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Abstract
Sepsis is a systemic inflammatory response representing 
the leading cause of death in critically ill patients, most-
ly due to multiple organ failure. The gastrointestinal 
tract plays a pivotal role in the pathogenesis of sepsis-
induced multiple organ failure through intestinal barrier 
dysfunction, bacterial translocation and ileus. In this 
review we address the role of the gastrointestinal tract, 
the mediators, cell types and transduction pathways 
involved, based on experimental data obtained from 
models of inflammation-induced ileus and (preliminary) 
clinical data. The complex interplay within the gastro-
intestinal wall between mast cells, residential macro-
phages and glial cells on the one hand, and neurons 
and smooth muscle cells on the other hand, involves 
intracellular signaling pathways, Toll-like receptors and a 
plethora of neuroactive substances such as nitric oxide, 
prostaglandins, cytokines, chemokines, growth factors, 
tryptases and hormones. Multidirectional signaling be-
tween the different components in the gastrointestinal 
wall, the spinal cord and central nervous system impacts 
inflammation and its consequences. We propose that 
novel therapeutic strategies should target inflamma-
tion on the one hand and gastrointestinal motility, gas-

trointestinal sensitivity and even pain signaling on the 
other hand, for instance by impeding afferent neuronal 
signaling, by activation of the vagal anti-inflammatory 
pathway or by the use of pharmacological agents such 
as ghrelin and ghrelin agonists or drugs interfering with 
the endocannabinoid system. 
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DEFINITION AND CLINICAL RELEVANCE 
OF SEPSIS
Sepsis originates from the Greek word sepsios meaning 
“rotten” or “putrid”. Sepsis is defined as a systemic in-
flammatory response syndrome secondary to infection. It 
represents a leading cause of  death in critically ill patients, 
mainly due to the development of  organ dysfunction and 
tissue hypoperfusion[1-3]. The incidence of  severe sepsis is 
still increasing and ranges from 11%-15% in intensive care 
unit (ICU) patients: 11.8 patients per 100 ICU admissions 
in an Australian and New Zealand population[4]; 14.6% in 
a French ICU population[5], 11% of  all ICU admissions in 
the US[6] and 12% of  ICU patients in Spain[7]. Although 
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the overall mortality rate among patients with sepsis is 
declining - related to general improvements in acute and 
intensive hospital care rather than specific sepsis-related 
therapy - the number of  sepsis-related deaths still increas-
es and ranges between 25%-60%[2,4-6,8]. The development 
of  organ dysfunction is a major determinant of  mortality 
and is influenced by the co-existence of  chronic comor-
bidity[8].

According to the International Guidelines of  Severe 
Sepsis 2008[3], the management of  severe sepsis compli-
cated with hypoperfusion and organ failure is based on 
initial resuscitation (first 6 h) with, as main goals, main-
taining the mean arterial pressure above 65 mmHg, a CVP 
of  8-12 mmHg, a urinary output above 0.5 mL/kg per 
hour and a central venous oxygen saturation above 70%. 
Secondly, the source and type of  infection needs to be 
established by obtaining appropriate cultures before anti-
biotic therapy is initiated. The use of  fluid therapy, vaso-
pressors (norepinephrine and dopamine as initial choice) 
and dobutamine as inotropic therapy is recommended[3]. 
The use of  corticosteroids remains controversial in the 
management of  sepsis and is advised only in refractory 
sepsis, as is the use of  recombinant human activated pro-
tein C which should be reserved for patients with organ 
dysfunction and a high clinical risk of  death[2,9].

During sepsis a complex interaction takes place be-
tween the infecting microorganism, the host immune 
response, inflammatory and coagulation responses[9]. Dif-
ferent mechanisms such as the innate immune system, the 
coagulation pathways, endothelial dysfunction, mitochon-
drial dysfunction and apoptosis are described and associ-
ated with severe sepsis[9]. A cross-talk takes place between 
different immune cells including macrophages, dendritic 
cells and CD4+ T cells, leading to either a proinflammato-
ry or anti-inflammatory cytokine reaction[10]. Patients can 
thus present with either an exaggerated proinflammatory 
systemic inflammatory response (often described in the 
early phase) or rather a state of  immunosuppression and 
even anergy in a later phase[10,11]. Generally accepted is the 
theory that cells of  the innate immune system recognize 
microorganisms and initiate responses through pattern 
recognition receptors (PRRs), pathogen-associated mo-
lecular patterns (PAMPs) and Toll-like receptors (TLRs). 
The latter will result in activation of  intracellular signal 
transduction pathways such as the activation of  nuclear 
factor (NF)-κB and caspase-1[9,11]. On the other hand, an 
excess production of  reactive oxygen and nitrogen species 
is described resulting in oxidative and nitrosative stress. 
Other pathogenic mechanisms leading to sepsis-related 
organ dysfunction are exacerbated coagulation, impaired 
anticoagulation and decreased fibrin removal, together 
with endothelial disturbances, mitochondrial dysfunction 
and apoptosis[9]. 

ROLE OF THE GASTROINTESTINAL 
TRACT IN SEPSIS
Hassoun et al[12] described in the early 2000s how the 
gastrointestinal tract might play a pivotal role in the 

pathogenesis of  post-injury multiple organ failure. Gut 
hypoperfusion is an important inciting event in the patho-
genesis of  organ failure, whereas the reperfused gut is 
an early source of  proinflammatory mediators. Ischemia 
and reperfusion in the gastrointestinal tract will activate a 
cascade of  stress-sensitive protein kinases (MAPK, ERK, 
p38, JNKs) that converge on transcription factors regulat-
ing the expression of  proinflammatory genes[12]. Impor-
tant mechanisms playing a role in gastrointestinal dysfunc-
tion as a result of  post-injury multiple organ failure are 
increased intestinal permeability, bacterial translocation 
and paralytic ileus[13]. Bacterial translocation is defined as 
the passage of  both viable and non-viable microbes and 
microbial products such as endotoxins across the muco-
sal barrier[12], whereas ileus is defined as an inhibition of  
propulsive intestinal motility[14]. These mechanisms play 
an important role in the maintenance of  multiple organ 
failure and secondary infections[12]. Frequently, the source 
of  bacteria can be traced to the endogenous flora of  the 
gastrointestinal tract[15]. Ileus predisposes to luminal ac-
cumulation and bacterial colonisation of  the stomach and 
small intestine and therefore promotes bacterial translo-
cation and pneumonia by aspiration of  gastric contents. 
Ileus therefore plays a pivotal role in the occurrence and 
maintenance of  infections in multiple organ failure[12]. 
The guidelines on the management of  severe sepsis of  
2008 concluded that prophylactic use of  selective diges-
tive tract decontamination in severe sepsis patients would 
be targeted towards preventing secondary ventilator-asso-
ciated pneumonia[3]. There are, however, insufficient data 
available from severe sepsis patients to support global use 
of  selective digestive tract decontamination.

The gastrointestinal tract therefore has a dual role in 
sepsis, being a target organ and a pathogenic player. It is 
now understood that the gut is not only a source of  bacte-
ria and endotoxins, but also a source of  pro-inflammatory 
mediators and a cytokine-generating organ. These inflam-
matory mediators reach the circulation via the intestinal 
lymph[16,17]. Bacteria and endotoxins crossing the mucosal 
barrier further potentiate the gut inflammatory response, 
even when the bacteria and their products are trapped 
within the gastrointestinal wall or intestinal lymph nodes, 
not reaching the systemic circulation[16]. Studying the im-
pact of  experimentally-induced sepsis on gastrointestinal 
motility and its immunological modulation therefore mer-
its further attention.

ANIMAL MODELS OF SEPSIS
Several animal models of  sepsis exist, all with their ad-
vantages and disadvantages (Table 1)[18-20]. One of  the 
main criticisms of  the animal models is that the dem-
onstrated benefits of  therapeutic agents in animals are 
rarely translated into successful clinical trials, indicating 
the difficulty of  mimicking the complex interaction 
between current illness, sepsis and supportive therapy 
in an animal model. The lack of  supportive therapeutic 
interventions in animal models represents therefore an 
important caveat in the use of  animal models. Also, the 
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timing of  most animal models is not comparable to the 
human situation as most animal models represent acute 
syndromes unlike sepsis in humans (hours to days in ani-
mal models vs days to weeks in humans)[20].

Animal models of  sepsis are generally divided into 3 
categories: endotoxin models, bacterial infection models 
and peritonitis models[18-20]. The major advantages and 
disadvantages of  these models are described in Table 1. 
In the endotoxin model lipopolysaccharides (LPS) of  bac-
teria are injected, while in the bacterial infection models 
the bacteria themselves are injected. Different peritonitis 
models are described, such as cecal ligation and puncture 
(CLP), implantation of  a fibrin clot suspended with bac-
teria in the abdominal cavity or implantation of  a colonic 
stent. These peritonitis models have as a major advantage 
the presence of  a local infection focus and some authors 
consider the CLP model as the gold standard for sepsis 
research[20]. However, it is important to understand that 
this procedure requires a major surgical procedure which 

might have no effect in sepsis survival studies but strongly 
interferes with gastrointestinal motility because of  the in-
duction of  postoperative ileus. 

In the endotoxin model, LPS is injected intravenously 
or intraperitoneally. The choice of  the animal (mouse, 
rat, guinea pig), and the strain and gender of  the animal 
are all confounding parameters in these models, as well 
as the strain of  bacteria or endotoxins used, the dose and 
the administration route. Studying gastrointestinal motil-
ity and its immunological modulation by administering a 
single intraperitoneal injection of  endotoxin at a sublethal 
concentration represents an adequate model for experi-
mental sepsis[13,21]. It has been shown previously in differ-
ent animal species that a single dose of  LPS alters gas-
trointestinal motility. By 1963, Turner et al[22] had already 
shown that endotoxins reduce water and food intake and 
gastric emptying in mice. We investigated the effect of  a 
single intraperitoneal injection of  LPS of  Escherichia coli 
and showed a significant delay in gastric emptying and 
small intestinal transit[23-26]. In rats, endotoxins delay gastric 
emptying, increase small intestinal transit[27-31], and reduce 
jejunal spontaneous circular muscle activity[32,33]. In dogs, 
endotoxins delay gastric emptying and abolish intestinal 
migrating motor complexes[34-37]. In horses, a low dose of  
endotoxin was reported to disrupt the motility pattern and 
to decrease the cecal and colonic contractile activity[38,39]. 
Therefore, endotoxins are definitely able to induce gas-
trointestinal ileus, which we will now refer to as sepsis- or 
endotoxin-induced ileus.

On the other hand, ileus is often studied in a surgical-
ly-induced postoperative model. It is generally accepted 
that postoperative ileus is triggered by two different phas-
es: an early neurogenic and a late inflammatory phase[40]. 
During the initial neuronal phase, inhibitory effects on 
motility are related to the activation of  an inhibitory re-
flex pathway involving adrenergic, nitrergic and VIP-ergic 
neurons[41,42]. In the second phase, the activation of  an 
inflammatory cascade plays a crucial role and is triggered 
by the handling of  the intestines activating the cross-talk 
between the immune system, the autonomic nervous sys-
tem and the muscle effector apparatus of  the gastrointes-
tinal wall[40].

Both the endotoxin-induced model and the post-
operative ileus model accentuate the important role of  
inflammation in the development and maintenance of  
gastrointestinal ileus. It is therefore our opinion that the 
endotoxin-induced ileus model and the postoperative ile-
us model are both relevant in the study of  inflammation-
induced motility disturbances.

PATHOGENESIS OF INFLAMMATORY-
MEDIATED ILEUS
Initial research focussed on the mediators that could be 
involved in the inflammation-induced impairment of  
gastrointestinal motility by a direct action on the intestinal 
smooth muscle cells. Later on, the focus was broadened 
in an attempt to clarify not only the mediators involved 
but also the cell types and the transduction pathways. The 
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Table 1  Overview of septic animal models displaying advan-
tages and disadvantages (adapted from[18-20])

Endotoxin model
   Advantages
      Endotoxins play a significant role in the pathogenesis of sepsis
      Simple model
      Using sublethal doses, providing active resuscitation, using 
      continuous infusion and the use of intraperitoneal injection are 
      four measures reproducing more accurately the human situation
      Lipopolysaccharides is stable (compared to the use of bacteria), 
      therefore the model is more accurate and reproducible 
      compared to the bacterial infection models
   Disadvantages
      Exaggerated release of host cytokines
      Most of the time only Gram-negative sepsis
      Single toxin does not mimic human sepsis
      Therapies shown to be effective in animal models, failed in clinical 
      trials
      Rats are very resistant compared to humans
      Lack of an infectious focus

Bacterial infection model
   Advantages
      Endotoxins play a significant role in the pathogenesis of sepsis
      Reduction of the dose, increasing the infusion time, giving 
      active resuscitation can prolong survival and render the model 
      more comparable to the human situation
   Disadvantages
      Uncommon clinical occurrence
      High doses of bacteria are needed
      Significant interlaboratory variability
      Survival is short
      Serum cytokine responses are transient and exaggerated

Peritonitis model: cecal ligation puncture model
   Advantages
      Resemblance to clinical situation
      Peritoneal contamination with a mixed flora
      The cytokine response is comparable to human situation
      Severity can be adjusted by increasing the needle puncture size or 
      the number of punctures, delaying mortality over several days
   Disadvantages
      The model needs a surgical procedure that by itself may induce 
      ileus
      Difficult to control the magnitude of septic challenge
      Variability within the cecal ligation puncture model
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main goals were to identify possible target molecules en-
abling the development of  novel drugs for clinical use.

Mediators involved in the pathogenesis of inflammatory-
mediated ileus
Nitric oxide (NO) was one of  the first molecules pos-
tulated to play an important role in the pathogenesis 
of  LPS-induced motility disturbances in rats and mice 
mainly mediated via the inducible isoform of  NO synthase  
(iNOS)[23,27,29,30,32,43]. Several groups showed that block-
ade of  NOS reverses the endotoxin-induced changes in 
gastrointestinal motility in different animal species by 
the use of  selective or non-selective NOS blockers and 
iNOS knock-out mice[23,27,29,30,32]. Our group proved that 
this effect of  NO, derived from iNOS, is mediated at least 
partially by activation of  guanylyl cyclase in a murine en-
dotoxic model[23,44]. Furthermore, we also found evidence 
of  a role for NO-mediated oxidative stress mechanisms, 
indirectly via the use of  the solvent DMSO which also has 
radical scavenging properties, and directly by the use of  
antioxidant molecules[23,24,45]. Treatment of  mice with the 
antioxidant pegylated superoxide dismutase reversed the 
endotoxin-induced delay in gastric emptying and improved 
the delay in intestinal transit. This was associated with a 
decrease of  iNOS-positive residential macrophages and a 
decrease of  immunohistochemical staining for nitrotyro-
sine and 4-hydroxy-2-nonenal, markers for oxidative and 
nitrosative stress, in the gastric and ileal mucosa of  LPS-
treated mice[24]. In agreement with these results, we found 
that the antioxidant melatonin reversed the endotoxin-
induced motility disturbances in mice through a reduction 
of  intestinal lipid peroxidation, MAPK activation, NF-κB 
activation, iNOS transcription and expression, and nitrite 
production[45].

In addition, NO produced from neuronal NOS may 
be involved in sepsis-induced ileus. Quintana et al[46,47] 
showed synthesis of  NO in postganglionic myenteric neu-
rons during the early phase of  endotoxemia (30 min after 
injection of  LPS) in rats, as well as an increase in nNOS 
mRNA in the dorsal vagal complex of  the brainstem 2 h 
after administration of  LPS.

Prostaglandins are also postulated to play an impor-
tant role in the pathogenesis of  inflammatory-mediated 
ileus[13,21,48]. In rat studies on postoperative ileus, a role 
for prostaglandins was proven by the presence of  COX2 
mRNA and protein in residential macrophages, recruited 
monocytes and in a subpopulation of  myenteric neu-
rons[49]. This study also demonstrated an amelioration of  
the gastrointestinal motor function by treatment with the 
COX2 inhibitor, DFU[49]. Other animal studies, also from 
our own group, showed a differential effect of  different 
COX inhibitors on postoperative motility induced by 
laparotomy alone or laparotomy with bowel manipulation, 
suggesting a possible involvement of  both COX1 and 
COX2 isoforms and different sites of  action in different 
stages of  postoperative ileus[50,51]. A recent clinical trial 
comparing the effect of  diclofenac (standard non-steroidal 
anti-inflammatory drug) and celecoxib (COX2 selective 
inhibitor) in patients after abdominal surgery also showed 

a differential effect of  both drugs. Celecoxib significantly 
reduced the development of  paralytic ileus, whereas both 
drugs did not result in a more rapid restoration of  the 
gastrointestinal function compared to placebo[52]. To our 
knowledge, no studies of  different COX inhibitors on 
sepsis- or endotoxin-induced ileus are available.

Moreover, prostaglandins are postulated to modulate 
afferent nerve signaling from the gut to the spinal cord 
and higher brain centers, indicating that they play a role 
not only in motility disturbances but also in sensitivity 
disturbances and pain signaling pathways. These effects 
are described both in the postoperative ileus model and 
in the endotoxin-induced ileus model[50,53].

Cell types involved in the pathogenesis of inflammatory-
mediated ileus
The initial search for the location of  iNOS production 
in the endotoxin-induced ileus model pointed to an im-
portant role for residential macrophages[24,32]. We clearly 
showed the presence of  iNOS in residential muscular 
macrophages in the stomach and ileum of  LPS-treated 
mice[24]. Besides residential muscular macrophages, the 
gastrointestinal tract contains a dense population of  
mucosal macrophages which play a crucial role in tis-
sue homeostasis on the one hand and in the initiation, 
propagation and resolution of  inflammation on the other 
hand. Mucosal macrophages are conditioned towards an 
anti-inflammatory role under normal circumstances and 
switch towards a pro-inflammatory modus during inflam-
mation[54-56]. The relationship and the interaction between 
muscular and mucosal residential macrophages in the 
gastrointestinal tract have not been studied so far. In the 
field of  ileus, research is focussed largely on the muscular 
population. Several groups have hypothesized that LPS 
initiates an inflammatory cascade consisting of  the acti-
vation of  the normally quiescent network of  residential 
muscularis macrophages, resulting in the production of  
a plethora of  inflammatory cytokines, chemokines and 
other substances such as nitric oxide and prostagland-
ins[13,23,24,32,33,43,48]. This inflammatory milieu results in the 
recruitment of  circulating leukocytes and consequently 
in the further release of  leukocyte-derived substances 
such as nitric oxide and prostaglandins capable of  altering 
gastrointestinal motility[23,48] and activating inhibitory neu-
rogenic reflex pathways[57]. The presence of  iNOS is not 
only demonstrated in residential macrophages but also in 
the recruited leukocytes, thereby augmenting the inhibi-
tory effects on gastrointestinal motility[21,58]. Monocyte-
chemoattractant protein-1 (MCP-1), derived from the resi-
dential macrophages, is a key molecule in the recruitment 
of  additional monocytes during endotoxemia, leading to 
an enhanced secretion of  kinetically active substances that 
may alter gastrointestinal motility[59,60]. In a polymicrobial 
model of  sepsis, such as the CLP model, this complex in-
flammatory response is induced within the intestinal mus-
cularis with recruitment of  leukocytes and mediators that 
inhibit intestinal muscle activity[48]. The activation of  resi-
dential muscular macrophages within the gastrointestinal 
wall also plays a crucial role in the late inflammatory phase 
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of  postoperative ileus, resulting in secretion of  molecules 
such as lymphocyte function-associated antigen-1 and 
intercellular adhesion molecule-1 (ICAM-1), again attract-
ing more leucocytes within the intestinal muscularis and 
therefore maintaining the inflammatory cascade[13,21,57]. In 
the postoperative model, the important role of  intestinal 
residential macrophages was definitely proven by the work 
of  Wehner et al[61], showing that depletion and inactivation 
of  the macrophages in rats and mice prevented intestinal 
inflammation and postoperative ileus.

In addition to residential macrophages and inflam-
matory leucocytes, mast cells are also put forward as 
important cells in the induction and maintenance of  the 
inflammatory cascade and its effects on motility. There is 
evidence for bidirectional communication between mast 
cells and neurons in the gastrointestinal tract[62-64]. de Jonge 
et al[65] proved elegantly that the degranulation of  connec-
tive tissue mast cells is a key event in the establishment of  
the intestinal infiltrate in the abdominal wall in a murine 
model of  postoperative ileus. The importance of  mast 
cells in the pathogenesis of  postoperative ileus could be 
translated to the human situation; The et al[66] showed that 
intestinal handling triggered mast cell activation as well as 
leucocyte infiltration in patients undergoing an abdominal 
hysterectomy. In a pilot trial with the mast cell stabiliser 
ketotifen, the same authors demonstrated that ketotifen 
improved the surgery-induced delay in gastric emptying 
of  liquids in humans[67]. The number and activity of  both 
residential macrophages and mast cells in LPS-treated 
mice is upregulated (personal communication)[68]. More 
studies on the role of  mast cells and their mediators need 
to be performed in models of  sepsis-induced ileus. 

The question as to whether the main initiator of  the 
inflammatory reaction is the residential macrophage 
or the mast cell remains unresolved. In a recent paper, 
Boeckxstaens et al[40] suggest a role for peritoneal mast 

cells adjacent to mesenteric blood vessels. Activated by 
neuropeptides such as substance P and calcitonin gene-
related peptide (CGRP) released from the adjacent affer-
ent neurons, mast cells are able to release proinflamma-
tory mediators into the peritoneal cavity diffusing into 
the blood vessels and increasing mucosal permeability. 
In turn, luminal bacteria and/or bacterial products enter 
the gastrointestinal wall and activate the resident macro-
phages triggering intracellular signaling pathways, leading 
to transcription of  inflammatory molecules, cytokines, 
chemokines and adhesion molecules[40]. Others support a 
role for the residential macrophages as the first respond-
ers and conductors which would orchestrate the inflam-
matory events after surgical manipulation or endotoxin 
exposure[21]. More importantly, the interplay between these 
initiating cells and the nervous system should be further 
investigated as both the mediators released from mast 
cells and from residential macrophages are able to affect 
neuronal signaling within and from the gastrointestinal 
wall (Figure 1)[21,62]. 

Neuro-immunomodulatory pathways involved in the 
pathogenesis of inflammatory-mediated ileus
The gastrointestinal tract is richly innervated by an intrin-
sic enteric nervous system and by an extrinsic autonomic 
nervous system consisting of  parasympathetic vagal and 
pelvic neurons and sympathetic splanchnic neurons. Dur-
ing inflammation of  the gut, there is a complex multidi-
rectional interaction between immune and inflammatory 
cells, neurons and smooth muscle cells (Figure 1)[21,69]. 
Wang et al[53] proved that inflammatory mediators released 
from the gut during endotoxemia were able to affect je-
junal afferent discharge in the rat. Both LPS itself  and 
mesenteric lymph fluid collected after injection of  LPS 
were able to increase the afferent discharge. Liu et al[70] 
demonstrated an increased discharge in capsaicin-sensitive 

5527 November 28, 2010|Volume 16|Issue 44|WJG|www.wjgnet.com

NO

PG

Chemokines

Cytokines SP CGRP

Histamine 
serotonin proteases

NGF

Cytokines

NOGABA
Neuropeptides

NO PG

PGCGRP TRPV 1

Figure 1  Hypothetical scheme of the com-
plex interplay between, on the one hand 
residential macrophages (red), mast cells 
(blue), glial cells (green) and the recruitment 
of inflammatory cells (yellow), and on the 
other hand the activation of neuronal reflex 
pathways (black). Mediators involved in the 
different cell populations are marked in the 
same color as the cell type involved. NO: Nitric 
oxide; PG: Prostaglandins; SP: Substance P; 
CGRP: Calcitonin gene-related peptide; GABA: 
γ-aminobutyric acid; NGF: Neuropeptides, 
growth factors; PAF: Platelet-activating factor; 
TRPV: Transient receptor potential channel of 
the vanilloid subtype; nAChR: Nicotinic acetyl-
choline receptor.

Residential 
macrophages Mast cells Glia cells

Neuronal pathways

Afferent neurons and 
mediators

Anti-inflammatory vagal 
efferent pathway 

a7 nAChR
Efferent motor pathways

Smooth muscle cells
Histamine 
Serotonin 
PG - NO 
Cytokines 
Chemokines 
Leukotrienes 
Proteases 
PAF - NGF

Recruitment 
leucocytes, 
monocytes

De Winter BY et al . Sepsis, inflammation and ileus



mesenteric vagal afferents following systemic LPS. It was 
also shown that the endotoxin-induced delay in gastric 
emptying in rats could be suppressed by systemic capsa-
icin, by local application of  capsaicin to the vagal nerve 
(but not to the celiac ganglion), and by a CGRP receptor 
antagonist[31]. Our own group also provided evidence for 
a role of  afferent neurons in the motility disturbances 
induced by endotoxin in mice[25]. Neuronal afferent in-
volvement was demonstrated by the beneficial effect of  
hexamethonium and capsaicin, and the effect of  the affer-
ent neurons was mediated by CGRP and the TRPV1 re-
ceptor. In a postoperative murine model, the involvement 
of  both vagal and spinal afferent neurons in the inhibition 
of  gastrointestinal motility was shown, with a differential 
effect of  COX2 inhibition on the two types of  afferent 
neurons[71]. All these results underline the importance of  
an initial activation of  afferent neurons leading to the acti-
vation of  inhibitory neuronal reflex pathways in gastroin-
testinal motility disturbances induced by sepsis or surgical 
manipulation of  the intestine.

Activation of  the vagovagal pathway is able to modu-
late inflammation in the gastrointestinal tract on the one 
hand and motility on the other hand. The cholinergic 
nervous system is able to attenuate the production of  pro-
inflammatory mediators and to inhibit inflammation; this 
mechanism is known as the cholinergic anti-inflammatory 
pathway[69,72,73]. The cholinergic anti-inflammatory surveil-
lance system starts with the activation of  vagal sensory 
afferent fibers by proinflammatory cytokines, secreted by 
innate immune responses stimulated via exogenous and 
endogenous molecular products of  infection and injury 
such as LPS. Information is transmitted to higher brain 
centres. In the brain, vagal efferent fibers are activated; 
signaling back to the gastrointestinal tract. Acetylcholine 
inhibits the cytokine release directly via the α7 nicotinic 
acetylcholine receptor (nAChR) expressed on macro-
phages. Animal models showed that the anti-inflammatory 
effect is not exclusively mediated via macrophages but 
that other immune cells such as dendritic cells and mast 
cells may also be involved[73]. However, anti-inflammatory 
properties of  vagal activation were also shown in murine 
isolated intestinal and peritoneal macrophages in the 
light of  inflammatory surveillance: whereas acetylcholine 
stimulated the phagocytic potential of  the macrophages, it 
inhibited the immune reactivity, as evidenced by reduction 
of  NF-κB and proinflammatory cytokines and stimula-
tion of  IL10 production via nAChR α4/β2[74]. On the 
other hand, there is also evidence for indirect modulation 
of  inflammatory processes via postganglionic neuromodu-
lation of  immune cells in primary immune organs such as 
the spleen[69,72,75]. In a lethal rat endotoxemia model, direct 
electrical stimulation of  the peripheral vagus nerve was 
shown to inhibit tumor necrosis factor (TNF) synthesis 
in the liver, attenuate peak serum TNF levels and prevent 
the development of  shock[76]. In a rat cecal ligation and 
puncture model, stimulation of  the caudal vagal trunk 
prevented the induced hypotension, alleviated the hepatic 
damage and plasma TNFα production but had no effect 
on liver NF-κB activation[77]. In a murine sepsis model, 

transcutaneous vagal nerve stimulation reduced TNFα 
levels and improved survival[78]. In a murine postoperative 
ileus, stimulation of  the vagal nerve ameliorated surgery-
induced inflammation and ileus, whereas AR-R17779, 
an α7AChR agonist, prevented postoperative ileus and 
reduced the inflammatory cell recruitment in a similar 
mouse model[79,80].

Furthermore, sympathetic nerves might be involved 
in the neuroimmunomodulation of  the different func-
tions of  the gastrointestinal tract. Hamano et al[81] showed 
that yohimbine, an α2-adrenergic receptor antagonist, 
improved endotoxin-induced inhibition of  gastrointestinal 
motility in mice. They suggest the mechanism of  action 
is related to the activation of  α2-adrenergic receptors on 
macrophages downregulating the expression of  iNOS. 
However, it could not be excluded that gastric empty-
ing was improved via inhibition of  the presynaptic α2-
adrenergic receptors on cholinergic vagal nerves. Under 
normal conditions, these receptors decrease the release of  
acetylcholine and thereby reduce gastrointestinal motil-
ity[81]. Nevertheless, Vanneste et al[82] could demonstrate 
that presynaptic α2-adrenergic receptor control of  cho-
linergic nerve activity was unchanged in a rat model of  
postoperative ileus. Also in the postoperative ileus model, 
a beneficial effect of  spinal cord stimulation at the level of  
T5-T8 segments was recently shown on gastric emptying, 
although the mechanism of  action remains to be unrav-
elled[83]. An interaction of  sympathetic neurotransmitters 
with the gut immune system, glial cells and gut flora was 
recently suggested, in correlation with the vagal immuno-
modulatory mechanisms in conditions of  inflammation or 
ileus[84]. 

A cell population that might be relevant to consider 
in this neuroimmunomodulatory framework is the enteric 
glial cell population. Enteric glial cells are part of  the en-
teric nervous system, along with neurons and interstitial 
cells of  Cajal (ICC); originating from the neuroectoderm. 
They form a widespread network in the gastrointestinal 
wall where they outnumber the neuronal cell popula-
tion at the level of  the myenteric plexus, the submucosal 
plexus and the interconnecting nerve strands. Glial cells 
are small, star-shaped cells with numerous processes 
extruding from the epithelium and can be identified by 
the presence of  specific proteins such as glial fibrillary 
acidic protein (GFAP), vimentin, S100B and glutamine 
synthetase. Glia contain precursors for neurotransmitters 
such as GABA and NO, express receptors for certain pu-
rinoceptors, express cytokines - interleukin (IL)-1β, IL-6, 
TNFα - and neuropeptides such as neurokinin A and 
substance P after activation[85]. Enteric glial cells can di-
rectly or indirectly modulate neuromuscular transmission, 
gastrointestinal motility and secretion. They also control - 
together with enteric neurons - intestinal barrier functions 
and gut immune homeostasis. Glial cells should therefore 
be recognised as important players in the multidirectional 
interactions between neurons, immune cells and intestinal 
epithelium (Figure 1)[85,86]. Ablation of  glial cells in adult 
transgenic mice results in a fulminant and lethal jejuno-
ileitis characterized by an increased myeloperoxidase activ-
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ity, degeneration of  myenteric neurons and intraluminal 
hemorrhage, pointing towards an important role of  en-
teric glia in the maintenance of  bowel integrity[87]. 

LPS administration in mice increases the expression 
of  S100B in the intestine, which is indicative of  an upreg-
ulation of  glial cells. This effect of  LPS is reversed by the 
cannabinoid cannabidiol, paralleled by a decrease in glial 
cell hyperactivation and a decrease in mast cells and mac-
rophages (personal communication)[68]. The role of  enteric 
glia and S100B in human gastrointestinal inflammation 
has been recently investigated in human biopsies, showing 
increased S100B in the duodenum of  patients with celiac 
disease and in rectal biopsies of  patients with ulcerative 
colitis; both associated with an increase in iNOS protein 
expression and nitrite production[88,89]. Changes in enteric 
glial cells and their markers (GFAP and S100β) have also 
been described in inflammatory bowel disease (IBD)[86].

Intracellular signaling pathways involved in the 
pathogenesis of inflammatory-mediated ileus
Intracellular signaling pathways play an important role in 
the initiation of  the inflammatory immune response. Lumi-
nal bacteria and/or bacterial products enter the gastrointes-
tinal wall and activate the resident macrophages, inducing 
phosphorylation of  MAP kinase (ERK1/2, JNK and p38), 
thereby activating intracellular transcription factors such as 
NF-κB, STAT3, Egr-1 and NF-IL6 in both macrophages 
and leucocytes[21,40,79,90,91]. This leads to the induction of  nu-
merous inflammatory molecules (iNOS and COX2), cyto-
kines (TNFα, IL1β, IL6), chemokines (MCP-1, GM-CSF, 
MIP1α, VEGF) and adhesion molecules (ICAM-1). 

Inhibition of  protein tyrosine kinases (PTK), resulting 
in the phosphorylation of  tyrosine residues on proteins, 
occurs at multiple steps in the signaling cascade. Tyrphos-
tin AG 126, a PTK inhibitor, reduces the inflammatory 
mediator expression induced by surgical manipulation 
probably through inhibition of  the transcription factor 
NF-κB[92]. Wehner et al[93] showed the contribution of  
early p38-MAPK activation in murine postoperative ileus 
by the use of  the macrophage specific inhibitor, semapi-
mod. A role for Egr-1 was demonstrated in murine post-
operative ileus in Egr1 knockout mice and in mice treated 
with the PPARγ agonist, rosiglitazone[90,91]. In addition, 
the beneficial effects of  CO-releasing molecules in the 
development of  postoperative ileus seem to be mediated 
by interference with p38 and ERK1/2 activation[94]. These 
data provide evidence for a key role of  activation of  tran-
scription factors in postoperative ileus. 

These intracellular signaling pathways also play a cru-
cial role in endotoxic ileus. However, during sepsis and 
endotoxemia, TLRs come into sight and might represent 
an important pathogenic tool. Cells of  the innate immune 
system recognize microorganisms and/or parts of  micro-
organisms and initiate responses through PAMP binding 
to PRRs. TLRs are a family of  PRRs (similar to, for in-
stance, NOD), while PAMPs are often cell-wall molecules. 
LPS, a specific PAMP from Gram-negative bacteria, is 
known as a potent TLR4 ligand[9,95]. Specific TLR path-

ways (TLR2, TLR4, TLR5) are under investigation in the 
pathogenesis of  gastrointestinal ileus in sepsis models[96-98]. 

Downstream intracellular signaling pathways after TLR4 
activation involve different adaptor molecules (for a 
schematic overview see[97,99]). The bacterial molecules are 
presented more efficiently to the innate immune system 
by the complex of  LPS-binding protein, CD14 and MD2, 
forming an essential part of  the LPS-receptor next to 
TLR4[95,100]. Further on, stimulation of  TLR recruits the 
adaptor molecule, myeloid differentiation primary re-
sponse gene 88 (MyD88), to the receptor complex, lead-
ing to the activation of  IL1R-associated protein kinases 
and TNF-receptor-associated factor 6 to finally activate 
NF-κB and MAP kinases, resulting in the production of  
proinflammatory cytokines and chemokines[97,99,101,102]. 
MyD88 plays a key role in the cytokine production in re-
sponse to TLR ligands. Nevertheless, several other adap-
tor proteins are involved, such as TIR-domain-containing 
adaptor protein/MyD88 adaptor-like (TIRAP/Mal), TIR-
domain-containing adaptor inducing IFNs (TRIF), TRIF-
related adaptor molecule and sterile α- and armadillo-
motif-containing protein[99,101,103].

Buchholz et al[96] recently showed the involvement of  
TLR4 pathways in endotoxin-induced ileus. They hypoth-
esise that endotoxin-induced ileus is induced by TLR4 
signaling in nonhematopoietic cells in the early phase (6 
h after injection of  LPS), whereas at high doses of  LPS 
and at later time points both hematopoietic and nonhe-
matopoietic TLR4 signaling contributes. The molecular 
response attributed to the hematopoietic cells points to-
wards a role for residential macrophages and potentially 
also leucocytes in the late phase. The role of  mast cells has 
not been investigated so far, to our knowledge. But which 
nonhematopoietic non-bone marrow-derived cells could 
then be involved in TLR4 signaling? Related to gastroin-
testinal disturbances, possible candidate cells are smooth 
muscle cells, intrinsic neurons and ICC[96]. No data are yet 
available, to our knowledge, regarding the expression of  
TLR4 on ICC. However, functional TLR4 expression is 
described on smooth muscle cells and myenteric plexus 
cells in the murine and human intestine, with expression 
of  TLR4 on both neurons and glial cells in mice. TLR4 
expression seems absent in enterocytes[104,105]. Outside the 
gastrointestinal wall, TLR4 receptors are also expressed 
in dorsal root ganglia primary sensory neurons[105] and in 
the rat nodose ganglion[106]. The enteric nervous system, 
therefore, can be directly implicated in intestinal immune 
defence towards intestinal microbiota. 

Very recently, a dominant role for the MyD88-depen-
dent signaling pathway in early endotoxin-induced murine 
ileus was shown, as MyD88 deficient mice were completely 
protected from endotoxin-induced ileus and the induction 
of  the inflammatory cascade, whereas TRIF deficiency only 
partially protected the mice from ileus[98].

A study by Kuno et al[107] reported a beneficial effect on 
LPS-induced changes in colonic motility in the guinea pig 
after administration of  TAK-242, a selective TLR4 signal 
transduction inhibitor, illustrating again the potential thera-
peutic options of  interference with the TLR4 pathway.
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POSSIBLE NOVEL THERAPEUTIC 
STRATEGIES
The current treatment strategies for sepsis as described in 
the Sepsis Guidelines 2008 were described in the first part 
of  this paper. They largely rely on general supportive mea-
sures such as fluid resuscitation, cardiovascular support 
and antimicrobial treatment. The use of  corticosteroids 
is controversial and the use of  recombinant activated 
protein C is reserved for patients with severe sepsis and a 
high risk of  death[2,3,10,108,109]. More specific anti-inflamma-
tory therapy such as antilipopolysaccharide treatment and 
blocking of  proinflammatory cytokines such as TNFα 
and IL1β were ineffective or have failed to improve mor-
tality so far[108]. Selective digestive tract decontamination 
is not recommended in the sepsis guidelines[3]. Selective 
digestive tract decontamination reduces infections (mainly 
pneumonia) and mortality in a general population of  criti-
cally ill and trauma patients, however no studies are avail-
able in patients with severe sepsis or septic shock. The 
juries were split on the issue of  selective gut decontamina-
tion with equal numbers in favor and against the recom-
mendation of  the use of  selective gut decontamination. 
They agreed that further research was needed in patients 
with severe sepsis or septic shock and they voted against 
inclusion in the current guidelines[3].

Therapeutic interventions related to gastrointestinal 
motility, secretion and epithelial barrier function might 
be effective as well. As ileus plays a pathogenic role in the 
maintenance of  sepsis and multiple organ failure and in 
the occurrence of  secondary infections, prokinetic therapy 
might be of  value. Theoretically, ileus could be overcome, 
increasing gastrointestinal motility thereby reducing bac-
terial stasis, bacterial overgrowth and bacterial transloca-
tion and so interrupting the activation of  the inflamma-
tory cascade. Motility can, for instance, be enhanced by 
stimulation of  excitatory neuronal pathways or by direct 
smooth muscle effects. For the treatment of  postopera-
tive ileus per se, comprehensive reviews are available in 
the literature[13,40,110,111]. So far, treatment of  postoperative 
ileus is also largely supportive and based on a multimodal 
approach including fluid restriction, optimal (epidural) 
analgesia, minimally invasive surgical procedures, early 
mobilization and early oral feeding. 

Before going into more detail regarding potential 
therapeutic targets, two general considerations about 
drug development need to be taken into account. First of  
all, it has been clearly shown over the last few years that 
the transition of  promising drug targets in experimental 
animal models towards beneficial clinical trials is hard, 
difficult to predict and few products have been commer-
cialized[112,113]. For instance, with regard to the therapeutic 
pipeline for irritable bowel syndrome (IBS), another dis-
order associated with motility and sensitivity disturbances 
and a possible pathogenic role for inflammation, several 
drugs could not finalize the research developmental tra-
jectory towards clinical use: the neurokinin receptor an-
tagonists and fedotozine, a peripheral κ-opioid receptor 
agonist, could not prove clinical efficacy in phase ⅡB and 

phase Ⅲ trials, although promising results were shown in 
experimental studies. Other drugs have been withdrawn 
despite clinical benefit due to safety reasons, impacting 
the risk-benefit ratio, such as tegaserod and alosetron. The 
definition of  clear end points and biomarkers with clinical 
relevance emphasizing symptoms and quality of  life need 
to be considered[112,113]. Secondly, interference with the pa-
tients’ immune system could affect their first line defence 
against other infections and could affect patient wound 
healing[114]. In the 1990s, several controlled clinical trials of  
immunomodulators in severe sepsis were undertaken but 
failed to show benefit or even increased mortality[11,108]. 

As evidence for a bidirectional communication be-
tween the neuroendocrine and immune systems accu-
mulates in the pathogenesis of  inflammatory ileus (for 
hypothetical scheme, see Figure 1), and also in IBD and 
IBS, interference with the immune system seems a prom-
ising therapeutic strategy[40,64,114-117]. The interplay between 
the epithelial barrier function, intestinal motility and se-
cretion, and the cellular function of  immunocytes can be 
influenced by neuronal and immune mediators with thera-
peutic potential. Several potential target cells, mediators 
or intracellular pathways can be proposed such as mast 
cells, residential macrophages, glial cells, the cholinergic 
anti-inflammatory pathway, afferent neurons, intracellular 
signaling pathways such as egr-1, p38 and TLR4 transduc-
tion inhibitors, together with a plethora of  neuroactive 
substances released by damaged or inflamed tissue such 
as cytokines (IL-1β, IL-6), chemokines, prostaglandins 
and leukotrienes, neuropeptides, growth factors (NGF), 
hormones, histamine, tryptase, etc[40,114-116]. In the field of  
inflammation-associated ileus, therapeutic strategies com-
bining anti-inflammatory with prokinetic properties might 
have more potential for future drug development.

Ghrelin is one of  these compounds with therapeutic 
potential, as it has been shown to possess anti-inflamma-
tory properties together with prokinetic activity[114,118-120]. 
Ghrelin and the ghrelin receptor are expressed by lym-
phocytes, monocytes and dendritic cells. Activation of  
the ghrelin receptor results in an inhibition of  proinflam-
matory cytokine expression and an increase in survival in 
various inflammatory disease models[114,118]. Furthermore, 
ghrelin and ghrelin receptor agonists are proven to be pro-
kinetic in animal models of  delayed gastric emptying and 
in patients with gastroparesis of  different origins (for re-
view see[119]). Experimental studies with ghrelin and clinical 
trials with synthetic ghrelin agonists (TZP-101, TZP-102) 
and a selective growth hormone secretagogue (ipamore-
lin) are currently ongoing. Ipamorelin, a ghrelin mimetic, 
proved beneficial in a postoperative ileus model in the 
rat[121]. In a phase ⅡB trial, the ghrelin agonist TZP-101 
accelerated recovery of  the gastrointestinal tract after 
(partial) colectomy compared to placebo[122]. Specifically 
related to sepsis, it was shown that ghrelin ameliorates 
the gut barrier dysfunction by reducing serum HMGB1 
and by activation of  the vagus nerve via central ghrelin 
receptors[123]. We have shown the prokinetic potential of  
ghrelin and the ghrelin receptor agonist, growth hormone 
releasing peptide 6, in a septic mouse model[26]. In a simi-
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lar model, Dixit et al[124] showed potent anti-inflammatory 
effects of  ghrelin on the mRNA expression of  IL-1β, 
IL-6 and TNFα in the liver, spleen, lungs and mesenteric 
lymph nodes of  LPS-treated mice, associated with an at-
tenuation of  the LPS-induced anorexia. The combination 
of  prokinetic and anti-inflammatory properties enhances 
the potential of  ghrelin-related drugs in inflammation-
induced ileus. These effects are hypothesized to be medi-
ated by the anti-inflammatory cholinergic pathway and by 
interactions with immune cells[118,119,120,124].

Another intestinal hormone with potential in the treat-
ment of  postoperative ileus is glucagon-like peptide 2 
(GLP-2). Activation of  GLP-2 was recently reported to 
ameliorate inflammation and intestinal dysmotility associ-
ated with surgical manipulation of  the bowel in a murine 
model[125]. The beneficial effects on the proinflammatory 
milieu were more pronounced in the mucosa compared 
to the intestinal muscularis and the authors speculate that 
the protective effect of  GLP-2 is associated with mucosal 
inflammation and barrier dysfunction, not excluding inter-
ference with the anti-inflammatory vagal pathway[125].

The endocannabinoid system is involved in the regula-
tion of  physiological and pathophysiological responses 
in the gastrointestinal tract such as food intake, emesis, 
gastric protection, gastric secretion, visceral sensation, 
gastrointestinal motility, intestinal inflammation and cell 
proliferation[126]. CB1 and CB2 receptors are the classical 
receptors for all kinds of  cannabinoid agonists, whereas 
non-CB receptor-mediated effects of  cannabinoids are 
also described[126]. Generally it is accepted that CB1 activa-
tion inhibits gastrointestinal motility in different regions 
of  the gastrointestinal tract, whereas the role of  CB2 
receptors in the control of  physiological motility is less 
clear. Both CB1 and CB2 receptors have been shown to 
play a role in motility in pathophysiological inflammatory 
conditions[126]. In septic ileus in mice and rats, CB1 and 
CB2 receptor antagonists protected against LPS-induced 
changes in motility (in vitro and in vivo), without affecting 
the increase in TNFα, but reduced the increase in IL6 in 
the group treated with a low dose of  LPS[127]. We dem-
onstrated that septic ileus in mice was associated with an 
upregulation of  intestinal CB1 but not CB2 receptors and 
an increase in fatty acid amide hydrolase (FAAH), which is 
the principal catabolic enzyme for fatty acid amides. Can-
nabidiol, a non-psychotropic cannabinoid without signifi-
cant binding activity to CB1 or CB2 receptors, however, 
further decreased the LPS-induced motility disturbances 
in vivo[128]. Very recently, we showed that LPS-induced sep-
sis in mice resulted in a hyperactivation of  glial cells, an 
increase in intestinal mast cells, macrophages and TNFα. 
These effects were abrogated by cannabidiol treatment 
and associated with a decrease in S100B expression, sug-
gesting a crucial role of  glial cells (personal communica-
tion)[68]. 

As mast cells and residential muscular macrophages 
are proposed as key players in the pathogenesis of  il-
eus, targeting these cells might also show therapeutic 
potential. Depletion and inactivation of  macrophages 
in rodents prevented intestinal inflammation and post-

operative ileus[61]. As interfering with immune responses 
could also affect wound healing as stated above, it is 
important to investigate the effect of  macrophage deple-
tion on the healing process. Very recently, it was shown 
that pharmacological and genetic inhibition of  muscula-
ris macrophages in mice did not affect intestinal anasto-
motic healing[129]. Whether this approach is translational 
to the human situation remains questionable. However, 
interference with the macrophages could occur at several 
levels. Additionally, interference with the TLR4 receptor, 
as described above, offers a therapeutic potential.

An interesting way to downregulate macrophages is 
to interfere with the cholinergic anti-inflammatory path-
way; for instance, by the use of  α7 nicotinic acetylcholine 
receptors agonists, direct vagal stimulation or the use of  
acetylcholine esterase inhibitors[40,69]. Electrical stimulation 
of  the vagal nerve attenuates systemic inflammation in ro-
dent models of  endotoxemia, cecal ligation and puncture, 
and intestinal manipulation[76-79]. Pretreatment with the α7 
nAChR, AR-R17779, prevented postoperative ileus and 
the inflammatory reaction in mice[80]. Nicotine itself  has 
also been tested in clinical trials for IBD, however its use 
is jeopardized by its toxicity[117,130]. Electrical stimulation 
of  the vagus nerve remains an invasive procedure and 
pharmacological interference with acetylcholine receptors 
might have side-effects; both treatment strategies need 
further optimization. Recently, stimulation of  the vagal 
nerve in a rodent postoperative model by enteral admin-
istration of  lipid-rich nutrition was shown to be beneficial 
and to be mediated by a CCK-dependent vagal mecha-
nism[131].

With regard to mast cells, a first randomized and pla-
cebo-controlled pilot study in humans undergoing major 
abdominal surgery for gynecological malignancy showed 
that ketotifen, a mast cell stabilizer with histamine 1 re-
ceptor blocking activity, restored gastric emptying, amelio-
rated abdominal cramping and tended to improve colonic 
transit[67]. Mast cells can also be modulated at several levels 
including development, homing, secretory phenotype, sta-
bilization, interference with membrane receptors or down-
stream pathways, or blocking the effect of  the mediators 
released[132]. Potential drugs or drug targets are cromolyn, 
ketotifen, Syk kinase inhibitors; even TLR antagonists and 
blockers of  the mediators released by mast cells such as 
tryptase, proteases, chymase, prostaglandins, leukotrienes, 
cytokines and growth factors, chemokines and neuropep-
tides (CRF and substance P)[63,132]. 

CONCLUSION
The impact of  the gastrointestinal tract on the initiation 
and maintenance of  inflammation and secondary infec-
tions involved in the pathogenesis of  multiple organ 
failure is generally accepted. Therapeutic interventions 
related to gastrointestinal motility can therefore be effec-
tive in sepsis treatment, as bacterial translocation and ac-
tivation of  the inflammatory cascade can be put on hold. 
This hypothesis stresses the important link between gas-
trointestinal inflammation and motility.
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Both endotoxic and postoperative animal models of-
fer the opportunity to study the role of, and interference 
with, inflammation related to gastrointestinal motility and 
sensitivity. The complex interplay within the gastroin-
testinal wall between mast cells, residential macrophages 
and glial cells on the one hand, and neurons and smooth 
muscle cells on the other hand, forms the basis for further 
research towards novel therapeutic strategies. Many mol-
ecules have potential to intervene with this complex cellu-
lar interplay at the level of  intracellular signaling pathways, 
chemokines, cytokines, neuroactive substances and media-
tors involved in afferent neuronal signaling and the anti-
inflammatory vagal pathway. The combination of  anti-
inflammatory properties and prokinetic properties within 
one drug seems the most promising route for translational 
research.
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