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Abstract
Obstructive sleep apnea (OSA) is a complex disorder 
that consists of upper airway obstruction, chronic inter-
mittent hypoxia and sleep fragmentation. OSA is well 
known to be associated with hypoxia, insulin resistance 
and glucose intolerance, and these factors can occur in 
the presence or absence of obesity and metabolic syn-
drome. Although it is well established that insulin resis-
tance, glucose intolerance and obesity occur frequently 
with non-alcoholic fatty liver disease (NAFLD), it is now 
becoming apparent that hypoxia might also be impor-
tant in the development of NAFLD, and it is recognized 
that there is increased risk of NAFLD with OSA. This 
review discusses the association between OSA, NAFLD 
and cardiovascular disease, and describes the poten-
tial role of hypoxia in the development of NAFLD with 
OSA. 
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INTRODUCTION
Obstructive sleep apnea (OSA) is a condition that af-
fects 1%-4% of  the general population and 25%-35% 
of  obese individuals. OSA is more common in men 
than women and is characterized by loud and frequent 
snoring, periods of  apnea during sleep and excessive 
day somnolence[1]. Initially, OSA was thought to be due 
to failure to maintain small upper airway tone, which 
causes airway collapse and apnea, but recently, unstable 
ventilatory control and changes in lung volume have 
been implicated. An OSA disorder is generally defined 
as five or more apnea-hypopnea episodes per hour of  
sleep [i.e. the apnea-hypopnea index (AHI)][1,2]. OSA is 
associated with insulin resistance and hyperlipidemia and 
both conditions are associated with non-alcoholic fatty 
liver disease (NAFLD)[3,4]. Importantly, and potentially 
relevant to OSA, hypoxia is now considered as one of  
the aggravating factors for development of  NAFLD[4], 
and interestingly, OSA is also regarded as one of  the fac-
tors that accelerate the progression of  NAFLD to non-
alcoholic steatohepatitis (NASH)[5]. 

NAFLD is emerging as an important public health 
problem across the globe[6]. NAFLD refers to a wide 
spectrum of  liver damage, which ranges from simple ste-
atosis to steatohepatitis, advanced fibrosis, and cirrhosis. 
NAFLD is strongly associated with insulin resistance and 
is defined by accumulation of  liver fat > 5% per liver 
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weight, in the presence of  < 10 g daily alcohol consump-
tion[7]. The diagnosis of  NAFLD can be established by 
ultrasound and can be confirmed by liver biopsy. The 

characteristic histology of  NAFLD resembles that of  
alcohol-induced liver injury, but occurs in people who 
consume minimal or no alcohol. NAFLD is regarded as 
the most common cause of  increased liver enzyme con-
centrations and is associated with type 2 diabetes, obesity 
and hyperlipidemia[8]. The reported prevalence of  obesity 
with NAFLD varies between 30% and 100%, whereas the 
prevalence of  NAFLD with type 2 diabetes varies between 
10% and 75%[7]. In routine clinical practice, most cases of  
fatty liver disease are attributable to alcohol excess; how-
ever, fatty liver disease can also occur in association with a 
wide range of  toxins, drugs, and diseases, such as morbid 

obesity, cachexia, type 2 diabetes, hyperlipidemia, and after 
jejuno-ileal bypass surgery. As important risk factors for 
NAFLD such as obesity and type 2 diabetes are increas-
ing in prevalence this could explain the marked increase in 
numbers of  individuals with NAFLD[9].

NAFLD can progress silently to cirrhosis, portal 
hypertension, and liver-related death in early adulthood. 
Importantly, NAFLD is also associated with an increased 
risk of  all-cause death and predicts future cardiovascular 
disease (CVD) events, independently of  age, sex, low-
density lipoprotein (LDL)-cholesterol, smoking and the 
cluster of  features of  the metabolic syndrome[9]. Current-
ly, there are no sensitive and specific biochemical markers 
for NAFLD. An increase (or decrease) in alanine amino-
transferase (ALT) is often used as a biochemical marker to 
monitor progression (or amelioration) of  NAFLD, despite 
the fact that ALT concentrations can be misleading and 
do not reflect the severity or outcome. Mass screening for 
significant liver injury in patients with NAFLD will be an 
important medical challenge in the years to come because 
of  the epidemics of  obesity and diabetes[10]. 

We have previously summarized the studies that have 
shown that NAFLD is associated with an increase in in-
cidence of  CVD[7]. Importantly, considerable numbers of  
studies have shown an increase in incidence of  CVD with 
OSA[11-13]. The subsequent discussion focuses on the as-
sociation of  OSA with hypoxia, insulin resistance and hy-
perlipidemia, and how ultimately this can lead to NAFLD.

OSA AND FATTY LIVER DISEASE
Experimental studies have shown that OSA can lead to 
an increase in insulin resistance and an alteration in lipid 
metabolism and can precipitate NAFLD[14-16]. Savransky 
et al[14] have exposed lean C57BL/6J mice (n = 15) on a 
regular chow diet to chronic intermittent hypoxia (CIH) 
for 12 wk and compared these mice with pair-fed mice, 
exposed to intermittent air (IA, n = 15). CIH caused liv-
er injury with an increase in serum ALT (224 ± 39 U/ L  
vs 118 ± 22 U/L in the IA group, P < 0.05). CIH also 
induced hyperglycemia, lipid peroxidation of  liver tis-
sue, and increased activity of  nuclear factor (NF)-κB 
but not an inflammatory response [as tumor necrosis 
factor (TNF)-α was not detectable], which suggests that 

CIH induces oxidative stress in the liver. Liver histology 
shows swelling of  hepatocytes, with marked accumula-
tion of  glycogen in hepatocytes, but no evidence of  he-
patic steatosis. CIH greatly exacerbates acetaminophen-
induced liver toxicity, which causes fulminant hepatocel-
lular injury[14]. It is therefore likely that in the absence of  
factors that induce obesity as a primary stressor on the 
liver, IH per se leads to mild liver injury. The same au-
thors have repeated the same experiment in C57BL/6J 
mice on a high-fat, high-cholesterol diet, exposed to CIH 
for 6 mo. CIH caused liver injury with an increase in se-
rum ALT (461 ± 58 U/L vs 103 ± 16 U/L in the control 
group, P < 0.01) and aspartate aminotransferase (AST) 
(637 ± 37 U/L vs 175 ± 13 U/L in the control group, 
P < 0.001). Histology revealed evidence of  inflamma-
tion and fibrosis in the liver, which was not evident in 
the control mice. CIH caused marked increases in lipid 
peroxidation in serum and liver tissue; marked increases 
in hepatic levels of  myeloperoxidase, pro-inflammatory 
cytokines interleukin (IL)-1β, IL-6, the chemokine mac-
rophage inflammatory protein-2; a trend towards an 
increase in TNF-α; and an increase in α1 (I)-collagen 
mRNA[15]. Thus, it is plausible that a high-fat diet that 
occurs in the presence of  hypoxia with OSA promotes 
NAFLD. Furthermore, in a rat model of  NAFLD (a 
choline-deficient high-fat diet) IH has been shown to in-
duce NASH[16]. The metabolic disorders that predispose 
patients to NASH include insulin resistance and obesity 
but the mechanism by which repeated hypoxic events, 
such as occur in OSA, can lead to the progression of  
liver disease is unclear. It has been shown that hypoxia 
decreases insulin sensitivity in mice and might ultimately 
increase expression of  the lipogenic genes sterol-regu-
latory-element-binding protein-1c (SREBP-1c), peroxi-
some-proliferator-activated receptor-γ (PPAR-γ), acetyl-
CoA carboxylase 1 (ACC1) and acetyl-CoA carboxylase 
2 (ACC2). Furthermore, hypoxia also decreases expres-
sion of  genes that regulate mitochondrial β oxidation [e.g. 
PPAR-α and carnitine palmitoyltransferase-1 (CPT-1)][17], 
which suggests that fat oxidation is also inhibited. There-
fore, hypoxia can increase lipogenesis and inhibit fat oxi-
dation; both factors that promote fat accumulation and 
development of  NAFLD. 

Human studies have shown that OSA is associated 
with an increase in liver enzymes, and treatment of  OSA 
has been shown to decrease liver enzymes. For example, 
Chin et al[18] have shown that OSA is associated with an 
increase in liver enzyme concentrations in 14 of  44 (35%) 
obese individuals. Furthermore, continuous positive 
airway pressure (CPAP) therapy decreases concentra-
tions of  liver enzymes (ALT and AST). In contrast, in a 
randomized controlled trial, administration of  CPAP for 
4 wk had no effect on liver enzymes[19]. In a cohort of  
morbidly obese patients who required bariatric surgery, 
OSA was found to be a risk factor for increased liver 
enzyme concentrations but not for NASH[20]. However, 
Kallwitz et al[21] have shown that, in obese patients with 
NAFLD, OSA is associated with elevated ALT levels 
and a trend toward histological evidence of  progressive 
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liver disease. This finding has been endorsed by Mishara 
et al[22], who have shown that, in 101 patients awaiting 
bariatric surgery, OSA was a risk factor for progression 
of  NAFLD to NASH. Histopathological evidence from 
20 obese individuals has shown that OSA is associated 
with NASH and insulin resistance[23]. Importantly, in 109 
patients with OSA, serum aminotransferase levels were 
better predicted by markers of  oxygen desaturation than 
by factors traditionally associated with the metabolic 
syndrome[24]. Markers of  hypoxia were correlated signifi-
cantly with AST and ALT levels, whereas the AHI, body 
mass index (BMI), blood pressure, fasting glucose, tri-
glyceride, and cholesterol levels did not[24]. Importantly, 
in obese children, OSA has also been shown to be as-
sociated with hepatic steatosis and insulin resistance[25], 
which suggests that early exposure to relative hypoxia 
also has a deleterious impact on the liver (Figure 1).

OSA AND INSULIN RESISTANCE
There is a strong link between insulin resistance and ex-
cessive deposition of  triglyceride in hepatocytes, which 
is the hallmark of  NAFLD[26]. Although clinical and 
experimental studies have shown an association between 
OSA and insulin resistance, whether CPAP therapy im-
proves insulin resistance remains a controversial issue[27]. 
In 14 obese individuals with OSA, there were marked 
increases in leptin, insulin resistance, TNF-α and IL-6, 
compared with non-apneic obese men. The sleep apnea 
patients had a significantly greater amount of  visceral 
fat compared to obese controls (P < 0.05) and indexes 
of  sleep disordered breathing were positively correlated 
with visceral fat, but not with BMI, or total or subcu-
taneous fat. Furthermore, a greater degree of  insulin 
resistance was observed in the group of  apnea patients 
than in BMI-matched non-apneic controls[28]. This find-
ing suggests that OSA is not only associated with insulin 
resistance but also with inflammation.

Punjabi et al[29] have shown that the prevalence of  
sleep-disordered breathing in 150 healthy mildly obese 
men, without diabetes, ranged from 40% to 60%, and 
impairment in glucose tolerance was related to severity of  

oxygen desaturation. For a 4% decrease in oxygen satura-
tion, the associated OR for worsening glucose tolerance 
was 1.99 (95% CI: 1.11-3.56) after adjusting for percent 
body fat, BMI, and AHI. Multivariate linear regression 
analyses revealed that increasing OSA was associated with 
worsening insulin resistance independent of  obesity[29]. Ip 
et al[30] also have shown that OSA is independently associ-
ated with insulin resistance. Furthermore, Meslier et al[31] 
have carried out a cross-sectional study in 494 patients 
with OSA and have found that the prevalence of  type 
2 diabetes was 30% and impaired glucose tolerance was 
20%, and importantly, diabetes and BMI were indepen-
dent predictors of  OSA[32]. Mallon et al[33] have shown in a 
12-year follow-up study that difficulty maintaining sleep, 
or short sleep duration (≤ 5 h), was associated with an in-
creased incidence of  diabetes in men; whereas in contrast, 
the Finnish type 2 diabetes survey (FIN-D2D) (a large 
population study in Finland) has shown that sleep dura-
tion of  ≤ 6 h, or ≥ 8 h, was independently associated 
with type 2 diabetes in middle-aged women, but not in 
men[34]. Taken together, these data suggest that an altera-
tion in the normal sleep pattern increases risk of  diabetes 
in men and women.

Data from experimental animal models have shown 
that IH is also associated with insulin resistance. In obese 
mice, short-term IH led to a decrease in blood glucose 
levels accompanied by a marked increase in serum insulin 
levels, and intriguingly, this effect was completely abol-
ished by prior leptin infusion. Obese mice exposed to IH 
for 12 wk developed a time-dependent increase in fasting 
serum insulin levels (from 3.6 ± 1.1 ng/mL at baseline 
to 9.8 ± 1.8 ng/mL at wk 12, P < 0.001) and worsening 
glucose tolerance, consistent with an increase in insulin 
resistance[35]. However, in lean C57BL/6J mice, exposure 
to IH for 5 d did not induce the same metabolic changes 
seen in obese mice[35]. Furthermore, in lean C57BL/6J 
mice IH induced insulin resistance. This effect was seen 
during the time of  exposure to IH[36]. These data suggest 
that the presence of  obesity or metabolic syndrome (as 
a first insult) in association with OSA (a second insult) 
might lead to NAFLD and ultimately NASH. Therefore, 
it is plausible to suggest that OSA in association with in-
sulin resistance increases risk of  type 2 diabetes. Several 
mechanisms are thought to contribute to the develop-
ment of  insulin resistance with OSA (Figure 2).

Death of adipose tissue and associated excess release 
of free fatty acid
Adipose tissue hypoxia (ATH) is a new concept in un-
derstanding the pathogenesis of  insulin resistance and 
inflammation in OSA. The concept suggests that inhibi-
tion of  adipogenesis and triglyceride synthesis by hypoxia 
might be a mechanism for the increased free fatty acid 
(FFA) concentrations in obesity that occurs with insulin 
resistance. Gross obesity might be associated with ATH 
and adipocyte death. However, the exact cause of  adipo-
cyte death in obesity is not known. It has been suggested 
that gross obesity per se is associated with a reduction in 
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Figure 1  Obstructive sleep apnea can induce non-alcoholic fatty liver dis-
ease through increasing insulin resistance, dyslipidemia and inflamma-
tion. The presence of metabolic syndrome and obesity with obstructive sleep 
apnea (OSA) can aggravate non-alcoholic fatty liver disease (NAFLD). OSA 
might aggravate NAFLD in the absence of obesity and metabolic syndrome.
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blood flow to adipocytes due to diminished angiogenesis 
or vasoconstriction[37]. Yin et al[38] have shown that hypox-
ia might inhibit insulin-induced glucose uptake by reduc-
ing concentrations of  the insulin-signaling molecules in-
sulin receptor β and insulin receptor substrate-1 in mice. 
Hypoxia might also stimulate lipolysis and inhibit uptake 
of  FFA in adipocytes, which leads to FFA elevation in the 
plasma of  obese subjects, because the increase in FFA 
might occur as a result of  the inhibitory effect of  hypoxia 
on the fatty acid transporters (FATP1, CD36) and the 
transcription factor (PPAR-γ)[38]. It is tempting to specu-
late that OSA might act in synergism with gross obesity 
to accelerate the process of  adipocyte death that could 
ultimately aggravate the course of  insulin resistance.

Inflammation
Numerous studies have shown that OSA is a trigger for 
inflammation. This might explain the associated increase 
in insulin resistance, dyslipidemia and hypertension in 
OSA[36]. NF-κB is the transcription factor that is in-
volved in inflammatory pathways and might be involved 
in modulating insulin sensitivity[39]. Importantly, NF-
κB is also increased not only with OSA but also with 
obesity and metabolic syndrome. NF-κB is the master 
regulator of  inflammatory process and its activation 
with hypoxia also leads to activation of  TNF-α, IL-1, 
IL-6, monocyte chemoattractant protein-1, macrophage 
migration-inhibition factor, inducible nitric oxide syn-
thase and matrix metalloproteinase 9. Some of  these 
mediators are also activated by the hypoxia inducible 
factor (HIF)[40-43]. TNF-α and IL-1 are known to be 
increased not only with OSA, but also with obesity and 
metabolic syndrome[40], and the increase in TNF-α and 

IL-1 is known to be associated with an increase in insu-
lin resistance[44]. 

Modulation of transcription factors
The modulation of  transcription factors has a crucial role 
in the development of  insulin resistance. Evidence is now 
emerging that hypoxia stimulates SREBP-1c, which is a 
positive transcription factor for activity of  ACC and fatty 
acid synthase genes, both genes whose activity can pro-
mote development of  fatty liver[45]. Hypoxia-induced fatty 
liver has been shown to be associated with an increase in 
the expression of  SREBP-1c[45]. Insulin-resistant ob/ob 
mice have increased concentrations of  SREBP-1c and 
also develop spontaneous fatty liver[45]. We have presented 
evidence that suggests strongly that abnormalities of  
SREBP-1c function play an important pathogenetic role 
in contributing to the NAFLD phenotype[46]. PPAR-γ is 
required for maintenance of  insulin sensitivity and lipid 
metabolism[47,48]. Importantly, hypoxia and the associ-
ated increase of  NF-κB, TNF-α, IL-1 and IL-6 are all 
known to inhibit PPAR-γ[49]. Overexpression of  hepatic 
PPAR-γ leads to lipid accumulation and it is suggested 
as a mechanism for hypoxia-induced fatty liver. Further-
more, PPAR-α is also reduced by hypoxia. PPAR-α is 
highly expressed in the liver, and animal models deficient 
in PPAR-α develop NAFLD and insulin resistance[49]. In 
addition, hypoxia also decreases the expression of  mito-
chondrial fatty acid transporter CPT-1[17], which might 
decrease fat oxidation and promote lipid accumulation. 
Hypoxia might also modulate AMP-activated protein ki-
nase through mitochondrial respiration or oxidative stress, 
and ultimately, this might enhance insulin resistance[50]. 

Adiponectin
Adiponectin is a cytokine that is produced by adipocytes. 
Serum levels of  adiponectin correlate with systemic insu-
lin sensitivity[51]. A reduction in adiponectin contributes 
to insulin resistance in obesity. However, it is still not 
clear why adiponectin concentrations are decreased in 
obesity[52]. Decreased adiponectin is known to be associ-
ated with NAFLD[53] and studies have now shown that 
hypoxia reduces adiponectin expression in adipocytes[54,55]. 
In adipose tissue, the inhibitory effect of  hypoxia on 
adiponectin might result in increased expression of  in-
flammatory cytokines[56]. Furthermore, TNF-α has been 
shown to inhibit adiponectin in adipocytes[56]. Thus, these 
data suggest that hypoxia might directly inhibit adipo-
nectin expression, directly or indirectly, through TNF-α, 
although whether the decrease in adiponectin causes 
NAFLD is still uncertain.

Leptin
Leptin is a hormone that is secreted by adipose tissue 
and increases with obesity. The main role of  leptin is to 
reduce appetite[57]. OSA is known to be associated with an 
increase in leptin plasma levels, and the increase in leptin 
occurs in proportion to the severity of  OSA[57]. There-
fore, it is likely that adipose tissue hypoxia might in part 
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Figure 2  The complex relationship between non-alcoholic fatty liver dis-
ease, obstructive sleep apnea and insulin resistance. TNF: Tumor necrosis 
factor; NAFLD: Non-alcoholic fatty liver disease; PPAR: Peroxisome-prolifera-
tor-activated receptor; SREBP-1c: Sterol-regulatory-element-binding protein-1c.



contribute to the increase in plasma leptin level. HIF-1α 
is associated with increased leptin level[58]. Despite the in-
crease in plasma leptin in the majority of  obese individu-
als with OSA, there is no improvement in appetite due to 
leptin resistance associated with excess fats[59-61]. CPAP has 
been shown to be associated with a decrease in leptin[59-61], 
which suggests that hypoxia might modulate insulin sen-
sitivity at least in part via changes in leptin concentrations. 
In contrast, other studies have suggested that hypoxia is 
associated with a decrease in leptin level[62-64]. Yasumasu 
et al[62] have shown that hypoxia is associated with a de-
crease in leptin secretion in cultured rat adipocytes[62]. 
Furthermore, short-term hypoxia does not affect leptin 
in humans. Hypoxia for 8 wk in a neonatal animal model 
was not associated with marked changes in plasma leptin 
levels[64]. Therefore, further research is needed to establish 
the impact of  hypoxia on leptin. 

Mitochondrial dysfunction and endoplasmic reticulum 
stress
Hypoxia is known to inhibit biogenesis and respiration 
of  the mitochondria[65]. Furthermore, hypoxia might also 
gradually decrease the number and function of  the mito-
chondria and this could lead to insulin resistance[65]. We 
have shown that alteration in mitochondrial function is 
associated with NAFLD[66]. Hypoxia is known to induce 
endoplasmic reticulum stress and inhibition of  this has 
been found to protect mice against insulin resistance. 
OSA is thought to induce endoplasmic reticulum stress 
in obesity[67-69]. An increase in endoplasmic reticulum 
stress is also associated with NAFLD[70].

OSA AND METABOLIC SYNDROME
NAFLD is regarded as the hepatic component of  the 
metabolic syndrome[71]. In October 2009, a joint interim 
statement from the International Diabetes Federation 
Task Force on Epidemiology and Prevention; National 
Heart, Lung, and Blood Institute; American Heart As-
sociation; World Heart Federation; International Ath-
erosclerosis Society; and the International Association 
for the Study of  Obesity was published that defined 
diagnostic criteria for identifying the presence of  the 
metabolic syndrome, without having to resort to mea-
surements that require sophisticated equipment[72]. Meta-
bolic syndrome was defined by the presence of  three of  
five criteria, including: increased waist circumference, 
elevated triglycerides, reduced high-density lipoprotein 
(HDL)-cholesterol levels, elevated blood pressure, and 
elevated fasting-glucose levels. In this new definition, 
waist circumference is not an obligate requirement for 
defining the syndrome and is one of  five criteria that 
physicians can use when diagnosing the metabolic syn-
drome[72]. Furthermore, Vgontzas et al[73] have shown that 
sleep apnea patients have a significantly greater amount 
of  visceral fat and insulin resistance compared to obese 
controls (P < 0.05), and indexes of  sleep disordered 
breathing are positively correlated with visceral fat, but 
not with BMI or total or subcutaneous fat. This finding 

has led to the suggestion that OSA should be considered 
as part of  the metabolic syndrome[73]. Coughlin et al[74] 
have shown that subjects with OSA are more obese, 
have higher blood pressure and fasting insulin concen-
trations, are more insulin resistant, and have lower HDL-
cholesterol concentrations, which provides evidence that 
there is increased prevalence of  metabolic syndrome 
(87% vs 35%, P < 0.0001). A regression analysis adjusted 
for age, BMI, smoking and alcohol consumption, has 
demonstrated that OSA is independently associated with 
increased systolic and diastolic blood pressure, higher 
fasting insulin and triglyceride concentrations, decreased 
HDL-cholesterol, increased cholesterol:HDL ratios, and 
a trend towards higher homeostasis model assessment 
values. Importantly, the authors have concluded that, 
in individuals with OSA, the prevalence of  metabolic 
syndrome was 9.1 times higher (95% CI: 2.6-31.2, P < 
0.0001) than in the general population. These data sug-
gest that OSA is independently associated with an in-
crease in the cardiovascular risk factors, and are support-
ed by the work of  Tkacova et al[75] who have shown that 
severe OSA is associated with an increased incidence of  
CVD independent of  insulin resistance and obesity. 

There could be a differing contribution of  risk fac-
tors for OSA between ethnic groups. In 819 Japanese 
patients with OSA (719 men and 100 women) and 89 
control subjects without OSA, metabolic syndrome was 
significantly more common in patients with OSA than in 
the controls (49.5% vs 22.0% for men, P < 0.01; 32.0% 
vs 6.7% for women, P < 0.01)[70]. Men and women with 
moderate and severe OSA have a higher risk of  meta-
bolic syndrome compared with controls. In men, age, 
BMI and OSA are significantly associated with metabolic 
syndrome, whereas, in women, BMI is the only risk fac-
tor for metabolic syndrome[76].

In a small study in China, the independent determi-
nants of  OSA in men and women were age, sex, BMI and 
the metabolic syndrome[77]. In another study in the Japa-
nese population with OSA, the concurrent presence of  
metabolic syndrome constituted an additional cardiovas-
cular risk factor[78]. From the evidence mentioned above, 
it is possible to conclude that OSA is associated with an 
increase in risk of  CVD in the presence, (or absence), 
of  metabolic syndrome. In addition, when the metabolic 
syndrome (including NAFLD) occurs in association with 
OSA, there might be a further increase in risk of  CVD. 
Therefore, the complex relationship between OSA, meta-
bolic syndrome and NAFLD to increase risk of  CVD sug-
gests the importance of  identifying and treating NAFLD 
in individuals with metabolic syndrome and OSA.

OSA, NAFLD AND HYPERLIPIDEMIA
NAFLD is not only associated with insulin resistance 
but also with dyslipidemia[79]. Importantly, in numer-
ous studies, NAFLD has been shown to be associated 
with an increase in risk of  CVD. NAFLD is associated 
with increased incidence of  CVD in type 2 diabetes[80-87]. 
Furthermore, OSA is associated with significant cardio-
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vascular morbidity and mortality[88]. There is increasing 
evidence that OSA is associated with dyslipidemia in 
animal models as well as human studies. Acute exposure 
to hypoxia increases LDL-cholesterol concentrations 
but does not influence the concentration of  choles-
terol and fatty acids in rats[89]. Repeated exposure to 
hypobaric hypoxia causes a significant increase in the 
concentration of  cholesterol, fatty acids, chylomicron, 
LDL-cholesterol and very-low-density beta-lipoproteins 
(VLDL) in rats, whereas the level of  HDL-cholesterol 
decreases[89]. Furthermore, Li et al[90] have shown that, in 
leptin-deficient obese C57BL/6J-Lep(ob) mice, expo-
sure to IH increases fasting serum levels of  total choles-
terol, HDL-cholesterol, and triglycerides, as well as liver 
triglyceride content. These changes are not observed in 
obese mice, which have hyperlipidemia and fatty liver at 
baseline. In lean mice, IH increases SREBP-1c levels in 
the liver, increases mRNA and protein levels of  stearoyl-
coenzyme A desaturase 1 (SCD-1), an important enzyme 
that is involved in desaturation of  fatty acids, controlled 
by SREBP-1, and increases monounsaturated fatty acid 
content in serum, which indicates augmented SCD-1 ac-
tivity. In addition, in lean mice, IH decreases protein lev-
els of  scavenger receptor B1, which regulates uptake of  
cholesterol esters and HDL by the liver[91]. In mice with 
a conditional knockout of  SREBP cleavage-activating 
protein (SCAP) in the liver, which exhibits low levels of  
an active nuclear isoform of  SREBP-1c (nSREBP-1c), 
IH does not have any effect on serum and liver lipids, 
and expression of  lipid metabolic genes is not altered[89]. 
In wild-type mice, IH increases fasting levels of  serum 
total and HDL-cholesterol, serum triglycerides, serum 
and liver phospholipids, mRNA levels of  SREBP-1c 
and mitochondrial glycerol-3-phosphate acyltransferase 
(mtGPAT), and protein levels of  SCAP, nSREBP-1, and 
mtGPAT in the liver. These data suggest that hyper-
lipidemia in response to IH is mediated in part via the 
SREBP-1c pathway[91], and we have previously suggested 
that modulation of  SREBP provides a potential treat-
ment of  NAFLD[46]. 

In contrast, Savransky et al[92] have shown that C57BL/
6J mice exposed to CIH and a high-cholesterol diet devel-
op dyslipidemia, aortic atherosclerosis, and upregulation 
of  SCD-1. Therefore, inhibition of  SCD-1 might have 
the potential to prevent dyslipidemia and atherosclero-
sis during OSA. In another study by Savransky et al[93] in 
mice and in obese humans, C57BL/6J mice were exposed 
to CIH or normoxia for 10 wk while being treated with 
SCD-1 or control antisense oligonucleotides. In mice, hy-
poxia increased hepatic SCD-1 and plasma VLDL levels 
and induced atherosclerotic lesions in the ascending aorta 
(the cross-section area of  156 514 ± 57 408 μm2, and de-
scending aorta (7.0% ± 1.2% of  the total aortic surface). 
In mice exposed to CIH and treated with SCD-1 anti-
sense oligonucleotides, dyslipidemia and atherosclerosis in 
the ascending aorta were abolished, whereas there was a 
56% decrease in lesions in the descending aorta. None of  
the mice exposed to normoxia developed atherosclerosis. 
Furthermore, Savransky et al[93] have studied obese human 

subjects who have undergone an intraoperative liver biop-
sy at the time of  bariatric surgery for treatment of  sleep 
apnea and obesity. In these patients, hepatic SCD mRNA 
levels correlated with the degree of  nocturnal hypoxemia 
(r = 0.68, P = 0.001) and patients who showed oxyhemo-
globin desaturation at night showed higher plasma triglyc-
eride and LDL-cholesterol levels, compared to subjects 
without hypoxemia[93]. 

Modulation of  HIF-1 activity could also be a pre-
cipitating factor for dyslipidemia with OSA. HIF-1 is 
a master transcriptional regulator of  genes that are in-
volved in physiological responses to hypoxia, including 
erythropoiesis, angiogenesis, and glucose metabolism. Li 
et al[94] have hypothesized that HIF-1 might be involved 
in dyslipidemia associated with OSA. They have per-
formed a 5-d IH experiment using C57BL/6J (wild-type) 
or heterozygous Hif1α+/− mice (with partial HIF-1α de-
ficiency). During IH, Hif1α+/− mice experienced blunted 
rises in serum triglycerides, liver triglycerides, light-phase 
fasting insulin, and glucose level, and attenuated tran-
scription or translation of  several liver lipid biosynthe-
sis enzymes. HIF-1α deficiency diminished the rise of  
SREBP-1 and SCD-1 protein levels during IH without 
affecting serum cholesterol[94]. This suggests that, besides 
obesity, insulin resistance and a high intake of  dietary 
cholesterol, modulation of  HIF-1α could represent an-
other factor that mediates hypoxia-induced dyslipidemia. 
In summary, hypoxia might lead to an increase in plasma 
and hepatic lipid profile through different factors and 
this could precipitate fatty liver. 

Clinical studies have shown that CPAP is associated 
with a reduction in cholesterol and C-reactive protein. 
In two studies, CPAP was associated with a reduction 
in cholesterol, LDL-cholesterol, C-reactive protein and 
homocysteine[95,96]. In children with OSA, tonsillectomy 
improves parameters of  the lipid profile such as LDL-
cholesterol, apolipoprotein B and HDL-cholesterol[97].

OSA AND NAFLD AND MODULATION OF 
CVD RISK
Recently, Floras and Bradley have reviewed the associa-
tion between OSA and CVD[98]. Their conclusion was 
that OSA is associated with an increased risk of  CVD 
and this has been demonstrated in epidemiological, 
clinical and physiological studies. Epidemiological stud-
ies have shown a significant independent association 
between OSA and hypertension, coronary artery disease, 
arrhythmias, heart failure and stroke[99-105]. Although the 
association between NAFLD and OSA and CVD is not 
yet fully elucidated, from the evidence presented, it is 
tempting to postulate that the association between OSA 
and NAFLD accelerates atherosclerosis development. 
The complex interaction between OSA and NAFLD, 
and the fact that they share similar metabolic pathways 
that are well known to be associated with an increase in 
the incidence of  CVD, suggest the need for clinical trials 
in this field (Figure 3). 
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CONCLUSION
OSA is associated with NAFLD in experimental animals 
and in humans. Importantly, OSA can aggravate the de-
velopment of  NAFLD to NASH in obese individuals 
or those with metabolic syndrome. OSA might induce 
NAFLD in the absence of  obesity and metabolic syn-
drome, and the link with hypoxia might be instrumental in 
precipitating fatty liver development. We suggest that the 
relationship between CVD, OSA and NAFLD requires 
further study to elucidate the precise nature of  these re-
lationships. Importantly, individuals with OSA require a 
full evaluation of  their CVD risk, and clinicians should be 
aware that these individuals are also at increased risk of  
NAFLD. 
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