic fat content and increases 
splanchnic glucose uptake presumably through AMPK[115]. 
In addition, these medications may prevent simple hepatic 
steatosis from progressing to steatohepatitis. Although the 
molecular mechanism of  AMPK activation by TZDs is 
unclear, AMPK activation is attributed to their ability to 
increase plasma adiponectin levels[53]. 

Hepatic ischemia-reperfusion injury, usually in associa-
tion with liver transplantation and hepatic resection, is an 
important clinical issue. Ischemic preconditioning may 

Table 1  Effects of candidate compounds on the adenosine monophosphate-activated protein kinase-S6 kinase-1 pathway and liver 
function

Chemicals AMPK S6K1 NAFLD Hepatic insulin 
resistance

Cyto-protection 
in the liver

Effective conc. Ref.

A class of synthetic dithiolethiones
   Oltipraz ↑ ↓ + + + 30 μmol/L, 30 mg/kg [27,50,67,107]

   CJ11764 ↑ ↓ + + + 30 μmol/L [27,50,67]

   CJ12064 ↑ ↓ + + + 30 μmol/L [27,50,67,107]

   CJ11842 ↑ ↓ + + + 30 μmol/L [27,50,67,107]

   CJ11840 ↑ ↓ + + + 30 μmol/L [27,50,67]

   CJ11792 ↑ ↓ + + + 30 μmol/L [27,50,67,107]

   CJ11788 ↑ ↓ + + + 30 μmol/L [27,50,67,107]

   CJ11766 ↑ ↓ ND + + 30 μmol/L [67,107]

   CJ12073 ↑ - + + + 30 μmol/L [27,67,107]

   CJ11780 ↑ ND + ND ND 30 μmol/L [27]

Metabolites of oltipraz
   M1 ↑ ↓ ND + + 30 μmol/L [50,68]

   M2 ↑ ND ND ND + 30 μmol/L [68]

Phytochemicals
   Resveratrol ↑ ND + + + 30 μmol/L [66,108,109]

   Isoliquiritigenin (Glycyrrhizae radix) ↑ - + ND + 20 μmol/L, 30 mg/kg [65], UD
   Liquiritigenin (Glycyrrhizae radix) ↑ - + ND + 100 μmol/L, 30 mg/kg [65], UD
   Sauchinone (Saururus chinensis) ↑ - + ND + 30 μmol/L, 30 mg/kg [69,110]

   Baicalin (Scutellaria baicalensis) ↑ ND + ND ND 10 μmol/L, 80 mg/kg [111]

ND: Not done; UD: Unpublished data; ↑: Activation; -: No change; ↓: Inhibition; +: Beneficial effect against nonalcoholic fatty liver disease (NAFLD) or 
insulin resistance, or cytoprotection in the liver; AMPK: Adenosine monophosphate-activated protein kinase; S6K1: S6 kinase-1.
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be beneficial to patients with hepatic resections in which 
long periods of  ischemia are necessary. Ischemic precon-
ditioning prevents ATP degradation and intracellular ac-
cumulation of  AMP induced by subsequent ischemia[116]. 

Increases in AMP levels during ischemia activate AMPK, 
while AMPK inhibition abolishes the effect of  precon-
ditioning, indicating that AMPK plays a role in this ef-
fect[64]. So, hepatic preconditioning may allow the liver to 

Figure 3  Chemical structures of adenosine monophosphate-activated protein kinase activators. A: Dithiolethione derivatives: Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-
dithiol-3-thione], CJ11764 (5-pyrazinyl-1,2-dithiole-3-thione), CJ12064 [5-(6-methoxypyrzinyl)-4-methyl-1,2-dithiole-3-thione], CJ11842 (4-methyl-5-phenyl-1,2-dithiole-3-
thione), CJ11840 (5-benzo[b]thiophene-3-yl-1,2-dithiole-3-thione), CJ11792 (4,5,6,7-tetrahydrobenzo-1,2-dithiole-3-thione), CJ11788 (5,6-dihydro-4H-cyclopenta-1,2-di-
thiole-3-thione), CJ11766 (4-ethyl-5-pyrazin-2-yl-1,2-dithiole-3-thione), CJ12073 [5-(6-Ethoxypyrazin-2-yl)-4-methyl-1,2-dithiole-3-thione], CJ11780 (5-methyl-1,2-dithiole-
3-thione); B: Metabolites of oltipraz: First, oxidative desulfuration of the thione among approximately 1% of oltipraz to yield M1 [4-methyl-5-(2-pyrazinyl)-1,2-dithiol-3-one], 
which is not metabolized further; and secondly, desulfuration, methylation, and molecular rearrangement among a large amount of oltipraz to yield M2 [7-methyl-6,8-
bis(methylthio)H-pyrrolo(1,2-a)-pyrazine], which is metabolized to other oxidized forms; C: Phytochemicals: Resveratrol (flavonoid found in the skin of red grapes and red 
wine), isoLQ (a flavonoid aglycone of isoliquiritin from licorice), LQ (a flavonoid aglycone of liquiritin from licorice), sauchinone (a lignan in Saururus chinensis), baicalin (the 
major flavonoid compound in Scutellaria baicalensis).
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preserve energy metabolism during sustained ischemia[116]. 
Since AMPK activation by preconditioning may represent 
a new strategy to reduce the ischemia-reperfusion injury, 
modified preservation solutions containing AMPK activa-
tors may be of  use, which should be evaluated in clinical 
settings.

CONCLUSION
As the mitochondrion plays a diverse role in essential cel-
lular functions including energy production and homeo-
stasis, redox cell signaling, and apoptosis, the chemical 
activators of  AMPK protect hepatic mitochondria against 
toxic stress. The inhibition of  S6K1 downstream of  
AMPK may also have a distinct role in liver biology. Thus, 
the AMPK pathway is associated with various pathologi-
cal conditions, including metabolic syndrome and numer-
ous apoptotic conditions. Because of  the shared regula-
tory functions of  AMPK in metabolism and cell viability, 
it becomes an advantageous target. In this review, we have 
proposed the concept that AMPK-associated signaling 
bridges the gap between fuel metabolism and hepatocyte 
viability, which may be of  help in identifying valuable 
potential targets to prevent and/or treat derangement of  
metabolism and cell death in the liver.
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